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Abstract

Infection with the SARS-CoV-2 virus has rapidly become a global pandemic for

which we were not prepared. Several clinical trials using previously approved

drugs and drug combinations are urgently under way to improve the current situa-

tion. A vaccine option has only recently become available, but worldwide distribu-

tion is still a challenge. It is imperative that, for future viral pandemic

preparedness, we have a rapid screening technology for drug discovery and

repurposing. The primary purpose of this research project was to evaluate the

DeepNEU stem-cell based platform by creating and validating computer simulations of

artificial lung cells infected with SARS-CoV-2 to enable the rapid identification of ant-

iviral therapeutic targets and drug repurposing. The data generated from this project

indicate that (a) human alveolar type lung cells can be simulated by DeepNEU (v5.0),

(b) these simulated cells can then be infected with simulated SARS-CoV-2 virus, (c) the

unsupervised learning system performed well in all simulations based on available

published wet lab data, and (d) the platform identified potentially effective anti-

SARS-CoV2 combinations of known drugs for urgent clinical study. The data also sug-

gest that DeepNEU can identify potential therapeutic targets for expedited vaccine

development. We conclude that based on published data plus current DeepNEU

results, continued development of the DeepNEU platform will improve our prepared-

ness for and response to future viral outbreaks. This can be achieved through rapid

identification of potential therapeutic options for clinical testing as soon as the viral

genome has been confirmed.
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1 | INTRODUCTION

Infection with the SARS-CoV-2 virus and the resultant COVID-19 dis-

ease has rapidly become the most lethal global pandemic when com-

pared to the SARS and H1N1 outbreaks in 2003 and 2009,

respectively.1 SARS-CoV-2 is essentially a new virus to the human

host, although it shares >80% genetic homology with the SARS-

CoV-2 virus responsible for the 2003 outbreak.1 As a result, we as a

population have little or no innate immunity to this new pathogen.

While we still have few effective therapies for SARS-CoV-2 Infection,

multiple vaccines will continue to become available which should

reduce disease severity and facilitate herd immunity. A few brave phy-

sicians have made the decision to treat SARS-CoV-2 infected patients

with off label approved drugs with encouraging but preliminary

results. Many clinical trials with previously approved drugs and drug

combinations are currently under way to improve this therapeutic

dilemma. A vaccine option has only recently become available, but

worldwide distribution is still a challenge.

In the last two decades, our world has experienced outbreaks of

Ebola, SARS, H1N1, and now SARS-CoV-2. As the World Health

Organization (WHO) has clearly stated, new and lethal viral pathogens

are certain to emerge in the future and if we disregard this warning,

we are likely to experience similar pandemics in the future. It is imper-

ative that we are prepared to act as early as possible when or ideally

before future viral outbreaks.

The advent of reprogramming human induced pluripotent stem

cells (iPSCs) from donors' somatic cells has created new opportunities

to study and understand the underlying pathophysiology of human

diseases, including a growing number of viral infections, like Zika Virus

(ZIKV), hepatitis C virus (HCV), and Influenza virus (H1N1).2,3 Unfortu-

nately, cellular reprogramming to produce iPSCs remains a challenge

due to the high costs, demanding resource needs and the tendency of

iPSCs to revert to their original somatic genotypes over time. Impor-

tantly, the limited access to donor cells also remains a major concern

especially for developing new drug therapies for viral and other infec-

tious diseases. To overcome the technological and ethical limitations

still associated with iPSC models, we have created DeepNEU. The

DeepNEU platform is a validated hybrid deep-machine learning sys-

tem with elements of fully connected recurrent neural networks

(RNNs), cognitive maps (CMs), support vector machines, and evolu-

tionary systems (GA). Previously the DeepNEU platform has been

used to generate artificially induced pluripotent stem cells (aiPSCs),

neural stem cells, cardiomyocytes, and skeletal muscle cells.4,5

The purpose of the present research was to evaluate an updated

version of our machine-learning platform DeepNEU v5.0 for creating

computer simulations of artificially induced type 1 (AT1) and type 2

(AT2) alveolar lung cells (aiLUNG) derived from artificially induced

human pluripotent stem cells (aiPSCs). These uninfected aiLUNG cells

were then exposed to infection with simulated SARS-CoV-2 virus

(aiLUNG-COVID19). Finally, the aiLUNG-COVID19 simulations were

applied to drug repurposing of a small group of approved drugs with

well-known mechanisms of action. The genomic and phenotypic

profiles of uninfected wild-type aiLUNG (aiLUNG-WT) cells and

aiLUNG-COVID19 simulations were validated based on the currently

available experimental wet lab and other data.6-21 Ideally, in the

future, this new technology would be implemented as soon as the

new viral genome has been identified and validated. For example, the

SARS-CoV-2 genome and cell receptor data were published in early

March 2020 (GenBank accession number: MT126808.1).

2 | METHODS

The DeepNEU platform is a literature validated hybrid deep-machine

learning system with elements of fully connected RNNs, CMs, and

evolutionary systems (GA).4,5 The detailed methodology for simulation

development and validation used in the current experiments has been

described previously.4,5 The current DeepNEU database (v5.0) con-

tains all the information found in the previous version (v3.6) plus

important information upgrades in the form of new gene, protein, and

phenotypic relationship data. For example, the previous DeepNEU

database version (3.6) contained 3187 gene/proteins or phenotypic

concepts and 31 027 nonzero relationships while the current version

(5.0) contains 4206 gene/proteins or phenotypic concepts and

37 223 nonzero relationships. This represents more than 1200 new

relationships specifically relevant to the SARS-CoV-2 viral genome.

Each gene/protein and phenotypic concept in DeepNEU v5.0 has on

average �9 gene/protein or phenotypic inputs and outputs.

2.1 | The DeepNEU simulations

The initial goal of this project was to create computer simulations

(aiPSCs) of human induced pluripotent stem cells (iPSC) and artificially

induced lung (aiLUNG) cell models then validate these models using

the results published by References 4, 5, 7, 12, 13, 15, 20, 22, and 23

and others as described above. Briefly, for the aiPSC models, the input

Significance statement

The current results showed that validated DeepNEU v5.0

platform of this study accurately derived artificially induced

lung cells (aiLUNG) cells from artificially induced pluripotent

stem cells (aiPSC) simulations. The aiLUNG simulations

could be exposed to simulated SARS-CoV-2 virus and repro-

duce the genotypic and phenotypic profile associated with

the infection. This study also demonstrated that the

aiLUNG-COVID-19 simulations can be used to rapidly

repurpose novel and known drug combinations with anti-

SARS-CoV-2 therapeutic potential for animal and human

trials validation. The rational process described in this article

required the existence of a validated genome for the viral

genome(s) in question. While DeepNEU requires continued

development and validation, it is very likely that the most

important application of this technology will be in improving

disease preparedness for future outbreaks.
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or initial state vector of dimension N was set to all zeros except for

transcription factors OCT4, KLF4, SOX2, and cMYC (also known as

OKSM). These four factors were given a value of +1 indicating that

they were turned on for the first iteration. These values were not

locked on so that after the first iteration all values were determined

by evolving system behavior. The simulated lung cell models (aiLUNG)

were created through direct conversion of the aiPSCs to aiLUNG cells

using overexpression of NK2 Homeobox 1 (NKX-2.1), and Wnt Family

Member 5A (Wnt5a) in the presence of a simulated lung cell medium.12,20

Once validated with published peer reviewed data, the aiLUNG simula-

tions were exposed to simulated SARS-CoV-2 infection by turning on

extracellular Spike-RBD (Receptor Binding Domain) in the presence of

active Transmembrane Serine Protease 2 (TMPRSS2). Finally, several

potential factors and combinations of factor inhibitors were evaluated

regarding their ability to reduce the production and release of new SARS-

CoV-2 viral particles. A summary of the 12 key simulations generated in

the present study are presented in Table 1 below.

The final predictions from the aiPSC and aiLUNG simulations

regarding the expression or repression of genes and proteins and

presence or absence of phenotypic features were directly compared

with published data as outlined above. Model prediction values ≥0

were classified as expressed or upregulated for genes/proteins or pre-

sent in the case of phenotypic features while values < 0 were classi-

fied as downregulated, not expressed, or absent. All experiments in

this study except for the earliest screening run were conducted in

triplicate (n = 3) using different initial input vectors.

Statistical analysis of the aiPSC and aiLUNG predictions vs the

published data used the unbiased binomial test. This test provides an

exact probability, can compensate for prediction bias, and is ideal for

determining the statistical significance of experimental deviations

from an actual distribution of observations that fall into two outcome

categories (eg, agree vs disagree). A P value <.05 is considered signifi-

cant and is interpreted to indicate that the observed relationship

between aiPSC predictions and actual outcomes is unlikely to have

occurred by chance alone.

2.2 | DeepNEU platform specification

The current DeepNEU database (Version 5.0) contains 4206 gene/

protein or phenotypic concepts and 37 223 nonzero relationships

resulting in a large amount of information flowing into and out of each

node in the fully connected recurrent network. On average, each node

in the network initially has �9 inputs and �9 outputs. An updated

analysis of all positive and negative network connections revealed a

bias toward positive outputs. The pretest probability of a positive out-

come prediction is .661 and the pretest probability of a negative pre-

diction is therefore .339. This system bias was used when applying

the binomial test to all simulation outcomes.

3 | RESULTS

3.1 | The aiPSC simulations

In this study, we began by programming DeepNEU (v5.0) to simulate

iPSCs (i.e, aiPSCs) using a defined set of reprogramming factors4,5 in

the presence of ascorbic acid and doxycycline. Following the protocol

TABLE 1 Summary of evaluated single and double drug
combinations

Model Status Cocktail

aiPSC-WT Pluripotent

uninfected

Fibroblast + OKSM

+ Dox

aiLUNG (ie, wild

type)

Differentiated

uninfected

aiPSC + NKX-2.1

+ WNT5a + LUNG

medium

aiLUNG + SARS-

CoV-2

Differentiated

infected and

untreated

aiLUNG + initial

viremia + active

TMPRSS2

aiLUNG + SARS-

CoV-2 + HCQ

Differentiated

infected and

treated (1 drug)

aiLUNG + viremia

+ active TMPRSS2

+ HCQ

aiLUNG + SARS-

CoV-2 + RdRPi
Differentiated

infected and

treated (1 drug)

aiLUNG + viremia

+ active TMPRSS2

+ RdRP inhibitor

aiLUNG + SARS-

CoV-2 + PLproi
Differentiated

infected and

treated (1 drug)

aiLUNG + viremia

+ active TMPRSS2

+ PLpro inhibitor

aiLUNG + SARS-

CoV-2 + 3CLproi
Differentiated

infected and

treated (1 drug)

aiLUNG + viremia

+ active TMPRSS2

+ 3CLpro inhibitor

aiLUNG + SARS-

CoV-2 + HCQ
+ RdRPi

Differentiated

infected and

treated (2 drug)

aiLUNG + viremia

+ active TMPRSS2

+ HCQ + RdRP

inhibitor

aiLUNG + SARS-

CoV-2 + HCQ
+ PLproi

Differentiated

infected and

treated (2 drug)

aiLUNG + viremia

+ active TMPRSS2

+ HCQ + PLpro
inhibitor

aiLUNG + SARS-

CoV-2 + HCQ
+ 3CLproi

Differentiated

infected and

treated (2 drug)

aiLUNG + viremia

+ active TMPRSS2

+ HCQ + 3CLpro

inhibitor

aiLUNG + SARS-

CoV-2 + RdRPi
+ PLproi

Differentiated

infected and

treated (2 drug)

aiLUNG + viremia

+ active TMPRSS2

+ RdRP inhibitor
+ PLpro inhibitor

aiLUNG + SARS-

CoV-2 + RdRPi

+ 3CLproi

Differentiated

infected and

treated (2 drug)

aiLUNG + viremia

+ active TMPRSS2

+ RdRP inhibitor
+ 3CLpro inhibitor

aiLUNG + SARS-

CoV-2 + PLproi
+ 3CLproi

Differentiated

infected and

treated (2 drug)

aiLUNG + viremia

+ active TMPRSS2

+ PLpro inhibitor
+ 3CLpro inhibitor

Abbreviations: 3CLpro, 3 chymotrypsin Like protease; aiLUNG-

COVID19, aiLUNG + SARS-CoV-2; Dox, doxycycline; HCQ, hydro-

xychloroquine; OKSM, OCT4, KLF4, SOX2, cMYC; PLpro, papain like

protease; RdRP, RNA dependent RNA polymerase. The bold terms are

drug combinations.

COVID-19 DRUG DISCOVERY AND PANDEMIC PREPAREDNESS 241



that we have established, we turned on the key transcription factors that

were previously reported to successfully induce pluripotency in iPSC

derived from human fibroblasts. Briefly, OCT4, KLF4, SOX2, and cMYC

(OKSM) were turned on as were ascorbic acid and doxycycline.4,5

The unsupervised aiPSC model converged quickly (20 iterations)

to a new system wide steady state without evidence of overtraining

after 1000 iterations. The aiPSC simulations expressed the same

human ESC specific surface antigen and genomic profiles. The expres-

sion profile of several factors (N = 15) consistent with the signature of

undifferentiated human embryonic stem cells (hESCs) and induced

pluripotent stem cells (iPSC) includes OCT3/4, SOX2, NANOG,

growth and differentiation factor 3 (GDF3), reduced expression 1

(REX1), fibroblast growth factor 4 (FGF4), embryonic cell-specific

gene 1 (DPPA5/ESG1), developmental pluripotency-associated 2

(DPPA2), DPPA4, and telomerase reverse transcriptase (hTERT). In a

previous study, the expression levels of OCT3/4, SOX2, NANOG,

SALL4, E-CADHERIN (CDH1), and hTERT as determined by Western-

blotting were also similar in iPSC and hESC, including stage-specific

embryonic antigen 3/4 (SSEA-3/4), tumor-related antigen (TRA-1-81),

alkaline phosphatase (ALP), and NANOG protein.24 Importantly, all

the undifferentiated ESC/iPSC makers mentioned above regarding

iPSC were also upregulated/expressed in the aiPSC simulations. The

probability that all (N = 15) of these aiPSC-WT outcomes were

correctly predicted by chance alone using the binomial test is .0021.

These results are presented in Figures S1 and S2.

3.2 | The wild-type (uninfected) aiLUNG
simulations

Once validated the aiPSC simulations were used to create the wild-

type lung cell simulations (aiLUNG) by activating NKX2.1 and Wnt5a

in the presence of a simulated lung cell medium as described previ-

ously.12,20 The unsupervised aiLUNG simulations converged quickly

(24 iterations) to a new system wide steady state without evidence of

overtraining after 1000 iterations.

Several previous studies have contributed to our current under-

standing of the expression/activity profile of genotypic and phenotypic

factors consistent with the signature of wild-type human lung

cells4,5,7,12,13,15,20,22,23 . These genotypic factors (N = 9) including

Aquaporin 5 (AQP5), Forkhead Box J1 (FOXJ1), HOP Homeobox

(HOPX), Oligomeric Mucus/Gel-Forming (Mucin5AC), NK2 Homeobox

1 (NKX-2.1/TITF1), Tumor Protein P63 (p63), Podoplanin (PDPN/T1a),

Surfactant Protein C (SFTPC/SPC), SRY-Box Transcription Factor

9 (Sox9) and phenotypic factors (N = 6), Alveolar type 1 cells (ATI), Alveo-

lar type 2 cells (ATII), Alveolar type 1 precursor cells (ATI Precursor),

F IGURE 1 DeepNEU simulation
of differentiated aiLUNG-WT cells. A,
Expression of genotypic markers of
differentiated aiLUNG cells. B,
Expression of phenotypic features of
differentiated aiLUNG. The vertical y-
axis represents the semiquantitative
levels of genotypic and phenotypic
factors that are estimated regarding
an arbitrary base line where 0 = base
line and 1 = maximum expression. The
y-axis represents the expression level
of each factor relative to arbitrary
baseline. Data represent mean of
three experiments ± 99% confidence
interval. ATI Alveolar, alveolar type 1
cells; ATII Alveolar, alveolar type 2
cells; ATI Precursor, Alveolar type 1
precursor cells; ATII Precursor,
alveolar type 2 precursor; ATI Sacular,
alveolar type 1 sacular cells; ATII
Sacular, alveolar type 2 sacular cells
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Alveolar type 2 precursor cells (ATII Precursor), Alveolar type 1 sacular

cells (ATI Sacular), and Alveolar type 2 sacular cells (ATII Sacular) were

used in this study to validate the aiLUNG simulations.

The aiLUNG simulations produced a similar expression profile

when compared with actual human wild-type lung cell specific factors

outlined above (Figure 1A), consistent with previous stud-

ies.4,5,7,12,13,15,20,22,23 The probability that all (N = 15) of these aiLUNG

outcomes were correctly predicted by chance alone using the bino-

mial test is .0021. Importantly, the data also indicate that the genera-

tion of aiLUNG cells from aiPSC produces a heterogenous population

of alveolar cell precursors and more mature alveolar cells (Figure 1B),

consistent with previous study.25

3.3 | Simulation of SARS-CoV-2-infected aiLUNG
cells (aiLUNG-COVID19)

Once validated against current published wet lab data, the aiLUNG

cells were exposed to simulated SARS-CoV-2 virus. For this simulated

infection, the concept of SARS-CoV-2 viremia was activated (turned

on). First, the SARS-CoV-2 viremia activates a viral life cycle con-

sisting of (a) interaction of the viral Spike protein with its receptor

protein Angiotensin-converting enzyme 2 (ACE2), (b) endocytosis of

the virus-ACE2 complex, (c) intracellular uncoating of viral single

stranded RNA, (d) transcription and translation of the viral genome,

(e) assembly of new viral particles, and (f) exocytosis of new viral par-

ticles which completes the cycle by contributing to the level of vire-

mia.26 The SARS-CoV-2 genome consists of four structural genes and

at least six nonstructural genes.27 The structural genes (N = 4) are

Spike (S), Nucleocapsid (N), Envelope (E) and Membrane (M) and pro-

duce S, N, E, and M proteins (N = 4), respectively.27 The nonstructural

coding genes (N = 6) and proteins (N = 13) are orf1a/b polyprotein

(orf1a/b), orf3a protein (orf3a), orf6 protein (orf6), orf7a protein

(orf7a), orf8 protein (orf8), and orf10 protein (orf10).9,16,26,27 Other

important nonstructural proteins (NSPs) include NSP1, NSP2, NSP3,

Papain Like protease (PLpro), NSP5/3Chymotrypsin Like protease

(3CLpro), NSP12/RdRP/Replicase, and NSP13/Helicase.9,16,26,27 The

17 gene or protein expression profile was compared with the

F IGURE 2 DeepNEU
successful simulation of SARS-
CoV-2-infected aiLUNG cells. A,
Expression of (N = 17) SARS-
CoV-2 genotypic features
(genes/proteins) in aiLUNG
cells. B, Expression of viral
phenotypic features (N = 8)
strength in SARS-CoV-2
infected aiLUNG cells. The
vertical y-axis represents the
semiquantitative levels of
genotypic and phenotypic
factors that are estimated
regarding an arbitrary base line
where 0 = base line and
1 = maximum expression, The y-
axis represents the expression
level of each factor relative to
arbitrary baseline. Data
represent mean of three
independent
experiments ± 99% confidence
interval. *P < .05
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uninfected aiLUNG simulations to assess the validity of the simulated

SARS-CoV2 infection. All gene or protein factors were expressed or

upregulated in the aiLUNG-SARS-CoV-2 vs aiLUNG simulations. This

genotypic expression data are summarized in Figure 2A. The probabil-

ity that all (N = 17) of these aiLUNG-COVID19 simulation outcomes

were correctly predicted by chance alone using the binomial test

is .0009.

A SARS-CoV-2 infection phenotypic profile was also developed

from the published literature outlined above. These phenotypic fea-

tures (N = 8) include: New Extracellular Virus release, Spike-ACE2

Interface, Spike-RBD, TMPRSS2, Virus Clearance, Virus Intracellular

RNA release, Virus Internalization, and Virus Replication. These data

are summarized in Figure 2B. The presence of all phenotypic features

of SARS-CoV-2 infection was correctly predicted by the aiLUNG-

COVID19 when compared with the aiLUNG simulations. The proba-

bility that all (N = 8) of these aiLUNG-COVID19 outcomes were

predicted correctly by chance alone using the binomial test is .036.

To summarize, the probability that all 17 genotypic and all eight

phenotypic features of simulated aiLUNG SARS-CoV-2 infection

(N = 25) were accurately predicted by chance alone using the binomial

test is .00003.

3.4 | Application of the validated aiLUNG
simulations to potential therapeutic target
identification and anti-COVID-19 drug repurposing

Comparison of all predictions for >4100 genotypic and phenotypic

factors from the aiLUNG-COVID19 and aiLUNG simulations revealed

a subset of these factors that stood out as viral genes that could be

potential therapeutic targets. To that end, we have evaluated the

effect of using single or double drug combinations that either block

the expression or function of SARS-CoV-2 coding genes. Based on

the two tailed Mann-Whitney U test, the estimated P values for com-

paring these aiLUNG-COVID19 vs aiLUNG factors were highly signifi-

cant at P = .00001. This inclusive subset of potential therapeutic

targets (N = 17) included: 3 Chymotrypsin Like protease (3CLpro)/

NSP5, E gene, Helicase/NSP13, M gene, N gene, NSP1, NSP2, NSP3,

orf10, orf1ab, orf3a, orf6, orf7a, orf8, Papain Like protease (PLpro),

RdRP/NSP12 and S gene was selected for further evaluation. In pre-

liminary experiments, inhibition of each of these 17 viral genes was

added to the aiLUNG simulations in an iterative manner in order to

assess changes in gene expression. These interventions resulted in

(a) variable improvement in the anti-COVID-19 gene expression pro-

file in general and (b) a reduction in the release of new SARS-CoV-2

virus particles specifically. Inhibiting six of these gene products,

namely orf1ab, PLpro, orf7a8, RdRP/Nsp12, 3CLpro/NSP5, orf8, and

one known drug, hydroxychloroquine (HCQ), stood out as being par-

ticularly effective potential single anti-COVID-19 therapeutic options.

HCQ was included in the initial experiments because (a) it has multiple

COVID-19 relevant cellular targets,28 (b) it is already approved for

other indications including malaria and inflammatory diseases, and

(c) early anti-COVID-19 results from at least one small trial appear

promising.29 In fact, during our initial screening experiments based on

genotypic features (Figure 3A), HCQ proved to be the second most

effective anti-COVID-19 single drug option while simulated inhibition

of orf1ab was most effective. Importantly, orf1ab had been included

as a potential therapeutic target because it represents �70% of the

SARS-CoV-2 genome. A summary of treatment effects on the

COVID-19 phenotypic features is presented in Figure 3B.

Three potential therapeutic targets were excluded from further

study at this time because there are no identified or approved small

molecule candidates. The excluded factors are orf1ab, orf8, and

orf7a8 leaving three factors, 3CLpro, PLpro, and RdRP plus HCQ for

further evaluation.

Next, we evaluated all single drug candidates (N = 4) and all possi-

ble (N = 6) double drug combinations which included: (a) HCQ

+ PLproI, (b) HCQ + RdRPI, (c) HCQ + 3CLproI, (d) PLproI + RdRPi, (e)

PLproI + 3CLproI, and (f) RdRPi + 3CLproI in triplicate. The most

effective single agent in the final group was HCQ when compared

with the untreated aiLUNG-COVID19 simulations (two-tailed,

unpaired t test P < .001). All six combinations were effective against

SARS-CoV-2 infection using the 17 viral target profile outlined above

(Figure 4A,B) and the data indicate that HCQ + a PLproi and HCQ

+ 3CLproii and PLpeoi + 3CLproi are the most effective of the double

drug combinations evaluated. Importantly three of the four most

effective combinations included HCQ.

Finally, a statistical analysis of these data using the paired two-

tailed t test (Figure 5) confirmed this assessment regarding anti-

COVID-19 efficacy. Further analysis indicated that based on the

genotypic profile, the double drug combinations (N = 6) were gener-

ally more effective than the single drugs (N = 4) (two-tailed t test

P < .005). Overall, the phenotypic profile was not significantly differ-

ent between single and double drug combinations (P < .29). However,

the single phenotypic concept New Extracellular Virus was able to dis-

tinguish between groups in favor of the double drug combina-

tions (P < .01).

4 | DISCUSSION

The main purpose of this research was to generate and then validate

potentially useful stem cell-based computer simulations of SARS-

CoV-2 infection in simulated lung cells (aiLUNG) with the same geno-

typic/phenotypic markers as iLUNG cells that were produced in wet

lab experiments.12,20 Additionally, the phenotypic and genotypic fea-

tures of SARS-CoV-2 infection that were simulated by DeepNEU v5.0

are in agreement with the recent findings as outlined above.6-21 The

data from the present experiments indicate that SARS-CoV-2 viral

infection can indeed be accurately simulated in aiLUNG using the

DeepNEU (v5.0) machine-learning platform. We believe that, as of

this writing, these are the first and only results of this kind in the pub-

lished literature. Notably, these results are consistent with and extend

our earlier research. In this regard, the current aiPSC-WT simulation

results are remarkably consistent with results from the aiPSC-WT

models that we reported previously.4,5 The updated (v5.0) aiPSC
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simulations also (a) rapidly (<30 iterations) achieved new system wide

steady states, (b) showed no evidence of overfitting after 1000 itera-

tions, and (c) accurately reproduced wet lab results from the peer-

reviewed literature24 based on the bias adjusted binomial test.

To more accurately simulate SARS-CoV-2 infection, we next cre-

ated aiLUNG cells by exposing the validated aiPSC simulations to

NKX2.1 and WNT5a in the presence of doxycycline and ascorbic acid.

The direct generation of human lung cells from iPSC is well

F IGURE 3 Predictions of anti-COVID-19 effects of selected drugs from preliminary screening experiments. Anti-COVID19 efficacy of

selected drugs on (A) viral genes expression and (B) viral phenotypic features expression levels in COVID-19 infected aiLUNG cells, respectively.
The legend scale ranges from a maximum negative change (−1) to maximum positive change (+1) relative to a qualitative baseline condition (= 0).
Data represent mean of three independent experiments ± 99% confidence interval
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documented in the peer-reviewed literature.12,20 Using the same

approach, the simulations evolved quickly to a new steady state that

accurately reproduced the genotypic and phenotypic features of differen-

tiated wild-type human lung cells (aiLUNG-WT). We then created the

aiLUNG-COVID-19 viral infection simulations by activating and adding a

simulated SARS-CoV-2 viremia to the aiLUNG initial input vector and all-

owing the system to evolve to a new stable steady state. Importantly, in

the aiLUNG-COVID19 simulations, the genotypic and phenotypic

features of differentiated human lung cells were preserved while the

same simulations also reproduced the genotypic and phenotypic features

of the SARS-CoV-2 infection life cycle. It is also notable that the aiLUNG

simulations can also be used to investigate other viral diseases that pri-

marily affect lung cells like Influenza A and B, respiratory syncytial virus,

parainfluenza, and adenovirus.

Once the aiLUNG and aiLUNG-COVID-19 simulations were cre-

ated and validated against the available peer-reviewed wet lab

F IGURE 4 Final predictions of anti-COVID-19 effects of selected drugs experiments. Anti-COVID19 efficacy of selected drugs on (A) viral
genotypic and (B) viral phenotypic features expression/activity levels in COVID-19 infected aiLUNG cells, respectively. The legend scale ranges
from the maximum negative change (−1) to the maximum positive change (+1) relative to a qualitative baseline condition (0). Data represent mean
of three independent experiments ± 99% confidence interval
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research, they were applied in two specific areas including therapeutic

target identification and drug repurposing. In the case of a viral pan-

demic for which no approved therapies are available, the rational eval-

uation of currently licensed drugs to identify potentially effective

therapies or simple combination therapies may represent the most

efficient path to improved outcomes in combination with early and

widespread testing. In the future, rapid drug repurposing is likely to

become vitally important when we are forced to deal with an out-

break of a much more lethal virus. For example, the NIPAH virus

(named after Sungai Nipah, a village in the Malaysian Peninsula where

pig farmers became ill with encephalitis) has been associated with a

human death rate of �70%30 compared with the 1% to 2% death rate

seen so far with COVID-19 infection. It would make remarkable good

sense to begin planning for the next outbreak now.

In addition to disease modeling, DeepNEU has also been designed

to be used as a tool for rapid and cost-effective therapeutic target

identification and drug discovery. The use of stem cells for targeted

drug discovery has been well reported in the peer-reviewed litera-

ture.31-33 Our previously published approach to this issue has three

simple components.5 First, we compared all predictions from the

aiLUNG-COVID19 and. aiLUNG simulations. The statistical analysis

identified several potentially important therapeutic targets. We used

the Mann-Whitney test to estimate the level of significance because

not all the data were normally distributed. The exact P values for the

Intervention Means t-test P-value Significance Legend
COVID-19 noRx 0.142
COVID-19vsHCQ+PLproI –0.450 <.001 *** P < .05 *
cOVID-19vs3CLproI+PLproI –0.430 <.001 *** P ≤ .01 **
COVID-19vsHCQ+3CLproI –0.383 <.001 *** P ≤ .001 ***
COVID-19vsHCQ+RdRPI –0.356 <.001 *** P > .5 NS
COVID-19vsRdRPi+PLproI –0.324 <.001 ***
COVID-19vsRdRPi+3CLproI –0.305 <.001 ***
COVID-19vsRdRPi –0.219 <.001 ***
COVID-19vs3CLproI –0.217 <.001 ***
COVID-19vsPLproI –0.267 <.001 ***
COVID-19vsHCQ –0.280 <.001 ***

Single (n = 4) vs Combos (n = 6) <.01 **

Intervention Means t-test P-value Significance Legend
COVID-19 noRx 0.443
COVID-19vsHCQ+PLproI –0.252 ≤.001 *** P < .05 *
cOVID-19vs3CLproI+PLproI –0.044 ≤ .01 ** P ≤ .01 **
COVID-19vsHCQ+3CLproI –0.013 ≤.01 ** P ≤ .001 ***
COVID-19vsHCQ+RdRPI 0.203 >.05 NS P > .5 NS
COVID-19vsRdRPi+PLproI 0.219 >.05 NS
COVID-19vsRdRPi+3CLproI 0.258 >.05 NS
COVID-19vsRdRPi –0.008 ≤ .05 *
COVID-19vs3CLproI 0.246 >.05 NS
COVID-19vsPLproI 0.252 >.05 NS
COVID-19vsHCQ 0.281 >.05 NS

Single (n = 4) vs Combos (n = 6) 0.28600 >0.05 NS

(A)

(B)

–

F IGURE 5 Statistical analysis of final DeepNEU predictions of anti-COVID-19 efficacy for repurposed drugs. The paired two-tailed t test was
used to evaluate the effects of each treatment on viral (A) genotypic profile and (B) genotypic profiles compared with the aiLUNG (wild-type)
profiles. The data from three independent experiments were used to conduct this analysis. The level of significance was set at P < .05 for all
comparisons. The analysis also indicated that overall, the two drug combinations (N = 6) outperformed the single drug treatments (N = 4) based
on the genotypic profiles (P < .01). Based on the phenotypic profiles, no significant differences were seen (P > .05)
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selected potential therapeutic targets from the aiLUNG-COVID-19 vs

aiLUNG simulations were all highly significant at .0001. To further

explore these findings, the second step was modified in a rational man-

ner from Reference 5. Instead of creating individual data sets and regres-

sion models for many single and double drug combinations, we used the

aiLUNG-COVID19 vs aiLUNG simulations to evaluate the anti-COVID-

19 effects of inhibition or activation of each individual potential thera-

peutic targets. The results of this iterative process were then combined

with data from recently published papers that identified potential

repurposing targets for treating COVID-19 infection34-37 with drugs cur-

rently approved for other indications or in late clinical testing. The final

group of selected targets represents a rationally defined smaller subset

derived from iterative simulated testing and the published data. Based

on these combined results, the three genotypic features PLpro, 3CLpro,

RdRP and the multiple targets affected by HCQ were identified as

potential therapeutic targets for SARS-CoV-2 infection warranting fur-

ther investigation. HCQ is approved for several inflammatory diseases in

multiple countries including Canada and the US. Idarubicin, approved for

treating certain cancers, is a RdRP inhibitor. Remdesivir is a potent RdRP

inhibitor currently in multiple clinical trials against COVID-19 with prom-

ising early results.28,36,38 In the third step, we used the validated aiLUNG

COVID19 and aiLUNG simulations to evaluate the efficacy of the final

subset of 10 treatment options based on genotypic and phenotypic pro-

files outlined above. The aiLUNG-COVID-19 simulations with HCQ

locked on and/or PLpro, 3CLpro, and RdRP locked off were used to sim-

ulate target activation and inhibition, respectively. The final 10 treatment

options studied included (a) the four single agents defined above and

(b) their six combinations (ie, HCQ + RdRP inhibition, HCQ + PLpro inhi-

bition, HCQ + 3CLpro inhibition, RdRP inhibition + PLpro inhibition,

RdRP inhibition + 3CLpro inhibition, and PLpro inhibition + 3CLpro inhi-

bition). The data presented in Figures 3, 4, and 5 indicate that while all

single agent have some beneficial effect, HCQ appears to be the most

effective single agent studied. Regarding the double drug combinations,

HCQ + a PLpro inhibitor and HCQ +3CLproi inhibitor and PLpro inhibi-

tor+3CLpro inhibitor are the most effective of the double drug combina-

tions and all these combinations outperform HCQ alone. This short list

of double drug combinations can be further stratified. Since HCQ and

the RdRP inhibitor Idarubicin are already approved for other indications,

it would make sense to further evaluate this combination first, followed

by HCQ and Remdesivir which is currently in multiple clinical trails. As of

this writing, we are not aware of any other published artificial intelligence

(AI) based methods for creating differentiated aiLUNG cells for rapid

identification of potentially effective double drug combinations for

treating SARS-CoV-2 lung infection.

Although we were focused on repurposing small molecules, we

had also postulated that DeepNEU had the potential to identify tar-

gets for vaccine development. In order to evaluate this possibility, we

revisited the three anti-COVID-19 targets that had no small molecule

candidates. These three genotypic options were orf1ab, orf7, and

orf7/8. We were particularly interested in the polyprotein orf1ab

which represents �70% of the SARS-CoV-2 genome and was the sin-

gle most efficacious target we studied. The essential requirement for

the identified factors to become potential vaccine targets is that they

must be immunogenic. In fact, a recent computational analysis identi-

fied several SARS-CoV-2 antigenic proteins. While orf8a was the most

antigenic of the proteins considered, it was rapidly degraded without

its companion protein orf8b. ORF1ab was also determined to be anti-

genic39 and polyclonal antibodies have successfully been raised

against full length orf1ab recombinant protein in rabbits (Abnova, Cat-

alog #: PAB11368). More recently, a multiepitope vaccine based on

orf1ab sequences has been designed that is antigenic and capable of

activating B cells and T cells.40 We conclude that if antigenicity/

immunogenicity can be documented for a specific target, then

DeepNEU disease specific simulations may also be an important tool

capable of identifying potential vaccine targets.

4.1 | Update on the limitations of DeepNEU v5.0

In our recent paper,5 we identified and discussed several limitations of

the DeepNEU platform. First, the issue of incomplete data persists

but continues to improve on an almost daily basis. Version 3.6 con-

tained 3781 gene/proteins or phenotypic concepts and 31 027 non-

zero relationships while the current version (5.0) contains 4206 gene/

proteins or phenotypic concepts and 37 223 nonzero relationships

Overall the data in v5.0 represents more than 18% of the human

genome compared with <15% in version 3.6. Included in this number

is more than 1200 new relationships specifically relevant to the

COVID-19 viral genome. In addition, each gene/protein and pheno-

typic concept in DeepNEU v5.0 now has on average �9 gene/protein

or phenotypic inputs and outputs compared with �8 previously.

Second, predictions from advanced computer modeling systems

still require wet lab confirmation and this continues to be important for

DeepNEU v5.0 as well. A major goal of this project was to make the

findings regarding the potential therapeutic benefit of novel anti-

COVID-19 drug combinations freely available to the global research

community for wet lab validation at the very earliest opportunity. We

also plan to validate these important predictions and we are currently

looking for development partners with the goal of confirming these pre-

dictions in animal models of SARS-CoV-2 infection. We commit to mak-

ing any additional information available at the earliest opportunity.

Third, we are now in the process of migrating the upgraded

DeepNEU platform to the cloud. Since our last publication, we have

become a corporate member of the IBM I3 incubator program and are

currently working with IBM to migrate our platform to the IBM Cloud.

This has been successfully completed and will permit more rapid simu-

lation development, therapeutic target identification, and drug

repurposing for COVID-19 and other future viral outbreaks. Finally,

we continue to evolve our current technology based on a Wise Learn-

ing (WL) approach described by Groumpos.41

5 | CONCLUSION/SIGNIFICANCE

The current results from our continued research and development of

the DeepNEU platform have confirmed and extended our previous
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work.4,5 DeepNEU v5.0 accurately derived aiLUNG cells from aiPSC

simulations. The aiLUNG simulations could be exposed to simulated

SARS-CoV-2 virus and reproduce the genotypic and phenotypic pro-

file associated with the infection. We also demonstrated that the

aiLUNG-COVID19 simulations can be used to rapidly repurpose novel

known drug combinations with anti-COVID-19 therapeutic potential

for animal and human trial validation. The rational process described

in this article has as a prerequisite the existence of a validated genome

for the viral genome(s) in question.

While DeepNEU requires continued development and validation,

it is very likely that the most important application of this technology

will be in improving disease preparedness for future outbreaks.

Determined to improve our future preparedness, WHO has publi-

shed a list of serious potential outbreaks that could be in our future;

the list includes (a) COVID-19, (b) Crimean-Congo hemorrhagic fever,

(c) Ebola virus disease and Marburg virus disease, (d) Lassa fever,

(e) Middle East respiratory syndrome coronavirus (MERS-CoV) and

Severe Acute Respiratory Syndrome (SARS), (f) Nipah, (g) henipaviral

diseases, (h) Rift Valley fever, (i) Zika, and (j) Disease X, a previously

unknown virus.39,42 The list was provided to specifically drive

research and development. All members of this list are transmissible

to humans and have no effective therapies, but fortunately most do

have identified genomes.42,43 NIPAH viral infection was selected as

our next project because of its high lethality to humans. It was discov-

ered in Asia in 1999 and is associated with a �70% death rate in

those infected.4442 The NIPAH viral genome has been validated and

there are currently no effective treatments.42-44 Small outbreaks con-

tinue to occur in Southeast Asia and elsewhere.30 Importantly, the

WHO has gone so far as to identify NIPAH as a prototype for a future

pandemic.42,43 It is our intention now to focus our efforts on creating

disease simulations and identifying potentially effective therapies for

all 10 of the WHO listed diseases.39,42 As of this writing we have an

advanced COVID-19 project and have selected NIPAH infection as

our next project for which we now have working disease simulations.
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