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Stochastic fluctuations can 
reveal the feedback signs of gene 
regulatory networks at the single-
molecule level
Chen Jia1, Peng Xie2, Min Chen1 & Michael Q. Zhang2,3

Understanding the relationship between spontaneous stochastic fluctuations and the topology of the 
underlying gene regulatory network is of fundamental importance for the study of single-cell stochastic 
gene expression. Here by solving the analytical steady-state distribution of the protein copy number 
in a general kinetic model of stochastic gene expression with nonlinear feedback regulation, we reveal 
the relationship between stochastic fluctuations and feedback topology at the single-molecule level, 
which provides novel insights into how and to what extent a feedback loop can enhance or suppress 
molecular fluctuations. Based on such relationship, we also develop an effective method to extract the 
topological information of a gene regulatory network from single-cell gene expression data. The theory 
is demonstrated by numerical simulations and, more importantly, validated quantitatively by single-
cell data analysis of a synthetic gene circuit integrated in human kidney cells.

Gene expression in living cells is a complex stochastic process characterized by various probabilistic chemical 
reactions, giving rise to spontaneous fluctuations in the abundances of proteins and mRNAs1–4. Recent advances 
in experiment techniques, such as flow cytometry, fluorescence microscopy, and scRNA-Seq, have resulted in 
the generation of large amounts of single-cell gene expression data. This raises a great challenge of whether and 
how one can infer the topological structure of a gene regulatory network by using such massive but often noisy 
data. Considering the complexity of gene regulatory networks, this may seem to be a daunting task. However, the 
situation becomes much simpler if we focus on a particular gene of interest and the feedback loop regulating it5.  
In general, there are only three types of gross topological structures: no feedback, positive feedback, and neg-
ative feedback (see Fig. 1a) and different types of networks can give rise to similarly shaped, usually unimodal, 
steady-state distributions of gene expression. Therefore, it is highly nontrivial to ask whether the information of 
feedback topology can be extracted from single-cell measurements of this gene.

Results
Model and steady-state protein distribution.  Recently, significant progress has been made in the field 
of single-cell stochastic gene expression6–21. Based on the central dogma of molecular biology, the kinetics of 
stochastic gene expression in a single cell can be described by a model with three stages consisting of transcrip-
tion, translation, and switching of the promoter between an active and an inactive epigenetic forms (see Fig. 1b). 
This model is similar to the three-stage model introduced in12 but with a critical addition of nonlinear feedback 
regulation. The biochemical state of the gene of interest can be described by three variables: the activity i of its 
promoter with =i 1 and i 0=  corresponding to the active and inactive forms, respectively, the copy number m of 
the mRNA transcript, and the copy number n of the protein product. The evolution of the three-stage model can 
be mathematically described by the Markov dynamics illustrated in Fig. 1c. Here s and r are the transcription rates 
when the promoter is active and inactive, respectively (the basal transcription rate r is usually not zero), u is the 
translation rate, and v and d are the degradation rates of the mRNA and protein, respectively. Since the network 
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has feedback regulation, the protein copy number n will directly or indirectly affect the switching rates an and bn 
of the promoter between the active and inactive forms. Since many genes have complex epigenetic controls 
including dissociation of repressors, association of activators, or chromatin remodeling, we do not impose any 
restrictions on the specific functional forms of an and bn. In15, the authors considered the case of linear feedback 
regulation with a a unn = +  and =b bn , where a is the spontaneous contribution and un is the feedback contri-
bution with u measuring the feedback strength. However, recent single-cell experiments on transcription of mam-
malian cells22 have suggested that an and bn are often saturated when n 1 and thus are highly nonlinear. In the 
present work, we consider a more general case by allowing arbitrary nonlinearity.

In most applications, the switching rates of the promoter are fast10,17 and the effective transcription rate of the 
gene is given by c a s b r a b( )/( )n n n n n= + + . It is critical to note that the information of network topology is 
implicitly characterized by cn. If the network has a positive-feedback (negative-feedback) loop, then cn is an 
increasing (decreasing) function of n. If the network has no feedback, cn is independent of n. Let pn denote the 
steady-state probability of having n protein molecules. Experimentally, the lifetime of the mRNA is usually much 

Figure 1.  Schematic diagrams of stochastic gene expression in living cells. (a) Three types of fundamental 
autoregulatory topological structures. Gene regulatory networks in a living cell can be overwhelmingly 
complex, involving numerous feedback loops and signaling steps. However, if one focuses on a particular 
gene of interest (red), then there are only three types of fundamental regulatory relations: no feedback (none), 
positive feedback, and negative feedback. The dotted line denotes that there is no link between adjacent nodes. 
(b) Three-stage model of stochastic gene expression. The promoter of interest can transition between an 
active and an inactive epigenetic forms. Since the network has feedback regulation, the switching rates of the 
promoter depend on the protein copy number. (c) Markov dynamics associated with the three-stage model. 
The biochemical state of the gene can be represented by three variables: the promoter activity i, the mRNA copy 
number m, and the protein copy number n.
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shorter compared to that of its protein counterpart12. Once an mRNA is synthesized, it can either produce a pro-
tein with probability p u u v/( )= +  or be degraded with probability q v u v/( )= + . Let λ = v d/  denote the ratio 
of the protein and mRNA lifetimes. When  1λ , the original Markov model can be simplified to a reduced 
model with geometrically distributed translation bursts23 and the steady-state distribution of the protein copy 
number can be calculated analytically (Supplementary Information):
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where A is a normalization constant. If the network has no feedback, then c cn =  is a constant and the above dis-
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where Γ x( ) is the gamma function. This is consistent with the results obtained in7,21.
In fact, the parameter q has important statistical implications. Since c sn ≤ , it follows from Eq. (1) that 
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when q p . This shows that the steady-state probability pn decays exponentially with respect to the protein copy 
number n when n 1  with q being the exponentially decaying rate of the steady-state protein distribution. Here 
q p is justified because =p q u v/ /  is the average number of proteins synthesized per mRNA lifetime, which is 

relatively large in living cells and typically on the order of 100 for an E. coli gene24. To identify q as an experimen-
tally accessible quantity is of basic importance, as will be shown later.

Decomposition of the protein fluctuations.  Experimentally, spontaneous stochastic fluctuations, often 
referred to as noise, in the protein abundance are usually measured by the squared relative standard deviation 
η σ= 〈 〉n/2 2, where 〈 〉n  is the mean and 2σ  is the variance25. With the analytical steady-state protein distribution, 
it can be shown that the noise η can be decomposed into three different terms or two different terms as 
(Supplementary Information)
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where 〈 〉n1/  is the Poisson noise from individual births and deaths of the protein, 〈 〉d v m/  is the noise due to fluc-
tuations in the mRNA abundance, and η = 〈 〉〈 〉n c n cCov( , )/f n n  is the relative covariance between n and cn, which 
characterizes the strength of feedback regulation. We stress here that when the promoter switching rates are fast, 
the above decomposition formula and the expression of ηf  hold exactly without any approximation, even when 
the nonlinearity of feedback regulation is very high.

If the network has no feedback, then cn is a constant and 0fη = . It is well known that the covariance between 
a random variable and an increasing (decreasing) function of this random variable must be positive (negative). 
Therefore, if the network has a positive-feedback loop, then cn is an increasing function of n and 0fη > . 
Conversely, if the network has a negative-feedback loop, then cn is a decreasing function of n and η < 0f . As a 
result, the sign of ηf  is completely determined by the network topology and we shall name ηf  as feedback coeffi-
cient. The above analysis clearly explains previous experimental observations that positive feedback generally 
amplifies noise26 and negative feedback generally reduces noise27.

In the previous literature, there are confusing or even contradictory statements about the feedback-noise relation-
ship. Some studies claimed that positive feedback reduces noise28, while negative feedback amplifies noise29. The rea-
son for these seemingly contradictory results has been analyzed in15,20 and here we shall use our noise decomposition 
formula to provide an clearer explanation. For a positive-feedback (negative-feedback) network, η is the total noise 
and η± f  is the noise amplified (reduced). Therefore, q n1/fη η− = 〈 〉 can be thought of as the feedback-free noise. In 
general, if all other rate constants remain unchanged, then positive (negative) feedback will lead to an increase 
(decrease) in the protein mean n〈 〉10 and thus lead to a decrease (increase) in the feedback-free noise q n1/ 〈 〉. This 
decrease (increase) in the feedback-free noise may counteract the positive (negative) contribution of the feedback 
coefficient ηf  and give rise to an anomalous decrease (increase) in the total noise η. This explains why some experi-
ments have observed anomalous noise suppression (amplification) in networks with positive (negative) feedback.

However, from the physical perspective, the feedback-free noise and feedback coefficient have completely dif-
ferent origins: the former characterizes fluctuations from individual births and deaths of the protein and mRNA, 
while the latter reflects the contribution of feedback regulation. Therefore, it seems logically insufficient to study 
the effect of feedback regulation on the feedback-free noise by fixing the underlying biochemical rate constants. 
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In fact, what positive (negative) feedback actually amplifies (reduces) is the very part of fluctuations that cannot 
be explained by the feedback-free noise.

Bounds for the protein noise.  Negative feedback proves to be most interesting because it is responsible for 
the stability of a cell27. Since negative feedback reduces noise, it is natural to ask to what extent the noise is inevi-
table and whether the feedback coefficient ηf  could be strong enough such that the noise η is approaching zero5,30. 
In fact, for the three-stage model, the upper and lower bounds of the noise η are given by
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where c x xsup{ ( ) : 0}α = | ′ | >  is the steepness of the regulatory function c x( ) obtained from cn by replacing n with 
a positive real number x and the term p dq/α  is of the order of one for a wide range of biologically relevant param-
eters (Supplementary Information). These bounds provide the limits on the ability for a negative-feedback loop 
to suppress protein fluctuations. We stress here that this lower bound is new and is different from the one derived 
in30. Our lower bound performs better in the regime of strong noise suppression (Supplementary Information). 
In the literature, the effective transcription rate c x( ) is often chosen as the generalized Hill function 
c x as x r a x( ) ( )/( )h h= + +  with ≥h 1 being the Hill coefficient5,10, in which case the steepness

α =
− +

×
−

.
− +h h

h
s r
a

( 1) ( 1)
4

( )h h

h

1 1/ 1 1/

1/

For a negative-feedback network, fη η−  is the feedback-free noise, fη−  is the noise reduced, and η is the total 
noise. Then the efficiency of the negative-feedback network, as a noise filter, can be defined as γ η η η= − −/( )f f . 
The lower bound in Eq. (4) reveals a general biophysical principle: The efficiency of a negative-feedback network 
must satisfy γ α< ≤ + dq p0 1/(1 / ). This fact is similar to Carnot’s theorem in classical thermodynamics, which 
claims that the theoretical maximum efficiency of any heat engine must be smaller than 1.

If all other cellular factors are constant, the protein will display a small-number Poisson noise24. When α > d, 
the lower bound in Eq. (4) is smaller than n1/〈 〉, which shows that η may be even smaller than the Poisson noise in 
the negative-feedback case (see Fig. 2b). Recent experiments have shown that although the variance of expression 
levels is larger than the mean for most genes, there are still some genes whose variance is less than the mean31. 
This fact is well explained by our theory. From Eq. (3), if the network has no feedback or a positive-feedback loop, 
η is always larger than the Poisson noise (see Fig. 2a). In the positive-feedback case, similar upper and lower 
bounds for the noise η can also be obtained (Supplementary Information), which provide the limits on the ability 
for a positive-feedback loop to enhance protein fluctuations.

Inference of feedback topology using single-cell data.  When a network has nonlinear feedback regula-
tion, the mean and variance are not enough to determine the steady-state protein distribution and the information 
of higher-order moments will play a crucial role. In fact, Eq. (3) can be rewritten in a more illuminating form as
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Figure 2.  Effect of feedback regulation on the protein noise by numerical simulations. (a) The protein noise η 
versus the protein mean 〈 〉n  in positive-feedback networks under different choices of model parameters. The 
functional forms of an and bn are chosen as =a ann  and =b bn . (b) The protein noise η versus the protein mean 
n〈 〉 in negative-feedback networks under different choices of model parameters. The functional forms of an and 

bn are chosen as a an =  and b bnn = . In both (a) and (b), the red curve represents the Poisson noise and the 
model parameters are randomly chosen as s U r U d p U a U[10, 500], [0, 10], 1, [0, 1], [0, 1000]∼ ∼ = ∼ ∼ , 

∼b U[0, 1000], where U x y[ , ] denotes the uniform distribution on the interval x y[ , ].
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This equation is of crucial importance because it bridges the feedback topology of a gene circuit and experimen-
tally accessible measurements. In particular, it reveals a quantitative relation between the feedback coefficient fη , 
whose sign is fully determined by the network topology, and the digital features of the steady-state protein distri-
bution, characterized by the mean n〈 〉, variance 2σ , and decaying rate q, which reflects the overall effect of 
higher-order moments. This provides an effective method to extract the topological information of a gene regu-
latory network from single-cell gene expression data. From single-cell data, the three digital features, and thus the 
feedback coefficient fη , can be estimated robustly (Supplementary Information). If fη  is significantly larger 
(smaller) than zero, one has good reasons to believe that there is a positive-feedback (negative-feedback) loop 
regulating this gene.

In single-cell experiments such as flow cytometry and fluorescence microscopy, one usually obtains data of 
protein concentrations, instead of protein copy numbers. Let =x n V/  be a continuous variable representing the 
protein concentration, where V  is a constant compatible with the macroscopic scale. It is easy to see that the noise 

n/2 2η σ= 〈 〉  will not be affected by the scaling constant V  and thus is dimensionless. In terms of the protein con-
centration, the mean will become 〈 〉n V/  and the decaying rate will become qV  (Supplementary Information). 
Therefore, the product of these two terms is also dimensionless. This indicates that the above method not only 
applies to single-molecule data of protein copy numbers, but also applies to single-cell data of protein concentra-
tions. The above analysis also suggests a crucial difference between the two decomposition formulas (2) and (3): 
The former only applies to data of protein copy numbers, while the latter also applies to data of protein 
concentrations.

Experimental validation
To validate our theory, we apply it to a synthetic gene circuit (orthogonal property of a synthetic network can 
minimize “extrinsic” noise) stably integrated in human kidney cells, as illustrated in Fig. 3)32. In this circuit, a 
bidirectional promoter is designed to control the expression of two fluorescent proteins: zsGreen and dsRed. The 
activity of the promoter can be activated in the presence of Doxycycline (Dox). The green fluorescent protein, 
zsGreen, is fused upstream from the transcriptional repressor LacI. The LacI protein binds to its own gene and 
inhibits the transcription of its own mRNA, forming a negative-feedback loop. The negative-feedback strength 
can be tuned by induction of Isopropyl β-D-1-thiogalactopyranoside (IPTG). As the control architecture, the red 
fluorescent protein, dsRed, is not regulated by IPTG induction, forming a network with no feedback. The 
steady-state levels of the zsGreen and dsRed fluorescence are measured under a wide range of IPTG concentra-
tions and two Dox concentrations (low and high) by using flow cytometry.

For each fixed IPTG and Dox concentrations, we can estimate the mean n〈 〉, variance 2σ , and decaying rate q 
for the steady-state distribution of the zsGreen or dsRed fluorescence. Then the feedback coefficient fη  can be 
estimated from Eq. (5). In the high Dox case, Fig. 4a,b illustrate the noise η, feedback-free noise η η− f , and feed-
back coefficient ηf  of the zsGreen and dsRed proteins under different IPTG concentrations, respectively. For the 
zsGreen protein, the feedback coefficient fη  is negative under all IPTG concentrations. With the increase of the 
IPTG concentration, the negative-feedback strength becomes increasingly weaker and the feedback coefficient fη  
tends to zero. In contrast, for the dsRed protein, the feedback coefficient ηf  fluctuates around zero in a narrow 
range under different IPTG concentrations. These results are in full agreement with our theory with high accu-
racy. As a result, our method correctly extracts the topological information of the synthetic gene circuit in both 
qualitative and quantitative ways. In the low Dox case, the noise η, feedback-free noise η η− f , and feedback 
coefficient ηf  of the zsGreen and dsRed proteins are illustrated in Fig. 4c,d, respectively, and similar conclusions 
can be drawn.

Although it has been observed that negative feedback suppresses molecular fluctuations32, it remains difficult 
to quantify the corresponding effect5. Our theory provides a quantitative characterization of such effect. In the 
high Dox case, the negative-feedback effect is the strongest when the IPTG concentration is zero. In this situation, 
the feedback-free noise is fη η− = 0.49 and the feedback coefficient is fη = − 0.18, which indicates that negative 
feedback reduces noise by 36.7%. The efficiency γ of the negative-feedback network drops significantly with the 
increase of the IPTG concentration and is close to zero when the concentration reaches 6.2 μM.

Figure 3.  A synthetic gene network integrated in human kidney cells. The bidirectional promoter transcribes 
the zsGreen-LacI and dsRed transcripts. The gene network includes two architectures: a negative-feedback 
network and a network with no feedback. The zsGreen-LacI transcripts are inhibited by LacI, forming a network 
with negative autoregulation. The dsRed transcripts are not regulated, forming a network with no feedback.
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One of the potential applications of our theory is to provide a mechanism-driven method to identify the dif-
ferentially expressed genes (DEGs) of two different cell populations such as tumor and non-tumor tissues. Most 
of the existing methods searched the DEGs by identifying the difference in the mean levels of the two cell popu-
lations under some a priori assumptions on the protein or mRNA distribution such as the negative binomial 
distribution31. However, the effect of noise amplification or suppression caused by feedback loops is not addressed 
by these methods, which may result in incorrect predictions (Supplementary Information). Our theory indicates 
that even if the means and variances of the two cell populations are both very close, one is still able to find the 
DEGs by detecting the difference in feedback topology. If the signs of the estimated feedback coefficients fη  of the 
two cell populations are different, one has good reasons to believe that there is a change in the topological struc-
ture of the underlying gene regulatory network when a non-tumor tissue becomes a tumor one.

Discussion and Conclusions
Here we present a comprehensive analysis of the three-stage model of stochastic gene expression with nonlinear 
feedback regulation. By taking the limit of a large ratio of protein to mRNA lifetimes, we derive the analytical 
steady-state distribution of the protein copy number. Furthermore, we decompose the protein noise according to 
different biophysical origins. The resulting decomposition formula reveals a quantitative relation between sto-
chastic fluctuations and feedback topology at the single-molecule level. In particular, we show that the protein 
noise η can be decomposed into the sum of two parts: the feedback-free noise 〈 〉q n1/  and feedback coefficient ηf , 
whose sign is totally determined by the network topology. Both the two parts can be estimated robustly from 
single-cell gene expression data via three experimentally accessible quantities: the mean 〈 〉n , variance σ2, and 
decaying rate q. Such relation not only enables us to quantify the effects of noise amplification or suppression 
caused by feedback loops, but also allows us to extract the topological information of the underlying gene regula-
tory network from single-cell gene expression data. The feasibility of this approach is validated quantitatively by 
single-cell data analysis of a synthetic gene circuit integrated in human kidney cells.

We stress that our results depend nothing on the specific functional forms of the effective transcription rate cn 
except for its monotonicity, which makes our theory highly general. One of the most powerful parts of our theory 
is that it can be applied to gene regulatory networks with highly nonlinear feedback. In the present paper, all the 
derivations are based on the assumption of rapid promoter switching, under which the fluctuations due to pro-
moter switching are averaged out. Intuitively, in the regime of slow promoter switching, our noise decomposition 
formula (3) should be amended as

Figure 4.  Inference of the network topology by using single-cell data. (a)–(d) The noise η (blue), feedback-free 
noise η η− f  (green), and feedback coefficient ηf  (red) for the zsGreen and dsRed proteins under different IPTG 
concentrations. The error bars are standard deviations given by bootstrap. (a) zsGreen in the high Dox case. (b) 
reRed in the high Dox case. (c) zsGreen in the low Dox case. (d) reRed in the low Dox case.
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η η η=
〈 〉
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q n
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where η > 0s  is the noise due to promoter switching. Because of the contribution of ηs, the difference between the 
total noise η and feedback-free noise q n1/ 〈 〉 must be positive in positive-feedback networks and may be either 
positive or negative in negative-feedback networks due to the competition of η < 0f  and η > 0s . The above anal-
ysis is in full agreement with our numerical simulations in Fig. 5. The ignorance of sη  in the present paper is the 
cost for deriving an analytical protein distribution in networks with nonlinear feedback regulation.

In fact, the idea of noise decomposition in terms of different biophysical origins was first proposed by Paulsson 
in his pioneering work25. However, this work was focused on the decomposition of the local noise around the 
fixed point of the underlying biochemical reaction system, instead of the global noise of the entire probability 
distribution, by using the fluctuation-dissipation theorem, also called first-order van Kampen’s expansion24. In 
networks with no feedback, a decomposition of noise into the feedback-free noise q n1/ 〈 〉 and promoter switching 
noise ηs can be found in12,33. In the present work, we obtain a noise decomposition in networks with feedback 
regulation, albeit in the regime of fast promoter switching. There are two major advantages of our decomposition 
formula (3). First, it can be applied to the situation when the nonlinearity of feedback regulation is very high. 
Second, all the three contributing terms in the decomposition formula can be estimated robustly from single-cell 
gene expression data.

In the regime of slow promoter switching, it is difficult to give an intrinsic definition of the promoter switching 
noise ηs since the promoter switching rates an and bn could be both nonlinear functions of the protein copy num-
ber n. In fact, an alternative definition of ηs has been proposed in20 with the aid of the macroscopic limit of a 
piecewise-deterministic Markov process. By assuming linear feedback regulation and ignoring the mRNA kinet-
ics, the authors decomposed the protein noise into the superposition of the protein birth-death noise, promoter 
switching noise, and correlation noise. Although their correlation noise is similar to our feedback coefficient (see 

Figure 5.  Numerical simulations of the total noise versus the feedback-free noise in networks with positive or 
negative feedback under different choices of model parameters. (a) Positive feedback with fast promoter 
switching. (b) Positive feedback with slow promoter switching. (c) Negative feedback with fast promoter 
switching. (d) Negative feedback with slow promoter switching. In (a)–(d), the model parameters are chosen as 

∼r U[0, 10], ∼s U[10, 100], d 1= , v d30= , p U[0 1, 0, 9]∼ . , q p1= − , where U x y[ , ] denotes the uniform 
distribution on the interval x y[ , ]. Since s is the mRNA synthesis rate when the promoter is active and p q/  is the 
average number of proteins synthesized per mRNA lifetime, the maximal protein synthesis rate is given by 

=s sp q/max . The functional forms of the promoter switching rates are chosen as = + =a a un b b,n n  in (a),(b) 
and = = +a a b b un,n n  in (c),(d). Here the parameters a b u, ,  are chosen as a b U s s u, [ , 50 ],max max∼ ∼  
U[1, 50] in (a),(c) and ∼ ∼a b U s u U, [0, ], [0, 1]max  in (b),(d).
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the green curves in Figs. 2 and 3 of Ref.20), their protein birth-death noise is a constant independent of feedback 
regulation and thus is very different from our feedback-free noise.

Finally, we would like to point out that the lower bound of the protein noise in negative-feedback networks 
was first derived in5 by using concepts in information theory. However, this work is based on the diffusion approx-
imation, with approximated Gaussian fluctuations, of the underlying discrete Markov model. A lower bound of 
the protein noise without diffusion approximation was derived recently in30. Our lower bound (4) is more explicit 
than the one obtained in30 and is tighter in the regime of strong noise suppression.

Although we have shown how single-cell measurements may be used to reveal the feedback sign of a 
gene regulatory network, it is conceivable that in the near future, further advances in live-cell imaging with 
single-molecule resolution could allow the theory to be tested at the single-molecule level.

Methods
The numerical simulations in Figs. 2 and 5 are based on the Gillespie algorithm. The single-cell gene expression 
data of the synthetic gene circuit analyzed during this study are included in the published article32.
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