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Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that
“moonlights” as a plasminogen receptor in the cell surface, particularly in tumors,
contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also
promotes other oncogenic events, including protein-protein interactions that regulate
glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1
overexpression has been established in a broad range of human cancers and is often
associated with poor prognosis. This increased expression is usually accompanied by
the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein
a tumor associated antigen. These autoantibodies are common in patients with cancer
associated retinopathy, where they exert pathogenic effects, and may be triggered
by immunodominant peptides within the ENO1 sequence or by posttranslational
modifications. ENO1 overexpression in multiple cancer types, localization in the tumor
cell surface, and demonstrated targetability make this protein a promising cancer
biomarker and therapeutic target. This mini-review summarizes our current knowledge
of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide
for the development of novel anti-tumor treatments.

Keywords: alpha-enolase, autoantibodies, cancer biomarker, therapeutic target, ENO1

INTRODUCTION

Alpha-enolase (ENO1, 47 kD) has recently emerged as a major driver of tumor metabolism and
progression and is considered a rising cancer biomarker and therapeutic target (Capello et al., 2011;
Hsiao et al., 2013; Principe et al., 2017; Cappello et al., 2018). ENO1 is one of three enolase isoforms
encoded by different genes: ENO1, expressed in most human tissues and upregulated in cancer cells;
gamma-enolase (ENO2), expressed in neuronal cells and neuroendocrine differentiated tumors;
and beta-enolase (ENO3), expressed in muscles (Pancholi, 2001; Isgrò et al., 2015; Ji et al., 2016).
These isoforms show high sequence conservation and similar size, and combine to catalyze the
dehydration of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis. In cancer cells, this
reaction occurs under both aerobic and anaerobic glycolysis, contributing to the Warburg Effect,
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which increases glucose uptake, proliferation, and tumor growth
(Pancholi, 2001; Liberti and Locasale, 2016; Qian et al., 2017).

Alpha-enolase is overexpressed in multiple human cancer
types, contributing to increased glycolysis and tumor growth
(Altenberg and Greulich, 2004; Chang et al., 2006; He et al.,
2007; Tsai et al., 2010; Capello et al., 2011; Song et al., 2014;
Fu et al., 2015; Sun et al., 2017, 2019; Zhan et al., 2017; Yin
et al., 2018; Zhang et al., 2018, 2020; Cheng et al., 2019; Ji et al.,
2019; Qiao et al., 2019; Xu et al., 2019; Chen et al., 2020). ENO1
overexpression is often associated with anti-ENO1 autoantibody
responses and may have prognostic and diagnostic value in
certain cancers (Table 1; Adamus et al., 1998; Tomaino et al.,
2011; Pranay et al., 2013; Hsiao et al., 2015; Griggio et al., 2017;
Zhang et al., 2020). ENO1 is also localized on the surface of cancer
cells where it enhances plasmin formation (Miles et al., 1991;
Redlitz et al., 1995) to promote extracellular matrix degradation,
cell migration, invasion, and metastasis (Hsiao et al., 2013;
Didiasova et al., 2014; Principe et al., 2015, 2017; Zakrzewicz
et al., 2018). These properties make ENO1 a tumor-associated
antigen (TAA) and promising cancer biomarker and therapeutic
target. Below we summarize ENO1’s functions in cancer, growing
potential as a cancer biomarker, and rising opportunities for
targeting this enzyme for cancer treatment.

MULTIFUNCTIONAL ONCOPROTEIN

Alpha-enolase mRNA gives rise to an alternative translation
product of 37 kD called c-MYC promoter binding protein 1
(MBP1) (Figure 1A; Subramanian and Miller, 2000). Although
MBP1 does not have glycolytic activity, it regulates the cellular
response to altered glucose concentration (Sedoris et al., 2007).
ENO1 is upregulated by the c-MYC oncoprotein (Osthus
et al., 2000), and is localized in the cytoplasm and the
cell surface, playing multiple roles (Figure 1B; Diaz-Ramos
et al., 2012; Didiasova et al., 2019). In contrast, MBP1 is
a nuclear protein that represses c-MYC transcription under
cellular stress and low glucose conditions, leading to decreased
cell proliferation (Feo et al., 2000; Subramanian and Miller,
2000; Sedoris et al., 2007; Maranto et al., 2015). The ratio
of ENO1/MBP1 expression in cancer cells is regulated by
glucose, with c-MYC-driven elevated ENO1 expression under
high glucose conditions, and elevated MBP1 expression under
low glucose conditions (Sedoris et al., 2007). Cancer cells
adapt to hypoxia by overexpressing c-MYC, which stimulates
glycolysis and cell proliferation via ENO1 upregulation and
MBP-1 downregulation (Sedoris et al., 2010). The ENO1/MBP-1
ratio influences cancer aggressiveness, as demonstrated in human
breast tumors where overexpression of ENO1 and extracellular
matrix metalloproteinases MMP-2 and MMP-9, concomitant
with MBP-1 downregulation, correlates with worse prognosis
(Cancemi et al., 2019).

Alpha-enolase also plays important roles as a plasminogen
receptor, component of exosomal vesicles, cytoskeleton
reorganizing protein, stabilizer of mitochondrial membrane,
and modulator of oncogenic signaling pathways (Figure 1B;
Diaz-Ramos et al., 2012; Didiasova et al., 2019). These functions

allow overexpressed ENO1 to promote cancer cell proliferation,
survival, clonogenicity, epithelial-mesenchymal transition
(EMT), chemoresistance, extracellular matrix degradation,
migration, invasion, and metastasis. These functions can be
inhibited in cancer cells by ENO1 depletion (Georges et al.,
2011; Song et al., 2014; Fu et al., 2015; Zhu et al., 2015; Capello
et al., 2016; Principe et al., 2017; Qian et al., 2017; Zhan et al.,
2017; Qiao et al., 2018a, 2019; Ji et al., 2019; Sun et al., 2019;
Wang et al., 2019; Xu et al., 2019; Santana-Rivera et al., 2020), or
targeting with antibodies (Hsiao et al., 2013; Principe et al., 2015),
microRNA (miR) (Liu et al., 2018), or long non-coding RNAs
(lncRNAs) (Yu et al., 2018). ENO1 also regulates oncogenic
signaling pathways, including PI3K/Akt (Fu et al., 2015; Sun
et al., 2019; Chen et al., 2020; Zang et al., 2020), v/β-3 integrin
(Principe et al., 2017), β-catenin (Ji et al., 2019), transforming
growth factor beta (Xu et al., 2019), AMPK/mTOR (Zhan et al.,
2017; Dai et al., 2018), and others (Huang et al., 2019).

Acting as a plasminogen receptor, ENO1 “moonlights” on
the surface of tumor cells to facilitate plasminogen conversion
into plasmin (Miles et al., 1991; Redlitz et al., 1995; Capello
et al., 2011; Diaz-Ramos et al., 2012; Ceruti et al., 2013; Hsiao
et al., 2013; Didiasova et al., 2014, 2019). During inflammatory
conditions, plasmin activation leads to fibrinolysis and facilitates
extracellular matrix degradation, a function linked to ENO1’s
ability to promote cancer cell migration, invasion, and metastasis
(Hsiao et al., 2013; Kumari and Malla, 2015). Bacteria and
immune cells take advantage of ENO1’s plasminogen receptor
functions to facilitate tissue invasion (Wygrecka et al., 2009;
Bergmann et al., 2013).

The plasminogen binding activity of ENO1 has been
mapped to the C-terminal peptide 422KFAGRNFRNPLAK434,
Miles et al. (1991) and Redlitz et al. (1995), with another
putative plasminogen binding site located at 250FFRSGK256
(Figure 1A; Kang et al., 2008). ENO1 surface localization is
guided by post-translational modifications (PTMs), particularly
methylation of arginine 50 (Zakrzewicz et al., 2018). Other PTMs,
including citrullination (Lundberg et al., 2008), acetylation, and
phosphorylation (Zhou et al., 2010; Capello et al., 2011; Tomaino
et al., 2011; Sanchez et al., 2016), are also likely to influence ENO1
functions, localization, and immunogenicity (Didiasova et al.,
2019). ENO1 exteriorization is promoted by lipopolysaccharide
(Zakrzewicz et al., 2018), calcium influx (Didiasova et al., 2015),
and interaction with caveolin 1, annexin 2, and heat shock protein
70 (Zakrzewicz et al., 2014; Perconti et al., 2017).

Alpha-enolase interacts in the cell surface with B7-H3, an
immune co-stimulatory molecule with oncoprotein functions,
to promote glycolysis (Zuo et al., 2018). It also interacts with
granulin A (GRN-A), a 6 kDa peptide derived from progranulin
that inhibits ENO1’s ability to promote cancer cell proliferation,
migration, and invasion (Chen et al., 2017). GRN-A synergizes
with cisplatin to induce apoptosis in hepatocellular carcinoma
cells (Qiao et al., 2018b). Overexpressed ENO1 promotes
resistance to cisplatin and other anti-tumor drugs in cancer cells
by increasing glycolysis and cell proliferation (Tu et al., 2010;
Qian et al., 2017; Qiao et al., 2018a; Wang et al., 2019; Santana-
Rivera et al., 2020), interaction with microtubules (Georges et al.,
2011), and cell adhesion (Zhu et al., 2015; Principe et al., 2017).
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TABLE 1 | Potential prognostic and diagnostic value of ENO1 expression in tumors and cancer-associated anti-ENO1 autoantibodies.

Cancer type Molecule Prognostic/diagnostic value References

Bladder ENO1 Prognostic Ji et al., 2019

Breast ENO1 Prognostic Tu et al., 2010; Cancemi et al., 2019

Cancer-associated retinopathy Autoantibodies Prognostic (progressive blinding) Adamus et al., 1998

Chronic lymphocytic leukemia Autoantibodies Prognostic Griggio et al., 2017

Colorectal ENO1 Prognostic Zhan et al., 2017

Gastric cancer ENO1 Prognostic Qian et al., 2017; Qiao et al., 2019; Sun et al.,
2019; Xu et al., 2019

Glioma ENO1 Prognostic Song et al., 2014

Head and Neck Both ENO1 and autoantibodies Prognostic Tsai et al., 2010; Pranay et al., 2013

Liver Both ENO1 and autoantibodies Prognostic/diagnostic Takashima et al., 2005; Hamaguchi et al., 2008;
Zhang et al., 2020

Lung Cancer Both ENO1 and autoantibodies Prognostic/Diagnostic Chang et al., 2006; He et al., 2007; Shih et al.,
2010; Hsiao et al., 2015; Dai et al., 2017; Zhang
et al., 2018; Zang et al., 2019

Multiple myeloma ENO1 Prognostic Ray et al., 2020

Non-Hodgkin’s Lymphoma ENO1 Prognostic Zhu et al., 2015

Pancreatic cancer Both ENO1 and autoantibodies Prognostic Tomaino et al., 2011; Sun et al., 2017; Yin et al.,
2018; Wang et al., 2019

Alpha-enolase has also been implicated in the regulation of
T cell effector functions, including the suppressive functions
of induced regulatory T cells (De Rosa et al., 2015), T cell
activation La Rocca et al. (2017), and the diabetogenic functions
of islet-specific CD4+ T cells (Berry et al., 2015). Gemta et al.
(2019) recently reported that downregulation of ENO1 activity
represses the glycolytic activity of tumor infiltrating CD8+
lymphocytes (CD8+ TILs), leading to their functional exhaustion.
This impaired ENO1 function is unrelated to its expression,
suggesting the involvement of post-transcriptional regulatory
mechanisms such as PTMs influencing ENO1 enzymatic activity
or subcellular localization (Gemta et al., 2019).

TUMOR-ASSOCIATED ANTIGEN

The presence of anti-ENO1 autoantibodies is well documented
in autoimmune diseases such as rheumatoid arthritis (RA)
and autoimmune retinopathy (Adamus, 2017). In RA, these
autoantibodies recognize an immunodominant citrullinated
peptide within the ENO1 N-terminus (Lundberg et al., 2008), and
are clinical diagnostic biomarkers.

Alpha-enolase autoantibodies are also present in
cancer patients, often associated with cancer-associated
retinopathy (CAR) (Adamus, 2017). Unlike in RA, ENO1
autoantibodies from CAR patients do not specifically target
citrullinated peptides but rather recognize several epitopes,
including an immunodominant N-terminal domain peptide,
56RYMGKGVS63, and a C-terminal peptide implicated in
plasminogen binding, 421AKFAGRNF428 (Adamus et al., 1998).
CAR-linked ENO1 autoantibodies promote retinopathy by
inducing retinal cell apoptosis, leading to retinal dysfunction
or degeneration (Adamus, 2018; Adamus et al., 2020). In vitro
treatment of retinal cells with an anti-ENO1 monoclonal
antibody significantly impaired glycolysis, reduced ATP

production, and induced apoptosis (Magrys et al., 2007). ENO1
autoantibodies from patients with autoimmune retinopathy also
target retinal ganglion cells and induce apoptosis in rats (Ren
and Adamus, 2004). Further, the survival of retinal cells treated
with ENO1 autoantibodies from patients with autoimmune
retinopathy and CAR was impaired compared to retinal cells
exposed to sera from healthy controls (Adamus et al., 1998).
While ENO1 autoantibodies are known to trigger pathological
effects through their internalization by retinal cells (Ren and
Adamus, 2004), it cannot be ruled out that they also directly
target cell surface ENO1, leading to glycolysis impairment
and apoptosis. The study of ENO1 autoantibodies in CAR has
uncovered a potential unintended consequence - i.e., antibody-
induced retinal apoptosis- that requires careful consideration as
ENO1-based cancer immunotherapies are developed.

Alpha-enolase autoantibodies are associated with either
improved or poor tumor patient outcomes in different cancer
types, suggesting a context-dependent clinical significance
(Table 1; Shih et al., 2010; Tomaino et al., 2011; Pranay et al.,
2013; Hsiao et al., 2015; Griggio et al., 2017). While these
autoantibodies may occur in cancer patients independent of
CAR, a recent study showed that vision loss and anti-retinal
autoantibodies occur in at least 20 different human cancers,
with ENO1 being the most frequent target of these antibodies
(Adamus et al., 2020). Autoantibodies to other glycolytic enzymes
have also been detected in CAR patients (Adamus et al., 2020),
suggesting that they are induced by immune presentation of
peptides from overexpressed metabolic proteins released from
tumor cells (Adamus et al., 2020).

ENO1 autoantibodies have been included in TAA panels
for cancer immunodiagnosis. For instance, Zang et al. (2019)
examined a panel of four cancer biomarkers (carcinoembryonic
antigen, cancer antigen 125, Annexin A1 autoantibodies, and
ENO1 autoantibodies) for lung cancer detection that yielded high
specificity, sensitivity, and diagnostic accuracy. Dai et al. (2017)
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FIGURE 1 | Structure and functions of human ENO1. (A) Schematic representation of domain structure of ENO1 and its alternative translation variant c-MYC
promoter binding protein 1 (MBP1). Several lysine residues (K256, K422, and K434) have been implicated in the plasminogen binding functions of ENO1, whereas
K343 has been implicated in its catalytic activity, required for the conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis. Citrullination of
arginines 9 (R9) and 15 (R15) generates an immunodominant peptide (residues 5–22) that is targeted by autoantibodies in patients with rheumatoid arthritis.
Methylation of arginine 50 (R50) has been implicated in ENO1 externalization. R50 is also part of an immunodominant epitope recognized by autoantibodies from
patients with cancer associated retinopathy (CAR). Another CAR epitope is located within the plasminogen binding domain. Phosphorylated serine 419 (S419) within
the plasminogen binding domain is recognized of ENO1 autoantibodies in pancreatic cancer patients. While MBP1 shares the catalytic and plasminogen binding
domains of ENO1, it lacks these functions due to its exclusive nuclear localization. MPB1 residues 1–139 (ENO1 96–236) comprise its DNA binding domain, required
for binding to the c-MYC gene promoter, which results in repression of promoter activity and downregulation of c-MYC protein expression. (B) Schematic
representation of the cellular functions of ENO1 and MBP1. MBP1 localizes primarily in the cell nucleus where it represses the c-MYC gene promoter, whose activity
is essential for ENO1 upregulation. ENO1 is primarily localized in the cytoplasm, where it functions in glycolysis, promoting mitochondrial stability and cytoskeleton
reorganization, and regulating oncogenic signaling pathways. This protein is also localized on the cell surface, where it acts as a plasminogen receptor and
interacting partner of various proteins to regulate glycolysis, as well as cancer cell migration, invasion, and metastasis. ENO1 can also be secreted from cells as a
component of exosomal vesicles.

also reported that combining ENO1 autoantibodies with
carcinoembryonic antigen and cytokeratin 19 fragment in a
diagnostic panel increased diagnostic sensitivity for non-small
cell lung cancer. Another study detected ENO1 autoantibodies

at higher frequencies in patients with early stage lung cancer
compared to late stage patients (Zhang et al., 2018).

Post-translational modifications contribute to the generation
of ENO1 autoantibodies, as evidenced by the observation
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that patients with pancreatic ductal adenocarcinoma (PDA)
produce antibodies that specifically target epitopes containing
phosphorylated serine 419 within the plasminogen binding
domain of ENO1 (Figure 1), and correlate with improved
outcome in patients receiving chemotherapy, suggesting a
protective role (Tomaino et al., 2011). It is not clear if, like in RA,
citrullination triggers ENO1 autoantibodies in cancer patients,
although citrullinated ENO1 was reported to elicit anti-tumor
CD4+ T responses in murine tumor xenografts and in ovarian
cancer patients (Cook et al., 2018; Brentville et al., 2020). Our
group and others identified citrullinated ENO1 in cancer cells
(Jiang et al., 2013; Sanchez et al., 2016), suggesting that this PTM
could potentially trigger ENO1 autoantibodies in cancer patients.

We reported that ENO1 autoantibodies occur at higher
frequency in prostate cancer (PCa) patients compared to
controls, showing racial differences in reactivity (Sanchez et al.,
2016). While autoantibodies from European American (EA)
PCa patients reacted strongly with human recombinant ENO1
by ELISA but weakly by immunoblotting against endogenous
ENO1 from PCa cells, autoantibodies from African American
(AA) patients showed the opposite pattern. ENO1 autoantibodies
from AA patients also displayed differential reactivity against
endogenous ENO1 in a panel of PCa cell lines, reacting strongly
with ENO1 in metastatic PCa cell lines by immunoblotting,
whereas autoantibodies from EA patients reacted uniformly
against this protein across the panel. Intriguingly, ENO1
autoantibodies from AA patients lost immunoreactivity in
docetaxel-resistant cells, while autoantibodies from EA patients
retained this reactivity. Proteomics analysis revealed differences
in PTMs (e.g., acetylation, methylation, phosphorylation, and
citrullination) within endogenous ENO1 between chemosensitive
and chemoresistant PCa cells, suggesting that the observed racial
differences in ENO1 autoantibody reactivity in these cell types
might be influenced by PTMs.

In addition to ovarian cancer (Brentville et al., 2020), T cell
responses targeting ENO1 have also been reported in patients
with PDA. ENO1-specific CD8+ T cell responses were detected
in 8 out of 12 PDA patients with circulating anti-ENO1 IgG
autoantibodies, whereas patients without these autoantibodies
lacked these responses, suggesting an integrated humoral and
cellular anti-ENO1 response (Cappello et al., 2009). A later study
reported that phosphorylated ENO1 also triggers CD4+ T cell
responses in PDA patients (Capello et al., 2015).

CANCER BIOMARKER AND
THERAPEUTIC TARGET

The need for new cancer-specific targets that can act as beacons
to localize tumors with high efficiency is a key feature of a robust
biomarker. As mentioned above, growing evidence suggests that
ENO1 is upregulated in a broad range of human tumors, making
it a candidate cancer biomarker. ENO1 localization on the surface
of cancer cells also provides an excellent opportunity to develop
small molecules with high affinity to this protein, which enables
its direct targeting in the tumor surface for diagnostic imaging
and therapeutics.

The diagnostic and prognostic value of ENO1 overexpression
has been confirmed in several tumors (Table 1). For example,
in breast cancer, enhanced ENO1 expression correlated with
greater tumor size, poor nodal status, and a shorter disease-
free interval (Tu et al., 2010). Patients with lung cancer
overexpressing ENO1 also showed poor clinical outcomes, with
shorter overall and progression-free survival, compared to low
expressing patients (Chang et al., 2006; Hsiao et al., 2013).
ENO1 overexpression in hepatocellular carcinoma increased with
tumor de-differentiation and correlated positively with venous
invasion (Takashima et al., 2005; Hamaguchi et al., 2008). These
characteristics position ENO1 as a selective biomarker able to
identify aggressive tumor types with high accuracy.

Alpha-enolase has several key characteristics of an ideal cancer
biomarker: (1) localization in the cell surface where it can
be targeted for imaging and treatment; (2) overexpression in
cancer cells with low expression in normal tissues; and (3)
overexpression correlating with prognosis and clinical outcomes.
Thus, ENO1 can be envisioned as an excellent biomarker to guide
patient management and alter disease timeline. Ultimately, ENO1
surface imaging could potentially be used to screen for occult
cancers. This information could then be translated to improve
prognosis and management of patients diagnosed with cancer by
monitoring disease state, detecting recurrence and progression,
or assessing response to therapy.

Alpha-enolase has a potent three punch combination to
advance cancer progression: (1) promotes tumor glycolysis,
(2) activates cancer signaling pathways, and (3) drives tumor
migration, invasion, and metastasis. These unique characteristics
make ENO1 a strong candidate to deliver targeted therapies to
tumors overexpressing this protein, particularly those tumors
expressing surface ENO1. For instance, molecular imaging of
tumors guided by ENO1-specific small molecule probes could
open the door to new strategies to target this protein in
tumors, leading to early interventions and improved patient
outcomes. Several reports have already provided pre-clinical data
supporting ENO1 therapeutic targeting. As mentioned above,
ENO1 depletion attenuates glycolysis, cell proliferation, EMT,
migration, and invasion, and metastasis in several cancer types
(Fu et al., 2015; Capello et al., 2016; Principe et al., 2017;
Zhan et al., 2017; Ji et al., 2019; Sun et al., 2019). Targeting of
ENO1 in combination with chemotherapy may be beneficial in
patients with drug resistant cancers given, as mentioned earlier,
its emerging role in chemoresistance.

There is a major need for small molecule inhibitors of
ENO1. A promising inhibitor, ENOblock, has been used to
target ENO1 in various disease contexts (Jung et al., 2013;
Cho et al., 2017, 2019; Haque et al., 2017; Polcyn et al., 2020)
but its specificity was disputed (Satani et al., 2016). Another
ENO1 inhibitor was recently reported to enhance anti-multiple
myeloma (MM) immunity in combination with immunotherapy
in pre-clinical models (Ray et al., 2020). In addition, a novel
nanoparticle-delivered peptide targeting ENO1 in combination
with doxorubicin demonstrated strong antitumor activity in pre-
clinical models of PCa (Wang et al., 2018).

The study of immune responses to ENO1 has sparked
the development of novel immunotherapeutic strategies.
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For instance, treatment of lung cancer cells with anti-
ENO1 monoclonal antibodies in vitro suppressed cell-associated
plasminogen and matrix metalloproteinase activation, collagen
and gelatin degradation, and cell invasion (Hsiao et al., 2013).
Interestingly, adoptive transfer of these antibodies to mice
resulted in their accumulation in subcutaneous tumors and
inhibition of lung and bone metastases. Principe et al. (2015)
reported that in vitro and in vivo blockade of ENO1 with
anti-human ENO1 monoclonal antibodies reduced PDA cell
migration and invasion. Further, administration of adeno-
associated virus (AAV) encoding an anti-ENO1 monoclonal
antibody led to a reduction of lung metastasis in mouse PDA
xenografts (Principe et al., 2015). The same group developed an
ENO1 DNA vaccine that significantly inhibited, although did not
eradicate, tumor growth in a mouse PDA model, suggesting that
the effectiveness of this vaccine could be amplified in the context
of combinatorial therapies (Cappello et al., 2013, 2018). Recently,
Mandili et al. (2020) demonstrated that treatment of PDA mice
with combined gemcitabine chemotherapy and ENO1 DNA
vaccination induced a strong CD4+ T cell antitumor activity that
impaired tumor progression, compared with mice that received
vaccine or gemcitabine alone.

CONCLUSION

Alpha-enolase promotes cellular functions associated with
tumor aggressiveness, including increased glycolysis, activation
of oncogenic signaling pathways, chemoresistance, and cell
proliferation, migration, invasion, and metastasis. Therefore,
ENO1 can be considered an oncoprotein critical for maintaining
several “hallmarks of cancer” (Hanahan and Weinberg, 2011),

particularly sustained proliferative signaling, deregulated energy
metabolism, apoptosis resistance, and activation of invasion and
metastasis. ENO1 overexpression in a broad range of human
cancers and targetability make it an attractive cancer biomarker
candidate and therapeutic target. Its localization in the tumor
surface, key metabolic functions, and ability to promote tumor
aggressive properties could be exploited for the development of
novel comprehensive cancer care modalities that combine ENO1
surface imaging with targeted therapeutic interventions.
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