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Abstract: The advances in the miniaturisation of electronic devices and the deployment of cheaper
and faster data networks have propelled environments augmented with contextual and real-time
information, such as smart homes and smart cities. These context-aware environments have opened
the door to numerous opportunities for providing added-value, accurate and personalised services
to citizens. In particular, smart healthcare, regarded as the natural evolution of electronic health and
mobile health, contributes to enhance medical services and people’s welfare, while shortening waiting
times and decreasing healthcare expenditure. However, the large number, variety and complexity of
devices and systems involved in smart health systems involve a number of challenging considerations
to be considered, particularly from security and privacy perspectives. To this aim, this article provides
a thorough technical review on the deployment of secure smart health services, ranging from the
very collection of sensors data (either related to the medical conditions of individuals or to their
immediate context), the transmission of these data through wireless communication networks, to the
final storage and analysis of such information in the appropriate health information systems. As a
result, we provide practitioners with a comprehensive overview of the existing vulnerabilities and
solutions in the technical side of smart healthcare.

Keywords: smart healthcare; context-aware environments; user-centric sensors; contextual sensors;
Internet of Medical Things; wireless body area networks; information security

1. Introduction

Smart healthcare (s-health for short) [1] is a paradigm that advocates for the provision
of healthcare services through the use of context-aware environments, equipped with
complex sensors, infrastructures and communications networks. From sensors and IoT
devices to ubiquitous services and decision-making systems, a plethora of information
sources provide data able to augment knowledge on patients, their health status and their
context, in order to make better decisions, diagnostics and treatments. The technological
landscape is, hence, a key enabler of s-health.

During the early 2000s, the synergies between ICTs and medicine and healthcare prac-
tice rapidly converged and enabled a key cornerstone in this field: electronic healthcare (e-
health) [2]. The e-health paradigm allowed the provision of online medical treatments and
disease management, the sharing of electronic health records in a standardised way, and
rapid communications between patients and practitioners, among others. Subsequently,
with the generalised use of mobile devices (particularly, smartphones), a novel patient-
centric highly-personalised healthcare paradigm emerged: mobile healthcare (m-health) [3].
M-health, considered a linchpin of the provision of today’s healthcare services, streamlines
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communications between patients and practitioners, and enables remote-monitoring and
self-monitoring. Today, many mobile devices, namely smartphones, smartwatches and
fitness trackers, already incorporate many sensors for health-oriented purposes.

With the steady implementation of ICTs in the healthcare domain, cities have also
started equipping their infrastructures with ICTs to face important demographic challenges
such as the growth of the world’s population and the increase in life expectancy. As a
result of the progressive integration of sensors in our daily lives, homes, buildings and
transportation systems, healthcare facilities and cities as a whole are provided with smart
and cognitive capabilities able to collect and analyse vast amounts of heterogeneous data
under real-time constraints. The ubiquity and communication capabilities of these envi-
ronments lead to context-awareness, i.e., environments capable of adapting themselves
to users’ needs. The meaningful exploitation of user-centric data in combination with
contextual data opened the door to smart healthcare services, aiming to acquire advanced
high-level knowledge and providing more effective, cost-efficient, personalised and sustain-
able healthcare models [4–7]. Unlike previous paradigms, s-health was the first paradigm
that considered the contextual perspective, so it is seen as a particular case of the e-health
and m-health paradigms.

To properly deploy efficient smart healthcare services, stakeholders must be aware
of all the concerns surrounding the management of sensor data, including its collection,
storage, transmission, analysis and presentation. Nowadays, there exists an overwhelming
number and variety of devices with sensing capabilities, with different features, technolo-
gies, complexities, dimensions and costs. These sensing devices, able to collect and transmit
data from multiple physical locations, are paramount to enable the contextualisation of
smart environments, such as smart homes, smart hospitals and smart cities. More specifi-
cally, such devices are topologically organised as networks, mostly wireless to endow the
system with major flexibility and cost-effectiveness. In this scope, wireless sensor networks
(WSNs) and wireless body area networks (WBANs) emerged and attracted the attention of
many stakeholders from very different industries, namely healthcare, sport, entertainment,
environmental, transportation or manufacturing, among others [8–11]. However, a number
of challenges could arise from these communications in terms of throughput, latency,
reliability, availability and security.

Concerning the latter, data security stands as one of the most important features in
the healthcare domain. Medical data, such as electronic health records, biomedical signals
and physiological parameters, are highly sensitive and must be handled with the highest
security and privacy standards. Moreover, the high value that such data might generate
in the black market motivates attackers to infiltrate themselves into the information sys-
tems [12,13]. Despite security safeguards, the history of both communication networks as
well as that of the Internet encompasses countless security flaws, vulnerable cryptographic
protocols and threatening data breaches. Every information system or communication
network is hence virtually prone to be attacked by cybernetic criminals or suffer from
irreparable damages because of unintentional human errors. Smart health systems, involv-
ing a large number of complex and heterogeneous devices and entities, may present risks
from a security and privacy perspective unless properly considered.

The possibilities of s-health applications are many and varied. Hence, facing of
all them individually is a daunting task since the use of specific sensors, devices and
technologies highly depends on the particular requirements of each application and service.
In consequence, the security threats and countermeasures can vary among them. To help
readers properly understand all the challenges involved at the time of developing any
s-health application, this article adopts a more neutral and high-level approach, by focusing
more on the individual actors involved in these scenarios, rather than the very applications.
Notwithstanding, numerous examples have been provided to contextualise the topics
addressed to the smart health domain. All things considered, it is essential to provide a
comprehensive approach to the realistic deployment of smart healthcare services. To this
end, the following aspects must be considered:
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• The complete variety of attributes related to people’s health status and their context
must be considered so that the s-health service is as beneficial as possible. Sens-
ing devices must be properly selected in accordance with their inner requirements
such as accuracy, reliability, dimensions, computational capabilities, cost or power
consumption, among others.

• Proper communication technologies must be favoured according to the specifications
of the sensing devices and considering the complex nature of WSNs and WBANs.
Scalability, density, coverage area and security are important aspects to be taken in
mind for communications.

• All s-health-related ICT components must meet with the highest security requirements
to thwart malicious activities. All in all, information security and data privacy, as well
as the adequate protection of devices, networks and services, is first and foremost.

There is plenty of literature related to IoT, WBANs and their security concerns. The
article in [14] reviewed the most recent sensing techniques for monitoring health conditions,
including flexible electronics and textile-based wearables. Similarly, the work in [15] also
analysed wearable, non-invasive sensors to monitor vital signs. From a more practical
approach, the authors in [16] provided a comprehensive review on the benefits and oppor-
tunities of using IoT and wearables in health-oriented applications. In [17], the authors
presented a comprehensive survey and classification of commercially available wearables
and research prototypes. The articles in [18–20] presented the most common technologies
for WBANs and contextualised their applicability in the health domain. In [17,21], the
authors presented a comprehensive survey of the attacks and countermeasures to WBANs.

Inspired by this research, this article contextualises all these elements into the smart
healthcare paradigm and provides a more comprehensive approach within this domain
considering the data life-cycle, from its collection, going through its transmission, to its final
exploitation. Often forgotten, this article also surveys the sensors and security concerns
related to contextual sensing, a required dimension in smart health. To the best of our
knowledge, this is the first article to present a concise and comprehensive review of all
the aforementioned smart healthcare research. Therefore, with the aim of contributing
to the proper deployment of secure smart health systems, this article provides a down-
to-earth landscape of the sensors and communication technologies that could be used
to enable these scenarios. More specifically, the contribution of this article is three-fold.
First, we provide a detailed review and characterisation of sensors, either user-centric or
contextual, that enable smart healthcare services. Second, we discuss the most common
wireless communication technologies that allow those sensors to interoperate and transfer
the sensed information in a secure manner. Furthermore, third, we also elaborate on the
most serious vulnerabilities and threats in such settings, and suggest the corresponding
countermeasures. All in all, we hope that this article helps technicians, practitioners,
stakeholders and researchers to set the grounds for more secure and private context-aware
environments and smart healthcare services.

The rest of the article is organised as follows. Section 2 provides a thorough overview
of the sensors used for gathering user and context attributes that are of interest for smart
health purposes. Then, Section 3 describes a three-tier WBAN architecture for deploying
complex s-health services, and summarises the most relevant wireless communication
technologies enabling this architecture. Then, Section 4 analyses the main security aspects
associated with smart healthcare environments by discussing the main threats, vulnera-
bilities and possible countermeasures. Considering the previous observations, Section 5
provides an extensive discussion on open issues and research opportunities to be addressed
in the future. Finally, the article closes in Section 6 with some final remarks.

2. Sensors: Definition and Taxonomy

Advancements in microelectronics and manufacturing technologies have enabled the
development of a large variety of sensors, embedded in electronic small-scale devices, with
high sensitivity, low energy consumption and contained costs. This section elaborates on
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the different sensors to be considered within the s-health paradigm. Sensors are categorised
into two groups according to the nature of the sensor data: user-centric data, i.e., referring to
personally identifiable individuals; and contextual data, i.e., referring to the context or the
immediate environment. Table 1 summarises all the sensor data described in this section.

Table 1. Taxonomy of the attributes to be considered for smart health.

User-Centric Contextual

Heart rate Blood oxygen Air temperature Air humidity
Blood pressure Blood glucose Barometric pressure Air pollution

Body temperature Skin temperature Water contamination Acoustic contamination
Respiratory rate Brain activity Electromagnetic radiation Seismic activity

Muscular activity Electrodermal activity
Hydration Location

Body motion

2.1. User-Centric Sensors

User-centric sensors aim to acquire specific data related to the individuals themselves.
Within this context, most of these data relate to medical data such as biosignals (i.e., phys-
iological parameters), health status and health conditions. Moreover, sensors collecting
the location or the body movements of individuals are also of interest to contextualise
individuals. All these sensors have already been seamlessly integrated within wearable
devices, whose popularity has grown during the last decade as part of the IoMT technol-
ogy [14,15,22]. In particular, wearable technology has revolutionised ubiquitous computing
with low-cost yet powerful devices, including body-worn accessories, smart textiles, gar-
ments, on-skin tattoos, ingestible sensors and implantable appliances, among others [17,23].
This technology, capable of monitoring, analysing and transmitting individuals’ data, opens
the door to numerous healthcare opportunities, ranging from the remote or self-monitoring
of patients’ health to the early detection of medical complications. All in all, the generalised
use of wearables is contributing to reducing healthcare expenditure and shortening medical
times, which leads to more sustainable healthcare models. This section reviews some of
the most common methods for the sensing of user-centric attributes (Figure 1) which are
summarised in Tables 2–7.

2.1.1. Cardiovascular Activity

Cardiovascular diseases are the first cause of mortality worldwide, responsible for
one third of all global deaths [24]. Therefore, the gathering of cardiovascular parameters—
namely heart rate, blood pressure, oxygen saturation and blood glucose concentration—has
become commonplace in many wearable and IoMT devices [25] (see Table 2). The contin-
uous monitoring of these parameters contributes to cardiac rehabilitation recovery [26]
and to early detect abnormal conditions (e.g., tachy/bradycardia, hyper/hypotension, hy-
per/hypoglycemia. . . ) that might lead to cardiovascular emergencies, such as arrhythmia,
stroke or even death [27,28].

One of the most commonly measured vital signs is the heart rate (or pulse), i.e., the
number of heartbeats per minute. Electrocardiography (ECG), photoplethysmography
(PPG), ballistocardiography (BCG) and phonocardiography (PCG) are common methods
of heart rate sensing [29]. On the one hand, ECG sensors record the electrical activity
and rhythm of the heart, in the form of electrocardiograms, by attaching a series of elec-
trodes to the skin. Traditional ECG monitoring uses Holter monitors, well-known medical
portable units, able to capture long recording periods (from days to weeks) in both home
and hospital environments. Despite the high reliability of these devices, they are quite
obstructive, invasive and uncomfortable due to their wired architecture. To overcome
this, wireless ECG monitoring solutions integrated in wearable devices have already been
proposed [30–33]. Alternatively, heart rate data can also be acquired using optical PPG
methods by means of pulse oximeter sensors, which measure the intensity of an LED light



Sensors 2021, 21, 6886 5 of 60

reflected or transmitted through the skin affected by the changes in the blood volume
during each heartbeat. Due to the low-cost and non-invasive nature of this method, most
wearables, fitness trackers and commercial devices opt for PPG methods [34–36]. However,
the accuracy of PPG measurements is strongly affected by several factors including the
measurement procedure, environmental factors and skin pigmentation, among others,
and post-processing techniques are desirable to enhance quality [37–39]. Finally, body
motion-based BCG methods [40] and sound-based PCG methods [41] are less prominent in
wearables. Monitoring a heart’s rhythm is particularly important in at-risk patients who
may sometimes require an immediate response in a proactive fashion. Hence, actuators
are likely to play a key role in the years to come. Today, wearable, non-invasive and
non-implantable cardioverter-defibrillators are already a reality [42–44].

Figure 1. User-centric attributes for smart healthcare: each icon, representing the sensors of an
attribute, is assigned to a part of the body where that attribute can be collected.

Another popular measurement is the blood oxygen level, which indicates how well
the oxygen is distributed to every cell, tissue and organ. Monitoring this attribute is
fundamental for people suffering from blood disorders (e.g., anaemia), circulatory problems
or respiratory diseases (e.g., asthma and COPD) in order to prevent shortness of breath,
hypoxia or cyanosis. The most accurate method to measure the blood oxygen level is
the arterial blood gas (ABG) test which analyses blood samples using specific analyser
devices. However, this procedure is invasive and painful and it is typically conducted
in hospital settings only. More aligned with the smart healthcare paradigm is the use of
PPG-based oximeter sensors, already used for heart rate sensing, to measure the blood
oxygen saturation (SpO2). Compared to ABG tests, this method is simpler, cheaper, non-
invasive and non-painful, but slightly less accurate [45,46]. Many wearables have been
designed to monitor this attribute from different parts of the body, such as the wrist, ear
and finger [47–50], and even using smart textiles [51].
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Table 2. Characteristics of the methods for cardiovascular activity sensing.

Attribute Method Sensor Device/ Location Properties Suitable for
Wearable Smart Health

Heart rate Traditional ECG Skin electrodes Holter monitor Chest

X Accuracy

×∼ Cost
∼ Cont. monit.
× Non-invasive

Heart rate Wireless ECG Skin electrodes
Patch X Accuracy

XBand Chest ∼ Cost

Textile Arm X Cont. monit.
∼ Non-invasive

Heart rate PPG Pulse oximeter
Smartwatch ∼ Accuracy

XWristband Wrist X Cost

Ring Finger X Cont. monit.
X Non-invasive

Heart rate BCG
Tilt

Patch Chest

× Accuracy

∼Force ∼ Cost

Pressure ∼ Cont. monit.
X Non-invasive

Heart rate PCG Sound
Microphone

Chest

× Accuracy

∼Smartphone X Cost

Electronic stethoscope ∼ Cont. monit.
X Non-invasive

ABG Chemical Chemical analyser

X Accuracy

×Blood Arm × Cost
oxygen Wirst × Cont. monit.

× Non-invasive

PPG Pulse oximeter

Smartwatch Wrist ∼ Accuracy

X
Blood Strap Earlobe X Cost

oxygen Band Finger X Cont. monit.
Textile X Non-invasive

Traditional Pressure Sphygmomanometer Arm

X Accuracy

×Blood X Cost
pressure × Cont. monit.

× Non-invasive

Smartwatch Wrist X Accuracy

X
Blood PTT Pulse oximeter Band Arm ∼ Cost

pressure (ECG and PPG) Electrodes Patch Ear X Cont. monit.
Chest X Non-invasive

Electrochemical Glucose meter Finger

X Accuracy

×Blood Traditional X Cost
glucose (chemical) × Cont. monit.

× Non-invasive

Electrochemical
Wristband ∼ Accuracy

X
Blood Epidermal Patch Wrist ∼ Cost

glucose chemical Tattoo Arm X Cont. monit.
X Non-invasive

Wrist ∼ Accuracy

X
Blood Optical Photo-sensor Wristband Finger ∼ Cost

glucose spectroscopy Infrared Patch Earlobe X Cont. monit.
X Non-invasive

Cardiovascular activity monitoring also considers blood pressure, i.e., the force with
which the blood moves through the circulatory system. High blood pressure, called hyper-
tension, is a serious cardiovascular risk with no warning symptoms (popularly known as a
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“silent killer”) that must be fought with healthy lifestyles. Cuff-based sphygmomanometers
are the traditional in-hospital devices to measure this attribute. Although they are cheap,
accurate and even available in portable electronic devices for home monitoring, they are
invasive and unsuitable for outdoor usage, long-term monitoring no real-time monitoring.
To overcome this, sensing technologies have contributed to developing non-mechanical
and non-invasive solutions [52]. Among others, accurate blood pressure results can be
estimated from the pulse transit time (PTT) measure obtained from the combination of
PPG and ECG signals [53–55]. Many devices, including smartphones, smartwatches, bands
and patches have been designed to this aim [56–59].

Finally, blood glucose concentration is crucial for the management of diabetes. Un-
less properly managed, diabetic people may experience severe or tragic consequences.
Therefore, many m-health applications have emerged with the aim to monitor, suggest and
engage diabetic people with their treatment [60–62]. Traditionally, blood glucose is mea-
sured using glucose meters, portable devices with electrochemical sensors that chemically
analyse a blood drop, typically obtained from the fingertip. Although these devices are easy
to use, cheap and accurate, they are invasive and do not provide continuous monitoring.
For an s-health oriented approach, several electrochemical-based sensor solutions were
implemented in wearable patches, tattoos and implantable sensors [63–65]. Optical-based
measurements, already used to measure other attributes, have also been proven for blood
glucose monitoring through spectroscopy techniques and infrared technology. Although
results are less accurate, solutions are far less invasive and obstructive [66,67]. Comple-
mentary to these sensors, diabetes management can reach a higher dimension, by actively
monitoring blood glucose in diabetic patients and deliver, when necessary, insulin through
in-body insulin pump actuators [68].

2.1.2. Temperature

The body temperature (or core temperature) is an indicator of the overall physiological
status of an individual and helps determine illnesses such as hypothermia, fever, heat
stroke or circulatory shock, among others. Unfortunately, standard medical measurements
using thermometers are invasive, obstructive and not aligned with s-health solutions.
Nevertheless, these measurements can be estimated in a less-invasive way from one’s skin
temperature, i.e., the temperature of the outermost surface of the body, generally obtained
from the wrist, arm, armpit, chest or forehead [69] (see Table 3).

Thermistors, thermocouples and optical methods are common means of measuring
skin temperature [70]. In particular, thermistor sensors are generally popular, cost-efficient
and ideal for many wearables, yet their accuracy is influenced by a number of factors
including the measurement’s location (e.g., wrist, forehead, etc.), ambient temperature
(e.g., hot or cold environment), sensor strain, sweating and the distance between the
sensor and skin [71–75]. Optical methods, based on FBG or infrared technology, are
quite similar to thermistors in terms of accuracy, comfortability and cost [76]. On the
other hand, thermocouples’ sensors, despite also being cost-efficient, have worse accuracy
than the previous methods. Although many sensors have been integrated in traditional
wearables, further non-intrusive and more comfortable solutions for temperature sensing
have already been proposed by means of stretchable and flexible patches [77–79] and smart
textiles [51,76,80,81].

2.1.3. Respiratory Rate

The number of breathing cycles per minute determines the respiratory rate, one of the
main vital signs of the human body and a clear indicator of overall health. Monitoring this
attribute helps identify or keep track of disorders, such as asthma attacks, panic attacks,
sleep apnoea, shortness of breath, COPD, pneumonia or anaemia. Although variations can
be caused due to the age or the physical activity, abrupt or prolonged abnormal respiration
rates can lead to permanent injury or death [82]. In contrast to other vital signs, the
recording of one’s respiratory rate is less automated (see Table 4). The gold standard
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technique for its measurement consists of counting the number of times that one’s chest or
abdomen rises during one minute while the patient is resting. This manual technique is
insufficient for smart health.

Table 3. Characteristics of the methods for temperature sensing.

Attribute Method Sensor Device/ Location Properties Suitable for
Wearable Smart Health

Body temperature Mercury

X Accuracy

×Traditional Mercury-in-
glass Oral X Cost

(chemical) thermometer Rectal × Cont. monit.
× Non-invasive

Skin temperature Electrical Thermistor

Arm ∼ Accuracy

X
Patch Chest X Cost
Band Ear X Cont. monit.

Forehead X Non-invasive

Skin temperature Electrical Thermocouple

Arm × Accuracy

∼Patch Chest X Cost
Band Ear X Cont. monit.

Forehead X Non-invasive

Skin temperature Optical

Smartwatch Wrist ∼ Accuracy

X
FBG Band Chest X Cost

Infrared Patch Ear X Cont. monit.
Textile Forehead X Non-invasive

More automated, the most popular monitoring methods are contact-based, i.e., the sen-
sor directly contacts the skin [83]. Breathing can be monitored considering the expansion
and contraction movements of the chest walls using strain sensors (e.g., resistive, capacitive
and inductive sensors) [84,85], transthoracic impedance sensors [86–88], or motion sensors
(e.g., IMUs, later introduced in Section 2.1.9) [89,90]. In general, this technique provides
notable accuracy (even though body motion artefacts and environmental factors can dimin-
ish the quality) and the small dimensions, low power consumption and contained costs of
these sensors facilitate their integration into wearable devices and textiles to be minimally
intrusive [91–94].

Further contact-based methods exist for respiratory rate sensing, although they might
be less accurate or more obstructive in smart health. For instance, acoustic methods, which
aim to characterise the respiratory sounds using microphones [95–97], are promising and
suitable in wearable devices, however, unfortunately, they are extremely susceptible to
environmental noise, so they should only be considered under very controlled scenarios.
Furthermore, one’s respiratory rate can also be measured according to the temperature
difference between the inhaled air and the exhaled air, by means of electric-based tempera-
ture sensors such as thermistors, thermocouples and pyroelectric sensors, placed close to
the nose or the mouth [98]. However, this method is quite obstructive and also extremely
sensitive to environmental factors. Similarly, inhaled and exhaled air can also be compared
in terms of humidity. In this context, electric-based sensors—such as capacitive and re-
sistive sensors—are common, although solutions based on nanoparticles and fibre-optic
technology are gaining increasing importance [99]. However, as before, intrusiveness and
sensitivity to external factors make this method only suitable for controlled scenarios. Last,
there is a growing interest in modulating the cardiac activity recorded from ECG and
PPG signals to measure the respiratory rate [100–103]. The lowly invasive, low energy
consumption and reduced cost of this method have fostered research in this direction to
overcome the main limitations of the aforementioned methods.

Another group of monitoring methods are contactless, i.e., the sensor does not directly
contact the skin, which are more comfortable solutions which facilitate long-term moni-



Sensors 2021, 21, 6886 9 of 60

toring and monitoring during sleep [104]. The main drawback of such methods is their
noise sensitivity to environmental or motion artefacts, so they should only be considered
under very constrained environments. Most contactless methods are based on camera
sensing, which estimate the respiration rate by tracking one’s chest movements [105,106].
Other methods have proposed infrared thermal imaging sensors to detect the temperature
fluctuations during the respiration cycle [107] or ultrasonic proximity sensors [108,109]:

Table 4. Characteristics of the methods for respiratory rate sensing.

Attribute Method Sensor Device/ Location Properties Suitable for
Wearable Smart Health

Traditional

- - -

X Accuracy

×Respiratory (observation X Cost
rate of chest or × Cont. monit.

abdomen) X Non-invasive

Resistive Patch
Chest

X Accuracy

X
Respiratory Chest wall Capacitive Belt X Cost

rate strain Inductive Textile X Cont. monit.
X Non-invasive

Impedance
Patch

Chest

X Accuracy

X
Respiratory Electrical Belt X Cost

rate impedance Textile X Cont. monit.
X Non-invasive

IMU
Patch X Accuracy

X
Respiratory Motion Belt Chest X Cost

rate (contact) Textile Abdomen X Cont. monit.
X Non-invasive

Acoustic Microphone
Nose × Accuracy

∼Respiratory Microphone Mouth X Cost
rate Headset Chest X Cont. monit.

∼ Non-invasive

Thermistor ∼ Accuracy

∼Respiratory Air temp. Thermocouple Headset Nose X Cost
rate (electrical) Pyroelectric Patch Mouth X Cont. monit.

∼ Non-invasive

Capacitive ∼ Accuracy

∼Respiratory Air humid. Resistive Headset Nose X Cost
rate (electrical) Nanocrystal Patch Mouth X Cont. monit.

∼ Non-invasive

Smartwatch X Accuracy

X
Respiratory Cardiac act. Pulse oximeter Band Wrist ∼ Cost

rate modulation Electrodes Patch Chest X Cont. monit.
X Non-invasive

Camera -

∼ Accuracy

∼Respiratory Motion RGB camera X Cost
rate (contactless) Smartphone × Cont. monit.

X Non-invasive

Camera Infrared camera -

∼ Accuracy

∼Respiratory Thermal × Cost
rate imaging × Cont. monit.

X Non-invasive

Ultrasonic Recording device -

∼ Accuracy

∼Respiratory Ultrasonic prox. × Cost
rate Capacitive × Cont. monit.

X Non-invasive
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2.1.4. Brain Activity

Neurological disorders are one of the most prevalent disorders in our society, including
Alzheimer’s disease or other forms of dementia, epilepsy, meningitis, traumatic brain injury
and cerebral palsy. Unfortunately, classical brain activity monitoring methods are highly
sophisticated and require large and expensive instrumentation. Hence, developing novel
methods considering the size, cost and power constraints so as to be integrated into portable
and wearable devices is truly challenging (see Table 5).

One of the most popular methods for assessing the quality of brain activity is electroen-
cephalography (EEG) which measures the electrical activity in the brain by placing small
electrodes at multiple locations on the scalp. Conventional EEG measurements, conducted
in medical facilities, require a head cap with electrodes connected to a recording instru-
mentation through long wires. Although accurate, this method is significantly obstructive
and invasive. To face these shortcomings, wireless technologies have enabled comfort-
able EEG monitoring using wearable devices [110,111]. Headset-based solutions are the
most prominent [112–114], although there less-obstructive wearables also exist which are
placed on the forehead [112,115] or the ear [116,117]—even more discreet solutions include
temporary tattoos [118]. In addition to EEG, other methods for brain activity monitoring,
albeit less frequently integrated in wearable devices due to their complexity, are based
on functional near-infrared spectroscopy (fNIRS) for hemodynamic changes [119,120],
magnetoencephalography (MEG) considering magnetic fields [121] and positron-emission
tomography (PET) [122].

2.1.5. Muscular Activity

Monitoring muscular activity can help detect and evaluate the severity of neurodegen-
erative diseases such as Parkinson’s disease, bradykinesia or dyskinesia symptoms [123,124].
Non-invasive wearable sensor technology can be beneficial in the early detection of these
disorders in non-diagnosed patients and to remotely monitor the evolution of these condi-
tions in already-diagnosed patients (see Table 5).

The most popular diagnostic procedure to assess the functioning of the muscles and
the nerve cells is electromyography (EMG) which measures the electrical signals generated
by the muscles during their movement. There are two kind of methods for EMG recordings.
On the one hand, intramuscular EMG methods are invasive, potentially painful, and not
well aligned with smart healthcare solutions. On the other hand, surface EMG methods are
non-invasive procedures that only require placing some patch electrodes on the muscle’s
skin, facilitating their integration in wearable devices, such as wristbands, armbands, caps
or even textiles, to enable long-term monitoring in real-time [125–128], tracking tremor
and dyskinesia symptoms [129], preventing falls [130], recognising gestures and activi-
ties [131], controlling robotic prosthetics [132–134] and rehabilitation [135,136]. Although
more comfortable, the quality of these measurements is affected by the skin’s properties,
tissue structure, the adherence of the electrodes to the skin and external electromagnetic
interference and noise-filtering techniques are required [137].

In addition to electrical measurements, muscular activity can also be measured from a
mechanical perspective through mechanomyography (MMG) [138], which measures the
mechanical vibrations of muscles’ fibres using accelerometers, condenser microphones,
piezoelectric pressure sensors or force-sensitive resistors [139]. This method has been
widely used to recognise gestures useful for the control of robot prosthetics or for rehabili-
tation [139–141], as well as to assess muscles conditions [142].
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Table 5. Characteristics of the methods for brain activity sensing and muscular activity sensing.

Attribute Method Sensor Device/ Location Properties Suitable for
Wearable Smart Health

Traditional EEG Skin electrodes Head cap Scalp

X Accuracy

×Brain × Cost
activity × Cont. monit.

× Non-invasive

Wireless EEG Skin electrodes
Headband Scalp ∼ Accuracy

X
Brain Headset Head ∼ Cost

activity Tattoo Forehead X Cont. monit.
Ear X Non-invasive

fNIRS Optodes Head cap

X Accuracy

×Brain Scalp ∼ Cost
activity Head ∼ Cont. monit.

∼ Non-invasive

MEG Head cap

X Accuracy

×Brain Optically
pumped Scalp × Cost

activity magnetometeres Head ∼ Cont. monit.
∼ Non-invasive

PET Head

X Accuracy

×Brain Photosensor Head cap × Cost
activity Photodiode Helmet × Cont. monit.

× Non-invasive

Monopolar X Accuracy

×Muscular Intramuscular or concentric Needle and Region of × Cost

activity EMG electrodes
recording

device interest × Cont. monit.

× Non-invasive

Surface EMG Skin electrodes

Patch ∼ Accuracy

X
Muscular Band Region of X Cost
activity Cap interest X Cont. monit.

Textile X Non-invasive

MMG
Accelerometer ∼ Accuracy

X
Muscular Pressure Patch Region of X Cost
activity Force-sensitive Band interest X Cont. monit.

X Non-invasive

2.1.6. Electrodermal Activity

Electrodermal activity (EDA), also known as skin conductance or galvanic skin re-
sponse, aims to detect changes in the electrical properties of the skin, especially due to
sweating. This property, highly valuable in behavioural medicine, allows detecting emo-
tional states, such as stress, anxiety, depression, fatigue or risk [143–145], characterise sleep
activity [146,147] and manage the neurological status [148,149].

The instrumentation required to measure EDA is simple and only requires a cou-
ple of electrodes placed next to each other on the skin surface, generally the wrist or
fingertip (see Table 6). Different types and materials of electrodes are currently being
investigated in order to be integrated into wearable devices, considering both signal quality
and comfort aspects for long-term monitoring [150]. Although initial devices were wired,
many current solutions, based on wristbands [145,151,152] and finger straps [144,153] are
already wireless.

2.1.7. Hydration

Hydration plays a significant role in people’s health status. Hot environments or
strenuous physical exercise (e.g., high-performing athletes or military training recruits) can



Sensors 2021, 21, 6886 12 of 60

accelerate the appearance of dehydration, a dangerous condition that leads to physical and
cognitive performance loss. Furthermore, monitoring the (de)hydration level in elderly
people, a very high-risk group, is crucial to prevent their fragile health condition worsening.
Prolonged dehydration periods can lead to serious diseases, such as kidney disease, heart
diseases or respiratory infections [154,155].

Traditionally, the method to assess dehydration is qualitative, i.e., looking directly at
the patient’s eyes or lips. To measure the hydration level in a quantitative way, several tech-
niques based on optical spectroscopic, electromagnetic or electrochemical measurements
have been proposed [156–159] (see Table 6). Hydration sensors are commonly integrated
in stretchable epidermal sensors [156,157,160] and wristbands [155,158], but they have also
been successfully designed as patches and headbands [155,158,161], and even integrated
in smart textiles [162].

Table 6. Characteristics of the methods for electrodermal activity sensing and hydration sensing.

Attribute Method Sensor Device/ Location Properties Suitable for
Wearable Smart Health

Electrical
Smartwatch X Accuracy

∼Electrodermal Skin electrodes Band Wrist X Cost
activity (wired) Strap Finger X Cont. monit.

∼ Non-invasive

Electrical
Smartwatch X Accuracy

X
Electrodermal Skin electrodes Band Wrist X Cost

activity (wireless) Strap Finger X Cont. monit.
X Non-invasive

Hydration
Traditional

- - -

X Accuracy

×(observation of X Cost

eyes or lips) × Cont. monit.
X Non-invasive

Hydration Infrared
Band Wrist X Accuracy

X
Optical Patch Arm ∼ Cost

spectroscopy Textile Head ∼ Cont. monit.
X Non-invasive

Hydration Electromagnetic
Band Wrist ∼ Accuracy

X
Impedance Patch Arm X Cost
Capacitive Textile Head ∼ Cont. monit.

X Non-invasive

Hydration Electrochemical

Band X Accuracy

X
Epidermal Patch Wrist ∼ Cost
chemical Tattoo Arm ∼ Cont. monit.

Textile X Non-invasive

2.1.8. Location

The provision of health services is not restricted to healthcare facilities only. Check-
ing one’s health status or collecting physiological parameters either at home or during
walks/exercise by means of wearables is commonplace nowadays. Therefore, other non-
medical user-related data are a valuable complement to medical data so as to contextualise
users. In particular, thanks to the self-location capabilities integrated in most smartphones
and smartwatches, location data are extremely valuable to assist at-risk people, including
the elderly, children and people with some certain conditions (see Table 7). More specifically,
healthcare-oriented LBS can contribute to finding medical assistance nearby, notify the emer-
gency services of the exact location of the emergency, prevent disorientation and wandering
episodes, and even provide walking recommendations to foster healthier lifestyles [5,163,164].

People’s location is usually determined using GPS, integrated in most smartphones,
wearables and IoT devices. This satellite-based technology is highly accurate for deploying



Sensors 2021, 21, 6886 13 of 60

smart health services in outdoor environments—although its accuracy deteriorates in-
doors or under bad weather conditions. Other satellite-based positioning solutions include
GLONASS and Galileo, but their availability in mobile device is less popular. Regard-
ing indoor locating, a number of different technologies have been proposed for precise
indoor positioning and proximity-based systems, such as Bluetooth Low Energy (BLE)
beacons [165], WiFi-based positioning system (WPS) [166], radio frequency identification
(RFID) [167] and ultra-wideband (UWB) [168] technologies (further details can be found in
Section 3.2). These technologies help locate and keep track of the people’s trajectories in
indoor environments, such as the elderly in nursing homes or patients in a smart hospital.

2.1.9. Body Motion

Human motion analysis helps physicians and physiotherapists identify abnormal move-
ments and plan and assess the correctness of rehabilitation programmes [169] (see Table 7).
More specifically, applications of body motion measurements in healthcare are diverse, in-
cluding the analysis of gait patterns and the assessment of gait abnormalities [170–172]; the
development of corrective posture systems for rehabilitation purposes; enhance athletes’
performance [173–175]; the detection of falls (especially for the elderly) [176–178]; and the
recognition of gestures and activities [179,180].

Many solutions are based on optical motion capture methods, aiming to track hu-
man motions in a 3D space using multiple cameras triangulating markers attached to
different parts of the body. Although being largely used in computer-generated special
effects in cinema and TV and their high potential, these systems are very complex and
require expensive time-consuming operations. Moreover, their use in indoor settings is
only feasible under very controlled environments [181,182]. There are alternative optical
methods that use RGB-depth cameras that do not require the attachment of markers to the
body. Although these methods are more practical and less invasive, they do not provide
spatio-temporal information (i.e., there is no way to know whether the gesture is beginning
or finishing) and they are also only viable under controlled environments [183–185]. Hence,
capturing body motion and human movements in real-life, uncontrolled environments
is not straightforward. The use of inertial measurement units (IMUs), which considers
a triaxial accelerometer, a triaxial gyroscope and a non-inertial triaxial magnetometer,
enable the recreation of the motion of the movements [186]. This method, which works in
both indoors and outdoors, can be integrated in wearable devices for enhancing people’s
comfort while enabling long-term monitoring [170,187,188].

2.2. Contextual Sensors

The deployment of massive networks of IoT devices collecting contextual parameters
in real-time has enabled context-aware environments, where smart health applications can
be deployed. Whereas this information is rarely used in classical healthcare paradigms,
it plays a key role in the s-health paradigm to provide more efficient and effective health
services and improve people’s health status and welfare. This section reviews the most pop-
ular methods for the sensing of contextual attributes (see Figure 2), which are summarised
in Table 8–10.

2.2.1. Air Temperature

Air temperature is one of the main contextual parameters contributing to the comfort,
welfare and health of people. Extreme temperatures or high temperature variations can
have negative consequences for human health. Especially important with the incoming
climate change effects, several studies have aimed to establish a relationship between
air temperature and the mortality rate [189–192] or the appearance of diseases and disor-
ders [193–196].

There are different types of temperature sensors integrated in a large number and
variety of IoT devices [197] (as can be seen in Table 8). Thermocouples are popular sensing
solutions due to their contained costs, rapid responses to temperature changes and large
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range of temperature detection values. However, accuracy is the main drawback of this
kind of sensors, and they should not be used when very precise measurements are needed.

Resistance temperature detectors, with a metal core, are more accurate, but their
response to temperature changes is slower and their cost is higher compared to other
sensors. Similarly, thermistors are low-cost sensors with a ceramic or polymer core that
lead to faster responses to temperature changes with notable accuracy. Last, several devices
prefer semiconductor-based sensors using integrated circuits because of their low cost, low
energy consumption and fair accuracy.

Figure 2. Contextual attributes for smart healthcare that can be sensed from context-aware environments.

Table 7. Characteristics of the methods for location sensing and body motion sensing.

Attribute Method Sensor Device/ Location Properties Suitable for
Wearable Smart Health

Location
GPS Smartphone

Any

X Accuracy

X
Satellite GLONASS Smartwatch X Cost

(outdoor) Galileo Band X Cont. monit.
X Non-invasive

Location

BLE beacon IoT
-

X Accuracy

X
Proximity WPS Access point X Cost
(indoor) RFID Tag ∼ Cont. monit.

UWB X Non-invasive

Body motion Camera
Markers X Accuracy

×Optical motion Camera distributed × Cost
capture Marker in the body × Cont. monit.

× Non-invasive

Body motion Optical Camera -

∼ Accuracy

∼RGB-depth ∼ Cost
camera ∼ Cont. monit.

X Non-invasive

Body motion Kinematic IMU
Band ∼ Accuracy

XPatch Region of X Cost

Textile interest X Cont. monit.
X Non-invasive
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Table 8. Characteristics of the methods for air temperature sensing, air humidity sensing and barometric pressure sensing.

Attribute Method Sensor/ Device Properties Suitable for
Smart Health

Air temperature Electrical Thermocouple

× Accuracy

∼X Cost
X Response time

X Energy consumption

Air temperature Electrical
Resistance X Accuracy

∼temperature ∼ Cost

detector × Response time
X Energy consumption

Air temperature Electrical Thermistor

X Accuracy

X
∼ Cost

X Response time
X Energy consumption

Air temperature Electrical

∼ Accuracy

X
Semiconductor X Cost

integrated circuit X Response time
X Energy consumption

Air humidity Electrical Capacitive

X Accuracy

∼× Cost
X Response time

X Energy consumption

Air humidity Electrical Resistive

∼ Accuracy

X
X Cost

∼ Response time
X Energy consumption

Air humidity Optical Fibre-optic

X Accuracy

∼× Cost
∼ Response time

X Energy consumption

Barometric pressure MEMS

X Accuracy

X
Piezoresistive X Cost

pressure X Response time
X Energy consumption

2.2.2. Air Humidity

Abnormal humidity values can cause physical discomfort and lead to serious health
outcomes [198]. On the one hand, low humidity can cause nasal congestion which increases
the risk of flu and other respiratory infections [199,200]. On the other hand, high humidity
together with high temperatures can lead to hyperthermia, dehydration, heat exhaustion
and heat stroke. Interestingly enough, high humidity also fosters the appearance, growth
and spread of bacteria and viruses that can aggravate health conditions, including infectious
diseases, allergies and respiratory problems, among others [200,201].

Similarly to air temperature sensing, many IoT devices integrated mechanisms for air
humidity monitoring, which can be measured using different types of sensors (see Table 8).
Capacitive humidity sensors are commonly used in the market due to their accuracy
(although it decreases in extreme environments), small dimensions, low power consump-
tion and wide measurement range. Furthermore, resistive sensors were inexpensive and
suitable solutions in non-extreme environments that do not require extremely precise
results [202]. More recently, optical methods based on fibre-optic sensors offer several
advantages regarding the aforementioned sensors in terms of durability, higher accuracy,
reduced temperature dependency and electromagnetic immunity [203,204]. Although this
method is less used in commercial devices, its future is encouraging.
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2.2.3. Barometric Pressure

Differences in barometric pressure because of weather shifts or altitude changes may
harmfully affect the human body. Headache, migraine attacks or joint pain, such as arthritis,
are common symptoms appearing due to pressure changes [205–208]. Current barometric
pressure sensors are based on microelectromechanical systems (MEMS), based on the
piezo-resistive effect, which offer high accuracy, low power consumption, low cost and
can be manufactured at low cost and small dimensions so that they could be seamlessly
integrated into portable IoT devices [209–211] (see Table 8).

2.2.4. Air Pollution

Air pollution is a global public health emergency: nine out of ten people breath air
containing high levels of pollutants, resulting in the death of approximately seven million
people worldwide annually [212]. The most harmful pollutants include particulate matter
(PM10, PM2.5 and PM0.1), ozone (O3), carbon monoxide (CO), nitrogen oxide (NO2), sulphur
dioxide (SO2), lead, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds
(VOCs) and dioxins, which are more concentrated in large urban areas or industrialised
regions. These pollutants contribute to respiratory problems, such as COPD, asthma and
bronchitis, cardiovascular diseases, neurological disorders, reproductive dysfunctions,
skin diseases and a variety of cancers in long-term exposures [213–216]. Smart health
applications can intelligently manage this information to reduce the exposure of citizens
to pollutants.

Optical spectroscopy methods are standard analytical techniques to detect gas pol-
lutants in the air, although they are time-consuming, expensive and cannot be used in
real-time. More interestingly, for smart health, there are two main low-cost sensing meth-
ods for measuring this information more efficiently [217,218] (see Table 9). Commonly used
in the industry are metal oxide semiconductor (MOS) sensors, characterised by their low
cost, small dimensions, fast response times, low power consumption and high durability.
However, they are sensitive to changes in environmental conditions and to interfering
gases. Such limitations are overcome using electrochemical sensors, even though their cost
and dimension are significantly higher in comparison to MOS sensors [219–221].

2.2.5. Water Contamination

In addition to air, water is another vital resource that may contain microbiological or
chemical contamination. Poor quality water, especially abundant in low-income countries,
can lead to waterborne parasitic infections (e.g., cholera, dysentery and typhoid), chronic
diseases, reproductive complications and adverse neurodevelopment procedures [222].

Traditional methods for measuring water quality are based on laboratory chemical
analyses of water samples, which are manually collected at various locations and at differ-
ent time periods. Despite being accurate, this procedure is inefficient, resource-consuming
and offline because no real-time information is provided—which is essential to detect
outbreaks of contaminated water (see Table 9). To evaluate the quality of water in real-time,
electrochemical sensors can monitor changes in water parameters that become affected
by chemical and biological pollutants, such as turbidity, free/total chlorine, oxidation-
reduction potential, electrical conductivity, pH, nitrates level and temperature [223–225].
Furthermore, further approaches have proposed the detection of floating debris in contam-
inated water by means of aquatic sensors embedding a CMOS camera [226].

2.2.6. Acoustic Contamination

Regular exposure to acoustic contamination, this is, elevated sound levels and envi-
ronmental noise, can result in adverse health outcomes, including hearing impairments,
sleep disturbance, chronic stress and an increased incidence of suffering cardiovascular
and metabolic diseases [227–229]. Today, the continuous and real-time monitoring of noise
levels is possible using low-cost and small microphones embedded in IoT devices [230,231]
(as can be seen in Table 9).
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Table 9. Characteristics of the methods for air pollution sensing, water contamination sensing and acoustic contamina-
tion sensing.

Attribute Method Sensor/ Device Properties Suitable for
Smart Health

Air pollution

X Accuracy

×Optical Infrared × Cost
spectroscopy Fluorescence × Response time

∼ Energy consumption

Air pollution Chemiresistive MOS

∼ Accuracy

X
X Cost

X Response time
∼ Energy consumption

Air pollution Electrochemical Electrochemical

X Accuracy

∼× Cost
X Response time

X Energy consumption

X Accuracy

×Water Traditional In-lab × Cost
contamination (chemical) instrumentation × Response time

× Energy consumption

Electrochemical
Resistive ∼ Accuracy

X
Water Capacitive ∼ Cost

contamination Conductance X Response time
X Energy consumption

Optical CMOS camera

∼ Accuracy

X
Water X Cost

contamination X Response time
X Energy consumption

Acoustic Microphone

X Accuracy

X
Acoustic X Cost

contamination X Response time
X Energy consumption

2.2.7. Electromagnetic Radiation

Electromagnetic radiation has become a popular form of pollution due to the om-
nipresent telecommunication equipment. In short, two types of radiation exist: non-
ionising radiation and ionising radiation. On the one hand, ionising radiation (e.g., Gamma
rays, X-rays and higher UV light band) can cause tissue damage since rays contain sufficient
electromagnetic energy to detach electrons from atoms or molecules. Numerous studies
state the adverse health outcomes due to prolonged exposures to ionising radiation: UV
exposures can lead to sunburns, eye damage and skin cancer, X-rays can modify cells’ ge-
netic material and cause mutations and cancer and Gamma rays can cause disorders, such
as leukaemia and bone, breast and lung cancer. Moreover, syndromes related to the ner-
vous system and neuropsychiatric-related problems, including insomnia, chronic fatigue,
sexual dysfunction and memory problems, have also been associated with electromag-
netic radiation [232–234]. On the other hand, non-ionising radiation (e.g., radio-frequency,
microwaves, infrared, visible light and low UV band) may generate thermal energy and
excite molecules, but it does not contain sufficient energy to remove electrons from atoms
or molecules [233], although concerns have also been raised about its impact on human
health [235].

To protect against radiation exposure, portable and affordable devices are being
developed to detect Gamma radiation using Geiger–Müller tubes or fibre-optic radiation
sensors [236–240] and to detect infrared and UV lights through optical sensors as well [241]
(see Table 10).
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2.2.8. Seismic Activity

Tremors on the Earth’s surface involve seismic activity resulting from natural disasters,
such as earthquakes, volcanic eruptions and explosions. Surface vibrations are a common
daily phenomenon, but they are imperceptible for humans due to their low intensity and
do not suppose an apparent risk. However, sudden high-intensity shakes can produce
seismic waves able to collapse buildings and trigger catastrophic consequences for people,
including death. Continuous seismic monitoring does not contribute to people’s health
status per se under normal conditions, but it can be essential for alerting or predicting
seismic events so to guarantee people’s safety.

Traditional sensing solutions use seismometers, which are reliable and high-performance
instruments though nonetheless bulky, expensive and sensitive to electromagnetic interference
(see Table 10). In recent years, this activity has being monitored using the inexpensive
tri-axial accelerometer sensors that, in combination with machine learning techniques,
allows detecting or predicting seismic events [242–244]. Additionally, opto-mechanical
sensors based on optical fibre technology have already been assessed to monitor ground
motions [245].

Table 10. Characteristics of the methods for electromagnetic radiation sensing and seismic activity sensing.

Attribute Method Sensor/ Device Properties Suitable for
Smart Health

Electrical Geiger–Müller tubes

X Accuracy

∼Electromagnetic × Cost
radiation ∼ Response time

∼ Energy consumption

Optical Fibre-optic

X Accuracy

X
Electromagnetic ∼ Cost

radiation X Response time
∼ Energy consumption

Seismic activity Seismometer

X Accuracy

×Traditional × Cost
(motion) ∼ Response time

∼ Energy consumption

Seismic activity Kinematic Accelerometer

∼ Accuracy

X
X Cost

∼ Response time
X Energy consumption

Seismic activity Optical Opto-mechanical

∼ Accuracy

X
∼ Cost

∼ Response time
X Energy consumption

3. Communication Architecture and Technologies

Smart healthcare services are not fed from a single sensing device, but from many of
them. To ease this management, devices are logically structured as networks, generally
wireless. In this scope, WSNs provide a contextualisation-enabling infrastructure within
physical environments for real-time applications. For instance, the coverage of a region
with a WSN composed of multiple temperature, humidity and air pollution sensors en-
ables the transmission of real-time data to a smart health service aiming to alert nearby
patients with respiratory diseases. Despite the huge potential of WSNs as a whole, it is
worth mentioning that each single sensor was generally resource constrained in terms of
computation, memory, storage and battery capacity. To increase the life expectancy of the
sensors and prevent rapid battery depletion, their power consumption must be as low as
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possible and the implementation of lightweight protocols is a must—this is particularly the
case for data transmission, the most energy-consuming task [246,247].

With the rise of wearable technology, WSNs evolved towards a more user-centric
approach: WBANs. WBANs are designed to collect user-centric attributes such as physio-
logical parameters, location and motions, and communicate them to external entities to
provide efficient, personalised and real-time health services. Furthermore, actuators within
WBANs can receive feedback or commands from other devices and act accordingly. For
instance, a diabetes-oriented WBAN enables continuous blood glucose monitoring, and
when abnormal values are detected, communicates to an external smart healthcare service
and/or activates an insulin pump actuator that delivers insulin into the body. WBANs
offer enhanced opportunities concerning active patient monitoring, biofeedback, telemedicine
and rehabilitation [18] that can irreversibly shift traditional healthcare models. However, in
addition to the technical challenges inherited from WSNs (e.g., latency, throughput, energy
consumption. . . ), WBANs have to face additional obstacles for their practical adoption, includ-
ing reliability, accuracy, fault tolerance, interoperability and security, among others [9,19,248].
The non-compliance of these additional requirements can certainly endanger people’s
health. For example, incorrect medical decisions could be taken in the case of the inaccurate
sensing of physiological parameters, or transmitting the information through an insecure
communication channel.

3.1. WBAN Communication Architecture

The low-power and resource-constrained devices involved in WBANs require commu-
nication architectures to transmit data in a time- and energy-efficient manner. Fulfilling all
of these conditions is one of the most prominent communication architectures for WBAN,
which is based on three tiers [19] (as can be seen in Figure 3):

Figure 3. Component-based representation of the 3-tier communication architecture for WBANs.

• Intra-WBAN communications (Tier 1): This tier enables communications between
the sensors and actuators (i.e., nodes) placed in, on and around the human body,
in a range of approximately two meters. In addition to the direct communications
among these nodes, they can also communicate with a sink, a portable device attached
to the body, to transmit the user-centric data. The sink, which usually refers to a
smartphone in the s-health context, is the WBAN coordinator and gateway to the next
tier. Short-range and low-energy communication technologies are desirable in this
tier.

• Inter-WBAN communications (Tier 2): This tier aims to connect the users’ WBANs
with external networks that are easily accessible for other users, such as the Internet
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and cellular networks. Hence, the communications in this tier take place between the
sink and one or more access points, which are gateways to those networks. Large-
range communication technologies, such as ZigBee, BLE, Wi-Fi and cellular, were
adopted in this tier.

• Beyond-WBAN communications (Tier 3): The communications in this tier refer to
those from the health provider. Having received the user-centric data from the previ-
ous tier, it was stored in the healthcare information system (HIS) and then, analysed
by physicians, medical staff or automatised systems may act accordingly. With the
medical records and the profiles of patients, smart healthcare systems can automate
real-time diagnosis, adjust medical treatments or alert the emergency services, rela-
tives and caregivers if needed.

Conceptually, four main actors participate in this architecture (see Figure 4). First, as
reviewed in Section 2, nodes are a primary information source in s-health systems. Second,
these systems are supported by the HIS, responsible for the storage, retrieval, analysis and
presentation of all the data in accordance with the services provided. Third, users intended
to use the s-health services, either patients and physicians and must be also considered
as crucial actors. Furthermore, fourth, all these actors are able to interact among them
thanks to the deployment of communications networks, whose technologies are described
as follows.

Figure 4. Relationship among the actors involved in smart healthcare systems.

3.2. Wireless Communication Technologies

Plenty of wireless technologies are available to deploy smart healthcare systems, each
one with its own properties in terms of radio coverage, data transmission rates, frequency,
latency, power consumption, etc. All these features must be considered when envisaging
smart health solutions. The landscape of wireless communication technologies for smart
healthcare is described in what follows, and a comparison between these technologies and
their suitability in the aforementioned WBAN architecture is summarised in Tables 11 and 12.

3.2.1. Bluetooth

One of the most popular short-range wireless communication technologies is Blue-
tooth (see Table 11). Previously standardised under the IEEE 802.15.1, currently known as
the Bluetooth Special Interest Group, it has established its specifications and developments.
Bluetooth enables transmitting data between two wireless devices, one of them acting as
a master (commonly the sink) and the other as a slave, in a range of, at most, 100 m at a
data rate up of to 3 Mbps. This technology operates in the 2.4 GHz ISM band, also used by
Wi-Fi and ZigBee technologies, and frequency hopping-related techniques were applied to
reduce potential interference. This technology reached its popularity in the early 2000s with
the emergence of mobile devices, and even today is extensively used in numerous general-
purpose portable devices, including smartphones, smartwatches, fitness trackers, laptops
and computer peripherals. However, with the advent of resource-constrained devices, a
very low-power Bluetooth specification was developed: BLE (see Table 11) [15,18,249], able
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to transmit data with a very low power consumption and latency at 2 Mbps in a range of
400 m. The BLE characteristics are well aligned with s-health applications, such as critical
emergency response, so to communicate with wearables, IoT, IoMT and other devices de-
ployed in WSNs and WBANs. For instance, this technology has been a great ally to develop
contact tracing applications during the COVID-19 outbreak [250]. Hence, we foresee BLE
as an excellent technology for the next-generation medical purpose oriented devices.

3.2.2. ZigBee

ZigBee [8,18,249], designed by the ZigBee Alliance and built on the IEEE 802.15.4
standard, is another outstanding wireless technology (see Table 11). This technology
was advantageous for its low power consumption, so battery-powered devices can be
operational for several years before battery depletion. Different characteristics in terms
of coverage, data rate, power consumption and operational frequency bands are offered
upon the selected ZigBee module, with XBee being the simplest one. The coverage radio is
generally up to 100 m (similar to Bluetooth’s), but data are transmitted at a low data rate
up to 250 kbps. Hence, ZigBee might not be suitable for transmitting user-centric data in
real-time which requires immediate action. Notwithstanding, this technology could be
considered for battery-powered IoT devices oriented towards contextual sensing in WSNs.

Table 11. Comparison of the main wireless communication technologies for smart healthcare (I).

Bluetooth BLE ZigBee IEEE 802.15.6 Wi-Fi

Frequency 2.4 GHz 2.4 GHz 868/915 MHz 14–29 MHz (HBC)

bands 2.4 GHz 400–2400 MHz (NB) 2.4/5 GHz
3.2–10.3 GHz (UWB)

Radio coverage
Short/medium Medium Short/medium Short Medium

10–100 m 400 m 10–100 m 2 m 50–100 m

Data rate
Moderate Moderate Low Low/moderate High

1–3 Mbps 1–2 Mbps 20–250 kbps 10 kbps–15 Mbps 400 Mbps–10 Gbps

Latency
Moderate Very low Very low/Low Low/moderate Low

100 ms 10 ms 10–30 ms 125 ms 50 ms

Power
Moderate Very low Very low/low Very low High

0.2–0.5 W 10 mW 1–60 mW 0.1–3 mW 0.8–1 W

Size 8 32.000 65.000 256 250

Topology Scatternet Star, mesh Star, tree, mesh Star, multi-hop Star, mesh, ad hoc

Security 56,64,128-bit AES 128-bit AES 128-bit AES Level 1/Level 2 128,256-bit AES

Cost Medium Low Low Low High

WBAN tier Tier 1/Tier 2 Tier 1/Tier 2 Tier 2 Tier 1 Tier 2/Tier 3

Suitable for ∼ X ∼ X Xsmart health

3.2.3. IEEE 802.15.6

IEEE 802.15.6, the latest international standard for WBAN communications, is oriented
towards short-distance communications between devices operating on, in or around the
human body [8,18,251]. The standard defines three physical layers, each operating at
different frequency bands for different purposes (see Table 11). First, the narrowband (NB)
comprises seven frequency bands between 400 MHz and 2.4 GHz with low data rates
of up to 900 kbps (e.g., the 400 MHz band is used for implant communication and the
600 MHz band for medical telemetry). Second, the ultra-wideband (UWB) operating at
higher frequencies between the 3.2–4.7 GHz and the 6.2–10.3 GHz band enable higher
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data rates of several Mbps (up to 15 Mbps) between on-body devices and on/off-body
devices, such as for entertainment systems. Third, the human body communication (HBC)
using the human body as a channel operates in low bands between the 14–18 MHz and the
25–29 MHz and transmits data at a maximum rate of 2 Mbps in an energy-efficient way.

In addition to the low power requirements, communications must be reliable, consid-
ering that devices are continuously changing their location due to humans’ movements.
Furthermore, regarding securing communications, three security levels are defined [252]:
level 0 does not provide any security mechanisms and unsecured communications are estab-
lished, level 1 provides message authentication and integrity assurance, but no encryption
mechanisms, and level 2 provides message authentication, integrity assurance and encryp-
tion. This standard is expected to be adopted by miniaturised and resource-constrained
medical devices to properly communicate the user-centric data.

3.2.4. Wi-Fi

One of the most used general-purpose wireless technology is Wi-Fi, available in
most devices from the digital ecosystem [18,249]. Wi-Fi encompassed within the IEEE
802.11 standards family for wireless communications in local area networks, is suitable
for transmitting large volumes of data in a range of tens of meters at very high data rates
(in the order of Mbps or even Gbps at latest specifications), where power consumption
is not a critical issue (see Table 11). IEEE 802.11n, also known as Wi-Fi 4, operates in the
frequency band between 2.4 GHz and 5 GHz and supports a theoretical data rate of up to
600 Mbps. IEEE 802.11ac (Wi-Fi 5) exhibits better performance and better radio coverage
compared to its predecessors, operating in the 5 GHz band and providing data rates from
400 Mbps up to 1 Gbps. Recently introduced, the latest specification IEEE 802.11ax (Wi-Fi
6) increases data rates up to 10 Gbps, strengthens security with WPA3 and reduces the
energy consumption compared to its predecessors, hence opening the door to its possible
use in some resource-constrained devices in the coming years [253]. These characteristics
make Wi-Fi technology a suitable solution for large-scale real-time smart health services.

3.2.5. Cellular Networks

The tremendous popularity of smartphones during the last decade motivated the
evolution of cellular networks, originally devoted to providing telephony services, towards
high-bit rate transmissions of data. Today, the LTE-based 4G technology is available in
many off-the-shelf smartphones and other portable devices (see Table 12). This technology
operates at different bands between the 700 MHz and the 2.6 GHz frequencies (different
among countries) and supports high data rates of hundreds of Mbps at a relatively low
latency. Similarly to Wi-Fi, the main limitation of 4G is its high energy consumption,
which limits its implementation in resource-constrained devices, although most current
smartphones and smartwatches (i.e., the sinks) implemented this technology. Fourth
Generation (4G) technology perfectly fits long-range communications in the outdoors,
where secure Wi-Fi access points are less available.

The fifth generation of mobile networks, 5G, has undoubtedly been one of the main
buzzwords of recent years. Expected to enable the massive deployment of IoT in a truly
connected world with billions of devices [254], 5G promises very high data rates of up
to several Gbps (especially at higher frequency bands of millimetre waves) in an almost
negligible latency (1 ms ideally), using only a fraction of the energy consumption of 4G (see
Table 12). To make 5G a reality, lots of antennas will need to be installed in order to manage
an unprecedented coverage density of approximately a million devices per square kilometre.
However, this requires a substantial investment in infrastructure. 5G will certainly open the
door to numerous s-health opportunities, even though some of them could sound futuristic
today, such as augmented/virtual reality assistance for blind people, remote collaboration
in surgical interventions or video-enabled medication adherence [255–257].
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3.2.6. Low-Power Wide-Area Networks

Long-range communications can be hardly implemented in sensors and IoT devices
due to its aggressive power consumption. To fill this gap, the low-power wide-area net-
works (LPWANs) emerged as a novel communication paradigm (see Table 12). These kinds
of technologies are able to transmit data along large distances (up to several kilometres)
at a very low power consumption. However, these communications were conducted at a
low data rate and high latency [258,259]. These technologies are hence not suitable for real-
time applications, although they could be adopted for contextual sensing, whose values
vary slightly over time and real-time constraints are relaxed or for non-critical healthcare
monitoring, such as rehabilitation.

Some of the most prominent LPWAN technologies are LoRa, SigFox and
NB-IoT [15,249,255,260]. In short, SigFox is an easy-to-deploy technology enabling large
network connectivity at low infrastructure costs. However, the data transmission rate
is very low (between 100 and 600 bps) and the latency is the highest in comparison to
similar technologies. Interestingly enough, LoRa offers an excellent trade-off between
distance coverage, data rate and energy consumption, and its popularity in IoT arenas
has significantly grown in later years and it is expected to grow further. NB-IoT, although
enhancing LoRa’s properties in terms of latency and data rate, is scarcely adopted in IoT
devices and lacks deployment readiness.

Table 12. Comparison of the main wireless communication technologies for smart healthcare (and II).

4G/LTE 5G LoRa SigFox NB-IoT

Frequency 0.7–2.6 GHz
600–700 MHz

bands 2.5–3.8 GHz 863–928 MHz 868/915 MHz 800–900 MHz
25–100 GHz

Radio coverage
High Medium/high High High High

10 km 300m–1 km 5–20 km 10–50 km 15 km

Data rate
High Very high Very low Very low Low

10–300 Mbps 1–20 Gbps 37.5 kbps 100–600 bps 250 kbps

Latency
Low Very low High High High

50–70 ms 1–10 ms 3 s 10 s 1 s

Power
Moderate Low Low Low Low

250–700 mW N/A 25 mW 10–100 mW 20–200 mW

Size Thousands 1 million 1000 1,000,000 50,000
per km2 per km2

Topology Cellular Cellular Star of stars Star Star

Security 128-bit 256-bit 128-bit AES Optional 128,256-bit

Cost Medium High Low Low Low

WBAN tier Tier 2/Tier 3 Tier 2/Tier 3 Tier 2 Tier 2 Tier 2

Suitable for
X X ∼ × ∼smart health

3.2.7. Other Technologies

In addition to the aforementioned wireless communication technologies, there are
further technologies that could be well suited for smart health purposes. RFID and NFC
are popular solutions for very short-range communications, particularly interesting for
indoors. Other promising low-power technologies that could complement or even replace
ZigBee or Bluetooth in the coming years are, among others, Z-Wave, ANT and RuBee.
Within the LPWAN-related standards, weightless could be an interesting solution for
communicating devices in the industrial and medical field. Finally, WiMAX (IEEE 802.16)
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could contribute to establishing the long-range transmissions of several kilometres where
energy consumption is not critical.

3.3. Evaluation of Wireless Technologies

Many wireless technologies are available for deploying smart healthcare solutions. As
shown in Tables 11 and 12, each of them is suitable at different tiers of the aforementioned
WBAN architecture due to its inner characteristics of radio coverage or power consumption,
among others. However, to select the most adequate technology for each tier, other aspects
must be considered.

One of the most important characteristics is the throughput of each technology, whose
evaluation is not straightforward. Although the throughput could naively be approximated
to the data rate, it diminishes in real environments due to interference or packet losses.
For instance, whereas SigFox and LoRa enable high interference resilience, NB-IoT lacks
interference immunity [261]. Therefore, although NB-IoT has a higher data rate than the
other LPWAN technologies, a non-negligible number of frames could be lost and decrease
its throughput consequently. Another key aspect to consider is the message size and the
message frequency, i.e., the payload capacity. For instance, SigFox messages can carry a
payload of 12 bytes and SigFox limits each SigFox device to 140 messages per day [262].
Finally, media access control also plays a crucial role in a network’s throughput. For
example, the RTS/CTS mechanisms can be used by 802.11 standards’ family to avoid trans-
mission collision, but at the price of lowering its throughput, especially in dense networks.
Finally, scalability is another fundamental aspect once deploying smart healthcare systems
intended for large populations. Whereas ZigBee and LPWAN technologies have a great
scalability [261], scalability in 4G and 5G networks depends on the density of base stations
deployed, and on the number of sinks and access points in BLE and Wi-Fi networks.

4. Information Security: Requirements, Attacks and Solutions

Security and privacy issues are critical concerns in any type of information system.
However, these issues are even further strengthened in smart healthcare systems due to the
high confidentiality of the information managed. More specifically, security and privacy
aspects must be considered throughout the entire system: from the very sensing devices
where data are collected, through the network where the data are transmitted, to the HIS
where data are stored, analysed and presented to end users.

This section addresses the issue of information security in smart healthcare services
from a global scope, by describing the security requirements that all s-health systems must
fulfil in Section 4.1, categorising the most common attacks in these systems in Section 4.2,
and proposing appropriate solutions to avert those attacks in Section 4.3.

4.1. Security Requirements

As any other information system, smart healthcare systems must pursue a number of
security requirements and put in place the appropriate protection mechanisms to guarantee
them. Then, the main security requirements that must be considered are briefly discussed:

• Confidentiality: Data confidentiality is the property that guarantees that data are only
disclosed to authorised entities (e.g., people, devices, processes. . . ), whilst remaining
unintelligible to unauthorised entities. User-centric data, but especially the medical,
must be kept confidential during storage periods (susceptible to data leakages) and
while being conveyed through the communication networks (susceptible to eaves-
dropping). The most widely used technique to achieve confidentiality is encryption,
in which only authorised entities have access to the secret key required to decode
the data.

• Integrity: Data integrity ensures the accuracy, trustworthiness and completeness of
data, guaranteeing that the data have not been modified or destroyed by unautho-
rised entities. For instance, attackers might tamper the data without authorisation
during its transmission over the network. Unless properly detected, smart healthcare
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systems would react to users upon faux data, and potentially endanger their health.
Moreover, other non-related human events can also threat integrity, such as hardware
glitches. Integrity-oriented protections include cryptographic hashes for detecting
data modifications, and redundancy and backup policies enable restoring any affected
data if necessary.

• Availability: Data availability guarantees that authorised entities have constant access
to the data regardless of their location and time. This property allows the proper
functioning of the sensing devices, the communication channels and the information
systems at a whole. Smart healthcare systems must guarantee the availability of
medical data, since decisions might be made anytime and anywhere. Hence, they
must be resilient to service disruptions: either intentional from attackers denying
services to legitimate users, or accidental due to natural disasters, hardware failures
or system upgrades that require systems breakdowns. Redundancy, recovery policies
and fail-over strategies should be considered to avoid availability issues.

• Non-repudiation: Non-repudiation is the guarantee that a particular interaction
between two entities actually occurred. This means that, given the communication
of a message between two authorised entities in a system, the sender cannot deny
having sent a message to the receiver in the future, and the receiver cannot deny
having received the message from the sender in the future. Although cryptographic
digital signatures can help achieve this property, it is noteworthy that their use in
some sensing devices might be limited due to their computational constraints.

• Authentication and authorisation: Authentication and authorisation mechanisms are
commonly misconceived or interchanged. On the one hand, authentication refers to
the process of confirming the identity of an entity, i.e., determining whether the entity
is who it claims to be. On the other hand, authorisation refers to the process of deter-
mining whether the authenticated entity has access to the particular resources and
services of the system. Within smart healthcare systems, authentication procedures
are mandatory in order to establish communications only with properly authenticated
entities, and avoiding any communication with illegitimate entities. In general, this
is achieved through credentials, e.g., passwords, biometrics or digital certificates.
In the case of successful authentication, then systems must ensure whether the en-
tities have permission to do the actions that aim to (e.g., access, modify or delete
medical information).

• Privacy: Privacy is a fundamental right that has to be protected. Smart healthcare
systems must process personal data in a lawful, fair and transparent manner for a
specific, limited and legitimate purpose. Besides, due to the sensitivity of the data,
they require the explicit individuals’ consent for their managing and be compliant
with the current regulations on data privacy. These systems must adopt the appro-
priate safeguards to reduce disclosure risks, including identity disclosure, i.e., the
direct re-identification of individuals, and attribute disclosure, i.e., the inference of
confidential information to a certain individual. Hence, in the case of data leakages or
eavesdropping, people’s privacy is not jeopardised. One of the most common data
sanitisation techniques for privacy protection is data anonymisation.

4.2. Security Attacks, Threats and Vulnerabilities

The impact of attacks against smart healthcare systems may go beyond the leakage
of medical records and the loss of privacy, and life-threatening situations may arise in the
case of hijacking implantable devices, such as insulin pumps or pacemakers [263–266].
Unfortunately, attacks against vulnerabilities discovered in medical devices are unexcep-
tional [267,268]. In addition, wireless technologies and the proper HIS may also entail a
number of security flaws depending on the design and implementation of the system: inse-
cure programming practices, vulnerable communication protocols or obsolete technologies
open the door to numerous security attacks [269–271].
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As observed, smart healthcare systems are susceptible to different types of security
attacks. In the literature, different taxonomies were proposed to classify them. Then, the
most popular classification methods are outlined:

• Based on the attack’s nature: passive attacks and active attacks [21]. In passive attacks,
attackers monitor and collect information from the system and exploit it to launch
further attacks. This kind of attacks does not harm the system, hence victims are not
aware of them. On the contrary, active attacks are intended to modify or damage the
system by injecting, altering or destroying data or services. Since these attacks impact
the systems, victims are informed of them.

• Based on the attack’s origin: internal attacks and external attacks [21]. Internal attacks
are initiated by malicious entities located inside the system, i.e., insider attackers. In
contrast, external attacks are launched by external entities located outside the system,
i.e., outsider attackers.

• Based on the attack’s launch method: physical methods, logical/software-based meth-
ods and side-channel methods [272]. Physical methods refer to the attacker’s ability to
have physical access to the cyber-physical system in an unauthorised way. Logical or
software-based methods exploit vulnerabilities and expose errors in logical systems,
such as software, operating systems, applications or protocols, to gain illegitimate
access. Side-channel methods observe the indirect physical effects of the systems
during their functioning to acquire advanced knowledge.

• Based on the TCP/IP model layer: application layer, transport layer, network layer
and network interface layer [272]. Attackers can target different layers of the TCP/IP
model to find weaknesses and infiltrate the system. Similar classifications can be
performed using the OSI model.

Complementing the taxonomies above, this article presents a classification of security
attacks based on the actors involved in the smart healthcare systems, namely nodes,
communications, HIS and users. It is noteworthy that the list of attacks below is not
exhaustive, and only covers the most widely known attacks related to smart healthcare.
In short, Table 13 classifies the security attacks reviewed in this article according to the
aforementioned taxonomies, and indicates which security requirements are compromised
as a consequence. In addition, a graphical summary is provided in Figure 5.

4.2.1. Attacks against Nodes

The resource-constrained nature of most of the nodes deployed in WBANs and WSNs
limits the incorporation of robust security mechanisms. Hence, nodes become the primary
target of many attackers. In particular, attacks related to node compromising, including
node capture attacks, false data injection attacks and sleep deprivation attacks are explained.
Furthermore, side-channel attacks and firmware update attacks are also considered within
this scope.

Node Capture Attacks

One of the most popular attacks is node capture attacks, in which attackers take
control of a node after successfully exploiting a vulnerability [273–275]. These attacks
need to be rapidly detected to disconnect the compromised node from the network as
soon as possible. Otherwise, attackers may seek for further vulnerabilities within the
system to elevate their privileges and eventually, gain control over the entire system. These
attacks mainly compromise the confidentiality of the system because attackers could extract
the private information from the captured node, such as user-centric data in the case of
wearable devices or the cryptographic keys stored in the nodes to encrypt and decrypt the
communications. Within the s-health scenario, this attack can indirectly threaten people’s
privacy because raw sensitive data might be disclosed to attackers.



Sensors 2021, 21, 6886 27 of 60

Figure 5. The taxonomy of security attacks in smart healthcare systems.

False Data Injection Attacks

Once a node has been compromised, attackers can inject malicious code in the captured
node and redeploy it in the network (as if it was a legitimate node) with the aim to perform
unintended functions. Usually, attackers can use the captured node to conduct false data
injection attacks, i.e., fabricating erroneous data as if they were true or preventing passing
true data [276]. Hence, the integrity of smart healthcare systems could be compromised
because they would naively react to fake data and take unsuitable health decisions that
might put people’s lives at risk [277,278]. For example, the injection of false physiological
parameters could lead to wrong medical diagnosis and consequentially to inadequate
medical treatments based on these data. The severity of these attacks increases in critical
operations such as surgeries, where the injection of real-time parameters could result in a
loss of life. Furthermore, false medical records may cause illegal insurance claims, thus
opening the door to potential financial fraud.

Sleep Deprivation Attacks

More aggressive attacks which damage (either physically or logically) the sensor
network and disrupt network communications are sleep deprivation attacks (also known
as energy drain attacks) [279,280]. These attacks aim to increase the power consumption
of captured nodes with useless tasks, such as running infinite loops, so as to accelerate
the battery draining of the devices and hence, force their disconnection from the sensor
network. By disconnecting nodes, the system’s availability becomes affected, and dramatic
consequences could arise within the healthcare domain. In particular, stopping vulnerable
life-assistance devices, such as pacemakers [281] or cardiac defibrillators [282], can impact
human lives.

Side-Channel Attacks

Whereas most attacks aim to exploit the weakness of algorithms and protocols im-
plemented in the nodes, the family of side-channel attacks concentrate on exploiting the
physical effects of computing devices during their normal functioning to infer sensitive
information, namely cryptographic keys and passwords [283]. Such attacks can leak rele-
vant information about these devices through physical side signals, such as timing analysis
(i.e., time taken to perform computations), power analysis (i.e., variations on the power
consumption to perform computations), electromagnetic emanation (i.e., radiation emit-
ted by the system to perform computations) and acoustic attack (i.e., sounds produced
during computations), among others [272]. All in all, side-channel attacks are difficult to
handle and pose serious threats due to their non-invasive nature, the generally passive
mode, and the fact that they evaluate the physics, rather than the implementation, of the
computing elements.



Sensors 2021, 21, 6886 28 of 60

The numerous nodes deployed in smart health systems open the door to a plethora
of side-channel attacks [284]. For instance, several studies have shown the feasibility of
inferring the key-based security system of smartphones or smartwatches by means of
motion sensors [285–287]. In this scenario, attackers would gain the additional advantage
of bypassing the security mechanisms defending the system and thus, break into it more
easily. More active side-channel attacks might also put people’s lives at risk, such as
by injecting electromagnetic signals that might bogus the legitimate signals of cardiac
implantable devices [288].

Table 13. Summary and classification of security attacks in smart healthcare systems.

Attack Target Actor Nature Origin Launch TCP/IP Layer Requirements
Method Threats

Node capture Nodes Active External Physical Network interface

Confidentiality
Non-repudiation
Authentication

Privacy

False data
injection Nodes Active Internal Physical Network

interface Integrity

Sleep deprivation Nodes Active External Physical Network interface AvailabilityLogical

Side-channel Nodes Passive External Side-channel Network interface Confidentiality
Active Availability

Firmware update Nodes Active External Logical Network interface

Confidentiality
Non-repudiation
Authentication
Authorisation

Eavesdropping Communications Passive External Logical
Network
interface Confidentiality

Network Privacy

Data tampering Communications Active Internal Physical Network
interface Integrity

Integrity
Replay Communications Active Internal Physical Network Authentication

Authorisation

Spoofing Communications Active Physical

Network
interface

IntegrityInternal Network
External Transport

Application

Man-in-the-middleCommunications Active Logical

Confidentiality
Internal Network Integrity
External Transport Authentication

Privacy

Internal Network
Flooding Communications Active External Logical Transport Availability

Application
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Table 13. Cont.

Attack Target Actor Nature Origin Launch TCP/IP Layer Requirements
Method Threats

Jamming Communications Active External Physical Network
interface Availability

Black hole Communications Active Internal Physical Network Availability

Confidentiality
Integrity

HIS Availability
Malware Nodes Active External Logical Application Non-repudiation

Authentication
Authorisation

Privacy

Data leakage HIS Passive External Logical Application Confidentiality
Privacy

Phishing Users Active External Logical Application

Confidentiality
Authentication
Authorisation

Privacy

Firmware Update Attacks

Modern nodes require firmware updates to support the latest technological devel-
opments and improve performance. For time inefficiencies, these updates are no longer
performed physically between the manufacturer and the device, but remotely, in which
the devices are able to automatically download the latest firmware version and upgrade
themselves. However, the security of firmware updates is generally insufficient due to the
lack of encryption and/or authentication mechanisms [289], opening the door to firmware
update attacks. This attack consists of injecting a malicious firmware into the vulnerable
device so as to grant attackers total control over them. The main severity of these attacks is
that they are capable of affecting entire families of nodes, e.g., if a manufacturer uses the
same firmware update mechanism, then all its devices would be vulnerable. Particularly,
numerous commercial wearable devices, especially fitness trackers, are susceptible to this
kind of attacks due to their computational constraints [290–294]. Even worse, vulnera-
bilities in the firmware update procedure, able to execute arbitrary code, of automated
external defibrillators and implantable devices have been reported [265,295].

4.2.2. Attacks against Communications

The distributed nature of smart healthcare systems requires communication networks
to transmit the information between the different actors within the system. Most of the
existing attacks aim to target the communications, mostly wireless, which are prone to
hijacking unless properly secured. Eavesdropping, data tampering, replay attacks, spoofing
attacks, man-in-the-middle attacks and denial of service attacks are subsequently described
within the s-health paradigm.

Eavesdropping

Continuous communications among entities are exposed to be intercepted by eaves-
drop attackers. Eavesdropping (or sniffing) attacks aim to secretly capture and listen to
the data packets transiting the communications, without the knowledge of the legitimate
entities [296]. During eavesdropping, all messages are compromised and attackers can
analyse the traffic to learn private information from the whole system (e.g., data, protocols,
communicating entities. . . ) [297]. For this reason, messages must never be transmitted in
plain-text or encrypted with vulnerable algorithms. This passive attack undermines the
confidentiality of the communications and might jeopardise people’s privacy.



Sensors 2021, 21, 6886 30 of 60

Some Bluetooth and BLE communications, extensively used in the s-health domain, might
be vulnerable to eavesdropping attacks, where encryption might be bypassed [298–300]. Indeed,
a variety of medical devices, including hospital equipment [301], wearables [302–306] and
implantable devices [282,307], have been compromised through eavesdropping, by dis-
closing private data or serving to obtain insights for further active attacks. Eavesdropping
attacks are also common in other popular technologies, namely Wi-Fi and ZigBee [308,309].

Data Tampering

More actively, attackers can deliberately alter or destroy data transiting through the
network. This attack, commonly known as data tampering or modification attack, aims to
compromise the integrity of the data and as a consequence, the system’s [310]. By means of
data tampering attacks, attackers could modify the data at their convenience in order to
manipulate the system’s functioning or gain access to it. For instance, systems would mal-
function in the case of modifying data packets properties, such as their timestamps (i.e., the
flow of events would be erroneous from the system’s perspective) or their destination
address (i.e., redirecting them to illegitimate destinations) [311].

More threatening, the unauthorised modification of more sensitive data, such as
medical, could cause physical damage on people’s health, because systems would re-
act upon malicious data. This situation might lead to overtreatment, undertreatment or
even death [312]. Several data tampering attacks have been successfully conducted us-
ing medical equipment [301,311], fitness trackers [291,293,306,313] and even implantable
devices [265,266,314]. No less important, tampering with contextual data can also nega-
tively impact the lifestyles of large populations, as smart healthcare systems would adapt
themselves to false contextual conditions covering a certain geographical area. In short,
tampering user-centric data leads to individual damages, but tampering contextual data
might lead to large-scale damages.

Replay Attacks

During eavesdropping, attackers capture valid data packets that are sent between two
legitimate entities. Even though their messages could be encrypted (and thus unreadable
for attackers), these messages have an effect on the recipient entity. Attackers can exploit
this to mislead legitimate entities and acquire the trust of the system with the aim to
maliciously duplicate transactions, impersonate entities or raise confusion within the
system. Thus, replay attacks occur when unauthorised entities re-send legitimate captured
data packets at a later time while acting as the original sender, hoping to repeat some action
that benefits the attacker [315]. For instance, if attackers intercept the messages related to a
valid login procedure, they could try to replay them later on and, unless detected by the
system, obtain access to the system without knowing the actual credentials. This attack
clearly threatens data freshness, another important attribute in information systems [316].

The consequences of successful replay attacks in smart healthcare systems can be tragic,
especially when replaying messages describing users medical data [317–320]. Systems
would naively react to old physiological parameters rather than to the current physiological
parameters of users in that moment. Replaying old messages for a long period of time
may bring mistreatment. Among others, studies have demonstrated the possibility of
targeting diabetic people by launching replay attacks with false glucose readings [321] or
exploiting the validation limitations regarding integrity and authentication in cardioverter-
defibrillator devices [282] and other implantable medical devices [263,266]. Similarly, replay
attacks were also detected in a number of fitness trackers due to the lack of authentication
mechanisms [293].

Spoofing Attacks

Identity theft is undoubtedly one of the primary security concerns in information
systems. Spoofing attacks consist of masquerading attackers acting as legitimate entities by
using forged data [322]. If the legitimate entities within the system trust in the incoming
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(malign) entity, attackers can gain access to once inaccessible resources, and conduct further
insider attacks. There exist different spoofing attacks targeting different OSI layers, namely
ARP spoofing (i.e., attackers link their MAC address to a legitimate network IP address),
IP spoofing (i.e., attackers send IP packets from a spoofed source IP address to disguise
themselves) and DNS spoofing (i.e., attackers re-route specific domain name requests to
different IP addresses under their control) [323,324].

The computational, size and power limitations of most nodes prevent the imple-
mentation of spoofing countermeasures. Hence, these devices may be vulnerable to
spoofing attacks, hence compromising the entire s-health system. Successful spoofing
attacks enable attackers retrieve medical data gathered from the sensing devices, such as
fitness trackers [294] and even trigger life-threatening situations in the case of spoofing
insulin pumps [325]. Beyond medical data, the ability to spoof GPS data was also pointed
out [326,327], forging the real location of devices (and hence, the users as well).

Man-in-the-Middle Attacks

One of the most popular and devastating attacks in networks are man-in-the-middle
attacks (MitM) [328]. Such attacks consist of intercepting the communication between
two legitimate entities who believe that they are directly communicating with each other.
Once a communication is hijacked, attackers are free to passively eavesdrop the data
packets seeking for private data or actively manipulate the data packets by tampering
data or injecting false data. Moreover, attackers can exploit this illegitimate advantage
for redirecting traffic to malicious resources or spreading malware through the network.
With the lack of security of many sensing devices, MitM attacks can be feasibly exploited
in sensor networks [329,330]. Indeed, some Bluetooth communications have been proven
to be vulnerable to MitM attacks [299,331,332]. As a result, there is a need to evaluate the
trustworthiness of entities within sensor networks so as to ensure the confidentiality and
integrity of the transmitted data through such networks [333–335].

The impact of MitM attacks on smart healthcare systems can be tremendous. Attackers
could intercept medical records shared between two legitimate healthcare providers, or
intercept physiological data collected from sensing devices without the knowledge of
the actors. Numerous nodes are vulnerable to this kind of attack due to the security
flaws and weak authentication mechanisms. For instance, the lack of encryption of some
devices enables attackers to seamlessly hijack communications and capture private data
such as session identifiers, passwords and health data [291,293,303,305,313,336–338]. Of
further concern, studies HAVE also discovered MitM-enabling vulnerabilities in protocols
integrated in implantable medical devices [339,340].

Denial of Service Attacks

Attacks against availability prevent the normal performance of information systems
and threaten network functioning and resources responsiveness. Denial-of-service attacks
(DoS) aim to make resources unavailable to the legitimate users by temporarily or in-
definitely disrupting the services provided [341]. A more sophisticated version is that
of distributed denial-of-service attacks (DDoS) which require multiple and coordinated
sources controlled by an attacker targeting a victim, who cannot stop the attack by just
blocking a single source. In addition to the aforementioned sleep deprivation attacks
at the node level, there exist further DDoS-oriented attacks at the communication level.
Usually, the most prominent attack is flooding which overwhelms legitimate resources
with purposeless requests, in such a way that they are not able to handle all the incoming
packets (even the legitimate ones) and then collapse. Attackers can flood the network
with data packets from different layers of the OSI model, such as HTTP flood, ICMP flood,
SYN flood, DNS flood and HELLO flood. Another well-known type of DDoS attack is
jamming, which uses specific jammer devices to generate random radio-frequency signals
that deliberately cause interference and hence, disrupt the network’s functioning [342].
Another DDoS attack at the network layer is the black hole attack (also called packet drop
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attack), where a malicious node exploits vulnerabilities in routing protocols to redirect the
traffic towards itself and then, drop the incoming packets [343].

Many DDoS attacks have been launched in the recent years with the Mirai botnet,
which exploits the low-security implementations of IoT devices to disrupt services [344,345].
This kind of disruptive attack could lead to terrifying consequences in smart healthcare
systems, which need to be constantly on for real-time monitoring and act immediately
in the case of emergencies [293,303]. Unfortunately, availability is particularly crucial in
certain critical-mission medical devices, such as implantable devices, wherein availability-
threatening attacks can lead to the loss of people’s lives [266,282,346].

4.2.3. Attacks against HIS

Certain security attacks aim to target the very HIS infrastructure of the healthcare
service providers, i.e., the servers, databases, routers, firewalls and computers that manage
the system’s applications, data and flows. These attacks are likely to be more sophisticated
since these systems, which are not resource-constrained, are able to implement more
robust countermeasures. More specifically, malware and data leakage attacks are outlined
as follows.

Malware

Malware, short for malicious software, encompasses all different types of unwanted
and hostile programs, used to invade, damage, disrupt or disable computer systems
and networks [347]. This creates chaos and compromises confidentiality, integrity and
availability, by exploiting the vulnerabilities of the systems [348]. Infected systems are
partly (or completely) under the control of attackers and therefore are susceptible to data
theft, hijacking and propagating the malware into other systems. Malware can be divided
into different categories, including worms, trojans, rootkits, viruses, spyware, keyloggers,
botnets and ransomware [329]. In particular, ransomware attacks have become popular in
recent years with the aim of hijacking a system whose files are encrypted with an attacker’s
key, and ask for some payment in cryptocurrencies to restore them [349].

For decades, many malware have been developed to target conventional comput-
ing devices. However, with the advent of sensing devices, wearables and IoT devices,
different malware variants emerged to target these more vulnerable devices. In partic-
ular, the lack of strong security mechanisms makes these devices highly vulnerable to
malware infection [293,301]. The Mirai botnet, VPNFilter, BrickerBot or Reaper are some
examples of malware targeting large networks of IoT devices [329,344,345,350]. In addition,
the popular WannaCry ransomware-based attack threatened millions of organisations
in 2017 and hijacked multiple healthcare systems, including the British National Health
Service [351]. Hence, smart healthcare systems must monitor the functioning of their
entities, seeking for abnormal malware-derived conditions, and, once detected apply the
proper countermeasures to prevent the malware spread and mitigate the impact on the
entire system.

Data Leakage

Data leakages (or data breaches) occur when personal and/or confidential data from
an organisation is released to an untrusted environment by an unauthorised entity. Most
data leakages involve financial information, medical records, trade secrets or intellectual
property, whose value on the black market may be significant [13]. Unfortunately, these in-
cidents are far too common [352–354]. These attacks constitute a threat to the confidentiality
and privacy, essential principles that users expect from organisations once managing their
personal information. It is noteworthy that leakages are not only due to malicious attacks,
but they may also be due to unintentional human actions (e.g., unintentional emailing
to wrong recipients) or system glitches. However, this does not extinguish organisations
from legal liabilities and economical sanctions, in addition to the considerable reputational
damage.
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4.2.4. Attacks against Users

The weakest link in the security chain of a system is the human factor [355]. Hence,
attackers can attempt to infiltrate themselves into target systems by taking advantage of
the lack of knowledge of most users regarding computer security, instead of seeking for
vulnerabilities in their infrastructure, network and nodes. To this aim, attackers conduct
social engineering activities to exploit humans error, among which phishing attacks are the
most prominent.

Phishing Attacks

Phishing attacks aim to deceive users and obtain sensitive data wherein attackers
disguise themselves as a legitimate entity [356]. The most common phishing is by e-mail,
where attackers forge the sender’s address to seem legitimate, hoping that users trust
it and introduce private data or download some malware. In the case of successfully
deceiving users, then attackers can impersonate the victims, acquire confidential data
from the systems or launch further malicious activities on their behalf for raising their
privileges. Phishing has evolved towards more sophisticated attacks, namely spear phish-
ing (i.e., targeted phishing attacks using OSINT tools), whaling (i.e., targeted phishing
attacks to high-privilege corporation’s users), vishing (i.e., voice phishing) or smishing (i.e.,
SMS phishing), among others. With the worldwide COVID-19 pandemic, attackers have
used the opportunity to intensify phishing campaigns for deceiving users with fraudulent
messages [357–359]. Phishing attacks in the healthcare domain are common: attackers can
impersonate legitimate users and gain access into the HIS [360–362]. In such cases, systems
should be able to detect abnormal accesses (e.g., the source IP address or country is not the
usual one) and prevent the entrance of users into the system unless performing a second
authentication.

4.3. Security Solutions

Achieving a high level of security in smart healthcare systems is challenging because
this requires the implementation of many security mechanisms at different layers. Then,
the most popular security solutions and safeguards to be considered in these systems
are described. For the sake of clarity, these solutions were classified into four groups:
secure communications, always-on systems, trust management and data protection (see
Figure 6). Moreover, Table 14 summarises the proposed solutions and indicates which
security requirements are protected when adopting them.

Figure 6. Taxonomy of security solutions in smart healthcare systems.

4.3.1. Secure Communications

Many security attacks are communication and network oriented. Although securing
these channels is always paramount, it is of utmost importance in smart healthcare sys-
tems. To this end, all the entities involved in the storage and transmission of data must
consider the use of cryptography. Solutions based on lightweight cryptography and key
management are discussed below.



Sensors 2021, 21, 6886 34 of 60

Lightweight Cryptography

Servers, desktop computers, tablets or smartphones are powerful enough to imple-
ment state-of-the-art cryptographic solutions. However, conventional cryptography is
unsuitable for resource-constrained devices. Hence, they must rely on lightweight cryptog-
raphy [363,364], which focuses on the design of simpler and faster cryptographic primitives,
standardised under the ISO/IEC 29192 [365].

In recent years, many symmetric key solutions were proposed to ensure
confidentiality [366]. Whereas AES remains the standard algorithm in conventional cryp-
tography, many block ciphers have simplified their properties for lightweight cryptography
(i.e., smaller block sizes, key sizes and number of rounds) in order to improve their ef-
ficiency. PRESENT, CLEFIA and LEA are the current block cipher algorithms within
ISO/IEC 29192-2:2019 [367–369]. Although lightweight stream ciphers can be used in
constrained environments, they are less prominent compared to block ciphers. The two
standardised algorithms in ISO/IEC 29192-3:2012 are Enocoro and Trivium [370,371].

Regarding public-key cryptography, lightweight techniques based on Elliptic-curve
cryptography (ECC) have been presented [372]. In general, ECC-based implementations
are more efficient compared to classical approaches such as RSA, since ECC can reach the
same level of security with significantly shorter key lengths and moreover, are not based on
computationally demanding complex operations [373–376]. For instance, TinyECC is a con-
figurable and publicly-available ECC library suitable for supporting public-key cryptography in
sensor networks and IoT devices [377]. With a view on the post-quantum era, where RSA and
ECC algorithms can be vulnerable, lattice-based cryptography [378] is becoming increasingly
important and its feasibility in lightweight IoT devices is promising [379,380].

Cryptographic primitives can also provide data integrity assurance by means of
hash functions, which help determine integrity-oriented attacks. However, conventional
hash functions, such as SHA-2 and SHA-3, might not be efficient enough for constrained
devices, and lightweight hash functions using shorter messages and outputs have been
proposed. PHOTON, SPONGENT and Lesamanta-LW are standardised within ISO/IEC
29192-5:2016 [381–383]. Furthermore, lightweight message authentication codes (MACs),
used to verify the authenticity and the integrity of the message have also been defined in
ISO/IEC 29192-6:2019: LightMAC and Chaskey [384,385].

Key Management

As long as the cryptographic keys are securely managed, the security of the communica-
tions is guaranteed. Key management deals with the generation, exchange, storage, use and
revocation of the cryptographic keys in a distributed system. In particular, smart healthcare
systems must deploy robust key management policies to safeguard confidentiality.

Randomness is an important factor in computer security, since the generation of
cryptographic keys requires random values to ensure their uniqueness and unpredictability.
The implementation of random number generators in resource-constrained environments
is challenging due to the hardware and software limitations, despite the fact that the design
of lightweight algorithms is currently on the rise [386–388]. In the specific context of
wearable devices, different private key generation schemes have been proposed based
on the randomness of user-centric attributes, including heart rate [389–393] and body
motion [394,395].

4.3.2. Always-On Systems

Smart healthcare systems must be uninterruptedly available. However, due to the
increasing sophistication of attacks against systems’ availability, fulfilling this requirement
is challenging. More specifically, this section addresses two major solutions against systems’
availability, namely secure routing and DDoS countermeasures.
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Secure Routing

Routing is fundamental to enable communications in any kind of network. In smart
healthcare, routing information must be properly communicated in a time and energy-
efficient way [247,396]. As nodes can join and leave the network on-the-fly (e.g., a new
sensor is introduced, a sensor has crashed, or a sensor has been compromised and removed
from the network), routing solutions must be autonomous, scalable and dynamically adapt
to these changes [397,398]. Routing protocols must also be resilient to attackers who can inject
malicious routing information into the network (e.g., when a node is captured) to cause routing
inconsistencies and disrupt communications. Numerous studies have been defined to secure
routing protocols within sensor networks, based on the trustworthiness of neighbour nodes,
clustering or hierarchical methods and genetic evolutionary techniques [399–402].

Table 14. Summary and classification of security solutions in smart healthcare systems.

Type Solution Actor TCP/IP Layer Requirements
Protected

Secure Lightweight cryptography
Nodes

Network interface

Confidentiality

communications

Communications Integrity

HIS Non-repudiation
Authentication

Key management Nodes Network interface Confidentiality
HIS Authentication

Secure routing Communications Network Availability

Always-on Nodes
systems DDoS countermeasures Communications Network Availability

HIS

Trust

Nodes Transport Authentication

management

Authentication protocols HIS Application Confidentiality
Privacy

Authentication
Access control mechanisms HIS Application Confidentiality

Privacy

Communications

Confidentiality

HIS

Network Integrity
Intrusion detection systems Transport Availability

Application Authentication
Privacy

Traceability of digital evidence HIS Application Integrity

Data protection
Privacy protection models HIS Application Privacy

Awareness programmes Users - Privacy

DDoS Countermeasures

Different defensive DDoS countermeasures must be adopted at different stages to avert
these attacks, categorised into preventive measures, detection measures and responsive
measures [341,403].

Prevention mechanisms are intended to decrease the probability of suffering DDoS
attacks. These methods can be generally classified as filtering-based or capacity-based [404].
Filtering-based mechanisms aim to decrease the network traffic by distinguishing legitimate
traffic from attacking traffic, which is dropped. To do this, the IP traceback method
determines the true IP origin address of a data packet, rather than its spoofed IP address.
Probabilistic/deterministic packet marking, route-based packet filtering, history-based IP
filtering or ingress/egress filtering approaches are used to filter data packets using different
criteria, such as their source or destination address or their reachability [405–407].
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The monitoring of the system’s metrics serves to detect abnormal behaviour. Under
DDoS attacks, these metrics are abnormal because the system would be overwhelmed and
would degrade its quality of services. For years, most DDoS detection methods were based
on statistical analysis, but several machine learning solutions have recently been proposed.
Statistical methods can effectively and efficiently detect DDoS attacks by monitoring the
incoming traffic at different time periods through entropy, principal component analysis
and hidden Markov models [408,409]. With regards to machine learning techniques, many
classifiers have succeeded in identifying DDoS attacks (e.g., support vector machines,
neural networks, random forest. . . ) from data packets’ features, such as their size, origin
and destination addresses, ports, protocols or time interval between them [410–412].

Finally, but no less importantly, the detection of DDoS attacks must be immediately
followed by a proactive response. Smart healthcare systems must be designed to be fault-
tolerant and limit DDoS damage. Among other strategies, scaling hardware resources,
queuing techniques or migration-enabling services should be considered.

4.3.3. Trust Management

Systems require mechanisms to be trustworthy, i.e., by producing reliable and au-
thentic data and communications and being accountable. Implementing authentication
protocols and access control mechanisms, considering intrusion detection systems and
tracing digital evidence are some solutions to this aim.

Authentication Protocols

Authentication is paramount to prevent disclosing information to unauthorised enti-
ties. Indeed, both users and devices must be authenticated in smart healthcare systems.
Traditionally, user authentication mechanisms were password based. However, weak
passwords or the systematic reuse of passwords are common malpractices that facilitate
the task of attackers to overcome these authentication mechanisms. Current authentication
mechanisms combine possession factors (e.g., smart cards, one-time password tokens),
knowledge factors (e.g., passwords, PINs) and biometric factors (e.g., fingerprint, iris
scan, facial recognition) to strengthen the robustness of the authentication procedure. The
combination of all three authentications is generally known as a three-factor authentication.
In particular, biometric authentication has gained increasing importance during the last
decade with the advent of smartphones and wearables. In addition, several studies have
reported the feasibility of using wearables to authenticate users’ identity from the contin-
uous collection of user-centric data, such as heart rate, body temperature, ECG signals
or body motion [413–415]. Concerning device authentication, which cannot implement
traditional protocols due to their energy and time consumption, a number of lightweight
authentication protocols have already been presented [416–419].

Access Control Mechanisms

Access control limits the access of users or devices (i.e., subjects) to the resources (i.e.,
objects) of the system, by establishing a subject-to-object segregation [420]. For instance,
patients may only access to their own information, physicians may only have access to
the medical information of their patients, whereas nodes may only have access to the
services associated to their own task. With scalability and flexibility in mind, numerous
fine-grained access policies have been defined to enforce different access privileges to the
system’s subjects. Extensively used, role-based access control (RBAC) models associate
each subject to a role, and each role has a set of access permissions. Thus, a subject
has as many permissions as the role indicates. This scheme combines both security and
privacy to the system’s objects with usability and flexibility at the time to define the
privileges and roles [421]. Alternatively, cryptography can also help define access control
mechanisms in a more secure way with the attribute-based encryption (ABE)-based fine-
grained access control. In this context, the information is encrypted with a set of attributes
(e.g., department, age, gender. . . ), and only the users fulfilling those attributes are able
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to decrypt the information and hence, gain access [422]. Furthermore, the work in [423]
proposed the use of blockchain technology to decentralise the access control within an IoT
environment with a privacy-preserving component.

Intrusion Detection Systems

The deployment of preventive mechanisms, such as intrusion detection systems
(IDS), can help detect attacks at an early stage. IDS monitor and analyse the activities
happening within a system, and alert once detecting unknown or potentially malicious
activities. Depending on the deployment of the IDS, they can be network-based (NIDS),
i.e., monitor data packets across the network for malicious activities, or host-based (HIDS),
i.e., monitor all the activities occurring within an end device, such as the modification of
files, operating system calls, running processes and the utilisation of resources. IDS are a
mature technology in traditional environments, however, they might not yet be adequate
in context-aware environments. In this context, IDS must be as lightweight as possible
to minimise the overhead introduced in the system’s infrastructure, so that they do not
interfere or significantly impact with the proper functioning of the system [424].

The most popular IDS method is based on anomaly detection. By properly defining the
normal behaviour of the system (captured during a training phase), the real-time activity
can be compared against the normal behaviour. When the distance between the normal
and the real-time behaviour exceeds a predefined threshold, an alarm is raised. Although
this method allows the detection of new kinds of attacks and malware, it is susceptible to
high false alarm rates as the accuracy of the method depends on the behaviour captured
during the training phase, which may be incomplete in some cases [425]. Another method
is based on signatures, referring to the effects and patterns suffered by a system due to
an attack. Storing all the signatures of known attacks in a database, IDS are able to detect
whether the real-time behaviour of the system matches with any stored signature. Despite
the high accuracy of this method, unknown attacks remain undetectable [426]. With the
aim of combining the advantages of these two approaches, hybrid specification-based IDS
methods have emerged [427].

Traceability of Digital Evidence

When systems are compromised, specific information about the attacks might remain
in the systems, unless attackers have been able to completely destroy their footprint.
Preserving the traceability of these digital evidence is paramount to report the incident to
the judicial authorities and initiate an investigation to prosecute the criminals. However,
this represents a challenge for judiciary forces that should be able to face these criminals’
behaviours in an efficient way and, in some case, from an international perspective. The
procedure needed to obtain digital evidence, along with their recognition in a court of
justice, should follow a standardised procedure accepted by most jurisdictions. This
procedure should guarantee the origin of the evidence and the integrity of the chain of
custody. As such, the lack of standardisation in the process of sharing and handling
digital evidence among jurisdictions entails several disparities on how forensic reports are
presented. Therefore, standardising the process used in the preparation of digital forensic
reports is a crucial step towards producing high-quality reports and a way to facilitate the
sharing and admissibility of reports across jurisdictions [428].

Despite the complexity of implementing similar mechanisms for the management
and presentation of digital evidence in different jurisdictions, a series of international
standards have been provided by ISO/IEC institutions with the aim to properly manage
potential digital evidence from its collection to its reporting. For example, the ISO/IEC
27037 provides guidance with respect to the identification, collection, acquisition and
preservation of digital evidence from different devices, such as storage media and mobile
phones, among others [429]. In line with this standard, the ISO/IEC 27041 provides
guidance to assure that the performed investigative process has been properly tested and
meets the requirements of the investigation [430]; the ISO/IEC 27042 describes the correct
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conduct for analysis and interpretation of potential digital evidence to allow the correct
evaluation, interpretation and reporting of the potential digital evidence [431]; and the
ISO/IEC 27043 provides an overview of the investigation principles from the incident
identification to its closure [432]. The correct implementation of these standards may be
helpful to build trust and therefore, foster cross-border cooperation [433].

4.3.4. Data Protection

In the management of personal information, there are a number of privacy concerns
which arise throughout the entire data life cycle: from the storage and transmission over
the network to their analysis and exploitation for secondary use. To prevent data misuse
scandals and mitigate the impact of data leakages, legal privacy regulations, such as GDPR
in Europe [434] and HIPAA in the United States [435], lay the foundations for the proper
management and processing of personal information in the digital universe. Particularly,
the enforcement of GDPR has strengthened people’s privacy rights and forced organisations
to adopt privacy-by-design principles, including data minimisation, transparent and lawful
processing, accountability and pseudonymisation or encryption. As medical and biometric
data are categorised as highly sensitive data, the privacy issues are even more apparent,
and smart healthcare systems must carefully implement all the proper privacy-preserving
safeguards to ensure both data confidentiality and privacy [436]. In this section, some
privacy-preserving models are introduced, and the usefulness of awareness programmes
are outlined.

Privacy Protection Models

From a privacy perspective, the main objective was to break the link between per-
sonally identifiable information (e.g., ID number, full name, social security number. . . )
with its corresponding confidential information (e.g., physiological parameters, biometric
data. . . ). Therefore, in the case of a data leakage, people’s identities cannot be seamlessly
associated to confidential information. Pseudonymisation, a GDPR-friendly practice, can
reduce privacy risks by masking individuals’ identities with artificial identifiers, called
pseudonyms [437]. This strategy has to be considered when communicating medical data
between two entities among the network, so that only the legitimate entities can correlate
the pseudonym with its identity. In the case of eavesdropping, attackers are not able to
identify the source belonging to the captured sensitive data.

Once information is stored within the HIS for secondary use or statistical purposes,
data should undergo an anonymisation process ensuring that a third-party is not able to
re-identify the individual’s identity from the data stored. In this context, in addition to
the removal of personally identifiable information, a number of techniques can be applied
to the data, such as noise addition (e.g., the physiological values are slightly different re-
garding the original ones) or micro-aggregation (e.g., creating groups of similar values and
conserving only their centroids) [438]. In this aim, several privacy protection models have
been proposed within the privacy protection literature, namely k-anonymity, l-diversity,
t-closeness or differential privacy [439,440]. It is worth noting that the anonymisation
procedure implies a trade-off between data quality and privacy: the more privacy, the
lower the data quality.

Awareness Programmes

Organisations and public administrations should foster awareness programmes on
cybersecurity and data protection to educate non-expert users. These programmes must
provide high-quality updated information, tips, recommendations and campaigns that
users could easily apply in their daily routines to prevent or mitigate user-oriented attacks.
Among others, these programmes could be oriented for phishing, home/work computer
security, mobile device security, secure remote working, best practices on strong passwords
or Wi-Fi security. Unfortunately, these actions are often not applied in most organisations
and when conducted, they are considered from a very generic perspective. Thus, in
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an intent to clarify the relationship between the human factor in phishing victimisation,
the most recent research has been exploring the role of psychological traits and users’
susceptibility to phishing attacks. The results of this research will facilitate the creation of
more effective awareness campaigns and therefore, contribute to protect people, companies
and infrastructures [441].

5. Future Challenges and Research Opportunities

Despite the progressive adoption of context-aware environments, smart healthcare
applications and services are still constrained to very specific scenarios and cannot exploit
all their potential. Thanks to the latest developments in the manufacturing of IoT and
high-speed communications networks, the implementation of these environments will
certainly accelerate in the years to come, and when they are a reality, the ecosystem of
smart healthcare will reach a higher dimension.

Consumer electronics, by means of wearables, IoT and IoMT devices, have been the
linchpin of most health-oriented services to enhance one’s quality of life in the last decade.
Significant advancements in the miniaturisation of sensors have opened the door to nan-
otechnology, which can revolutionise myriad aspects of healthcare and open the door to
new frontiers and research opportunities, including disease diagnostics and monitoring,
surgical devices, drug delivery and vaccine development. Although initial nanotechnology-
based devices have already been set in the form of ingestible sensors and textile-based
wearables, their use is still not generalised yet due to their costly manufacturing. Next-
generation nanotechnology-based devices may consider smart pills with sensing, imaging
and drug delivery capabilities for nanomedicine purposes, nanobots working as miniature
surgeons with repairing capabilities of cellular structures, and nanofibres for regenerative
medicine [442–444]. For instance, nanotechnology could play a key role in the fight against
COVID-19 [445]. The optimism regarding nanotechnology has already enabled coining the
term of the Internet of Nano-Things (IoNT) [446], whose success in the smart healthcare
domain will mostly depend on the success to address its security concerns, not only regard-
ing the safety of human lives, but also from the technological side. The development of
security countermeasures in such technologies will certainly be a major technical challenge.

The increase in mobile devices integrating wireless communication capabilities adds
complexity to the already challenging electromagnetic spectrum of context-aware environ-
ments. In these scenarios, the placement of the different devices from WSNs and WBANs
can determine the correct performance of the entire system. Inadequate configurations
can dramatically decrease the quality of service of devices operating in context-aware
environments, leading to severe consequences in sensitive contexts, such as smart hospitals
or smart ICUs. However, the continuous movement of both humans and wireless devices
in these settings hinders the analysis of such communications systems. To this aim, radio-
planning analyses in terms of coverage/capacity relations, power distribution, potential
interference, power delay profiles and delay spread should be considered. Deterministic
simulations based on ray optics, such as ray launching or ray tracing, are popular methods
offering a reasonable trade-off between precision and computational cost. Many wireless
technologies, including ZigBee, BLE and Bluetooth, have been studied in complex and
highly dense environments such as hospitals and ICUs [447,448]. These analyses might
not only help evaluate appropriate configurations of context-aware environments, but also
anticipate and protect networks from malicious interference-based attacks, such as jam-
ming attacks. Another inevitable challenge of next-generation communication networks
is their evolution towards green communications. With the aim of reducing the alarming
carbon footprint of current technologies due to their intensive demand, decreasing the
energy consumption of communications is currently in the spotlight [449]. A number
of low-power and green communication technologies are expected to gain popularity in
the near future, including LPWAN and 5G models, which have already been evaluated
under this model [450,451], as well as the 6G networks of tomorrow [452]. Energy-efficient
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lightweight security solutions will hence be a mandatory requirement in the wireless
communication technologies of the future.

There are multiple emerging architectures that can enhance the security robustness
of most current systems. However, their adoption in the smart healthcare domain is still
at an embryonic stage. On the one hand, zero trust architectures [453] can be seen as an
interesting solution to enhance security in systems. These architectures offer a security
model based on the premise of not trusting any entity until a validation, legitimation and
authorisation process has been passed. The model supports the implementation of least
privileged access and continually requires the identification of actors who have gained
access to the network. Although the adoption of zero trust models is not trivial [454], its
application in smart healthcare applications might provide several benefits for users and
bring new levels of security. On the other hand, the use of blockchain technology could
provide a new model in the smart healthcare industry, by making electronic health records
more efficient, transparent and secure. Thus, to secure information, smart contracts can
be seen as an interesting alternative to existing systems as they remove the need for a
mediator. In the near future, this technology could allow organisations creating a secure
system to store patient records and therefore enabling faster diagnosis and interventions to
each patient. However, despite the numerous opportunities that blockchain could provide
in the smart healthcare sector, it also raises several challenges that should be addressed in
future research. In this line, [455] highlighted the need to address issues such as patient
data interoperability, secure storage in Cloud systems and data control in blockchain,
among others.

Equally impressive is the evolution of artificial intelligence (AI) in the last decade,
particularly that machine learning and deep learning. The maturity of this field enables
influencing other areas. Today, with fast-evolving security threats and attacks, AI-based
applications for cybersecurity offer a strategic advantage to thwart malicious endeavours
of attackers at contained costs [456]. Many systems, including HIS and other components
involved in smart healthcare environments, can enhance their robustness, response and
resilience through AI [457]. For example, security attacks could be mitigated or defeated
autonomously, including zero-day attacks whose value in the black market would decrease,
security countermeasures could be launched on-the-fly according to attack severity, and
honeypots could be dynamically generated. Moreover, AI can also fuel novel cybersecurity
countermeasures to enable the detection of sophisticated malware and phishing, and the
development of advanced IDS with excellent accuracy rates [458]. Recently introduced,
multi-agent systems are expected to be promising solutions to face security threats in
distributed architectures [459,460]. Although AI can significantly improve security solu-
tions, it is a double-edged sword because it could also facilitate novel sorts of attacks that
adversaries might exploit to generate new categories of vulnerabilities and unforeseen
security threats may arise. With the aim of making AI reliable for cybersecurity, some
development and monitoring practices should be followed [457], and ethical and legal
challenges must be properly addressed [461].

Technology has irreversibly transformed healthcare systems and it is apparent to
expect that it will still reshape them even more in the future. Future developments of
healthcare systems will be partly influenced by the context where these health services will
be provided. Hence, since smart healthcare was founded under the concept of smart cities
and context-aware environments, next-generation healthcare paradigms might be founded
under the contexts and environments of tomorrow. In particular, the conceptualisation of
connected learning theories, such as connectivism [462], along with recent technological
shifts, such as IoT, ubiquitous computing, IA and big data, have allowed the development
of cognitive cities, a novel augmented urban paradigm that is gathering the attention of the
research community. Cognitive cities [463], a particular implementation of a cognitive sys-
tem at a very large scale, are able to learn, adapt their behaviour based on past experiences,
and sense, understand and respond to changes in their immediate environment. Note that
cognitive cities augment smart cities with learning and behavioural capabilities to face
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the challenges of future mega-cities. In this specific context, one might find appropriate
coining a specific healthcare paradigm for cognitive environments: cognitive healthcare.
To make cognitive healthcare a reality, numerous challenges will need to be addressed,
including security and privacy issues inherited from the very cognitive environments [464].
Although cognitive healthcare is still ahead in the future, setting the ground for potential
security and privacy problems can be achieved at present.

6. Conclusions

This article has addressed the deployment of effective and secure smart healthcare
services in context-aware environments from a technical perspective. More specifically,
we addressed the issue facing devices in the sensing layer, able to collect both user-centric
attributes, such as cardiovascular activity, respiratory rate or location, and contextual at-
tributes, such as air temperature or air pollution. These devices must be met with adequate
accuracy, size, cost and power consumption to be suitable for smart health scenarios. As a
result, all data can be conveyed, either using specific sensors networks, namely WBANs
or WSNs, to the healthcare information systems that provide the corresponding services.
Likewise, with the aim of enabling physicians, medical staff and automated processes to
analyse these data and provide real-time diagnosis, suggest personalised treatments and
raise alarms to emergency services in specific situations, this study provides a throughout
description of a large number of wireless technologies. In particular, we observed that Blue-
tooth/BLE is a prominent technology in WBANs, and ZigBee can be used in such networks as
well as in wider sensor networks. Promising technologies including 5G cellular networks are
paving the way for scalable architectures for the transmission of large volumes of data under
real-time constraints.

Moreover, we also addressed the issue of information security in the smart healthcare
context, which is paramount due to the high sensitivity of the information handled. Indeed,
sensor networks are prone to attacks and if no specific measures are considered, smart
healthcare services are doomed to fail. To address this aspect, we anatomised and classified
the information security requirements, attacks and solutions in smart healthcare systems.
Attacks against sensing devices, communications, information systems and users were also
detailed. In order to provide the whole system with security properties, the capabilities
of the constrained resources and the networks scalability must be considered. Hence,
proposals such as lightweight cryptography, DDoS countermeasures and authentication
protocols are bound to be the basis of security protocols in smart healthcare scenarios.
Moreover, since the management of personal information arises a number of privacy
concerns, we also recalled the basics of data protection, either from a technical perspective
using privacy models and from a non-technical perspective with educational awareness
programmes.

In a nutshell, in this article, we described a wide range of technologies and protocols,
and we demonstrated that there exist a number of alternatives to be considered when
designing and deploying smart healthcare services. However, we omitted some other
aspects that could also be of interest. For instance, the interoperability problem related to
the complex ecosystem of protocols, standards and manufacturers, specifically in sensor de-
vices. Furthermore, education on the right use of technology, awareness programmes about
cybersecurity and data privacy, ethical aspects of smart healthcare and their corresponding
legal initiatives are only in their very early stages.
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LPWAN Low-Power Wide-Area Networks
LTE Long-Term Evolution
MAC (address) Media Access Control
MAC (code) Message Authentication Code
MEG Magnetoencephalography
MEMS Microelectromechanical Systems
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RFID Radio Frequency Identification
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RSA Rivest–Shamir–Adleman
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