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Abstract: Plasmodium vivax is the world’s most widely distributed human malaria parasite, with over
2.8 billion people at risk in Asia, the Americas, and Africa. The 80–90% new P. vivax malaria infections
are due to relapses which suggest that a vaccine with high efficacy against relapses by prevention of
hypnozoite formation could lead to a significant reduction in the prevalence of P. vivax infections.
Here, we describe the development of new recombinant ChAdOx1 and MVA vectors expressing
P. cynomolgi Thrombospondin Related Adhesive Protein (PcTRAP) and the circumsporozoite protein
(PcCSP). Both were shown to be immunogenic in mice prior to their assessment in rhesus macaques.
We confirmed good vaccine-induced humoral and cellular responses after prime-boost vaccination
in rhesus macaques prior to sporozoite challenge. Results indicate that there were no significant
differences between mock-control and vaccinated animals after challenge, in terms of protective
efficacy measured as the time taken to 1st patency, or as number of relapses. This suggests that under
the conditions tested, the vaccination with PcTRAP and PcCSP using ChAdOx1 or MVA vaccine
platforms do not protect against pre-erythrocytic malaria or relapses despite good immunogenicity
induced by the viral-vectored vaccines.

Keywords: P. vivax; circumsporozoite protein; CSP; thrombospondin related adhesive protein: TRAP;
adenoviruses; MVA; malaria; vaccines

1. Introduction

Plasmodium vivax is considered to be the biggest hurdle towards malaria eradication. This protozoa
is the most widespread malaria parasite in humans, as well as the most difficult to eliminate from
endemic countries in Asia, the Americas and Africa. It accounts for 132–391 million clinical infections
of P. vivax each year and over 2.8 billon people are considered to be at risk of P. vivax transmission [1,2].
P. vivax as well as P. cynomolgi, have a sophisticated ability to hide in the infected host for long periods of
time by developing structures in hepatocytes known as hypnozoites [3]. These dormant forms change
dramatically the epidemiological landscape of malaria, as reactivation by unknown mechanisms within
days, months or years after the first contact with the parasite, causing a relapse and the onset of malaria
symptoms in complete absence of mosquitoes [3,4]. It has been shown that relapses are responsible
for 80–90% new P. vivax malaria infections [5,6], which suggests that targeting hypnozoites either by
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preventing its formation or promoting elimination from the liver may lead to significant reductions
in P. vivax transmission [7]. Ivo Mueller et al. have also suggested that a vaccine with high efficacy
against relapses by prevention of hypnozoite formation would be major achievement as it would result
in significant reduction in P. vivax prevalence and infections, leading to a decrease in transmission [7].

Despite many years of research, the only drug licensed for the radical cure and relapse prevention
of P. vivax, primaquine, can trigger severe hemolytic anemia in glucose-6-phosphate dehydrogenase
(G6PD) deficient individuals, making it necessary to test a patient for this common genetic disorder
that is quite common in endemic areas, before prescribing the drug [8]. Novel compounds targeting
the hypnozoite are urgently needed to replace primaquine [9]. We have previously demonstrated
that adenoviral vectors expressing the malaria circumsporozoite peptide (Pb9) induce high CD8+ T
cell frequencies that can be successfully deployed to the liver to eliminate the sporozoite-infected
hepatocytes, raising the possibility that this vaccination approach could stand a good chance to
eliminate the hypnozoite forms [10]. Recent data by the group of Stefan Kappe, indicate that
membranes surrounding hypnozoites contain the circumsporozoite protein, raising the possibility of
becoming a target by cytotoxic lymphocytes (CTLs) [11]. TRAP (thrombospondin-related anonymous
protein) mediates the invasion of sporozoites into the hepatocytes. Viral vectored vaccines targeting
TRAP have shown CD8+ and antibody-mediated-protection against sporozoites of P. berghei expressing
P. vivax proteins [12]. Similarly, we have previously described that co-administration of adenovirus
and MVA expressing circumsporozoite protein (CSP) and TRAP conferred high levels of protection to
mice challenged with P. berghei sporozoites [13]. The aim of this study was to determine whether the
immunization of Nonhuman Primates (NHP) with two vaccine candidates based on the P. cynomolgi
Thrombospondin Related Adhesive Protein (PcTRAP) and the circumsporozoite protein (PcCSP),
can prevent relapse through the induction of immune responses to prevent formation or to target
hypnozoite-bearing hepatocytes. We vaccinated rhesus macaques with an adenovirus from chimpanzee
origin, ChAdOx1 and Modified Vaccinia Ankara, or MVA expressing PcTRAP and PcCSP in a
prime-boost regimen and assessed vaccine-elicited immunogenicity and efficacy. We confirmed good
vaccine-induced humoral and cellular responses after prime-boost vaccination of rhesus macaques
prior to sporozoite challenge. However, there were no significant differences between mock-control
and vaccinated animals after challenge, in terms of protective efficacy measured as the time taken to 1st
patency, or as number of relapses. This suggests that under the conditions tested, the vaccination with
PcTRAP and PcCSP using ChAdOx1 or MVA vaccine platforms do not protect against pre-erythrocytic
malaria or relapses in a challenge with 10,000 P. cynomolgi sporozoites.

2. Materials and Methods

2.1. Antigen Design in ChAdOx1 and MVA Vaccines Expressing TRAP and the CSP from
Plasmodium cynomolgi

Two genes from Plasmodium cynomolgi, the Circumsporozoite Protein (CSP) and Thrombospondin
Related Adhesive Protein (TRAP) were synthesized by Life Technologies using the annotated sequences
of CSP from P. cynomolgi strain B (Uniprot P08676; GeneBank AAA29539.1) and TRAP (Uniprot 044019;
GeneBank CAA73140.1). Endogenous leading sequences from both genes were replaced by the tPA
(tissue plasminogen activator signal peptide) sequence to improve expression and a Kozac sequence to
enhance translation. The tPA facilitates the protein transport from the endoplasmic reticulum (RE) to
the Golgi apparatus, thus increasing the expression and secretion of the antigen [14–16]. The transgenes
were ligated to pENTR4-Mono backbone plasmid after KpnI/NotI digestion and expanded in Escherichia
coli. Upon cloning into ChAdOx1 to form ChAdOx1 PcCSP, the viral vector was produced in HEK293T
cells and purified by Cesium Chloride to reach a concentration of 8.9 × 109 infectious units (IU)/mL
and 8.1 × 1011 viral particles (vp)/mL corresponding to a particle to infectious units (P:I) ratio of 91.
ChAdOx1 PcTRAP was produced and purified under similar conditions and obtained at a concentration
of 3.1 × 1010 IU/mL and 2.3 × 1012 vp/mL, corresponding to a P:I of 73. The sterility of the virus was also
confirmed by inoculation of TSB broth with 10 L of purified virus and incubation for 3 days at 35 ◦C.
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To generate the MVA constructs, the transgenes were ligated to the MVA backbone after KpnI/XhoI
restriction enzyme digestion. MVA PcCSP was produced in primary cell cultures of chicken embryo
fibroblasts (CEF) at a final yield of 2.1 × 109 plaque-forming units (PFU)/mL, and MVA PcTRAP was
produced under similar conditions and purified at a concentration of 1.3 × 109 PFU/mL. Viral vectors
were stored in 10 mM Tris, 140 mM NaCl, pH 7.8 as formulation buffer.

2.2. Design, Production and Purification of PvCSP and PvTRAP Proteins in HEK293T Cells

The PcCSP was amplified by PCR with the following primers: ACCGGTCACAACGTGGACTT
CTCCA (Forward) and GGTACCCTTGTCCATGGTGCACACTTC (Reverse). Sequence underlined
correspond to the addition of restriction sites (AgeI and KpnI) that allowed the cloning into the PhLSec
expression vector. Amplification started from position 24 a.a. (lacking the endogenous signal sequence)
to position 340 a.a. (lacking the endogenous transmembrane domain). The PcTRAP sequence was
amplified by PCR with the following primers: ACCGGTGGCGACCAGAAAATCGTGGA (Forward)
and GGTACCGGAGTTGTTTGGGATGTCGC (Reverse). Sequence underlined correspond to the
addition of restriction sites (AgeI and KpnI) that allowed the cloning into the PhLSec expression vector.
Amplification started from position 25 a.a. (lacking the endogenous signal sequence) to position 496 a.a.
(lacking the endogenous C-terminal domain). Resulting PCR-cloning products were ligated with
AgeI and KpnI into the PhLSec plasmid that has a chicken b-actin/rabbit b-globin hybrid promoter
with a signal secretion sequence and a Lys-His6 tag [17]. The recombinant DNA plasmids were
purified from E. coli using the miniprep kit (Qiagen, Hilden, Germany) and each of plasmid was
verified by restriction analysis and DNA sequencing (Source, BioScience). The resultant expression
PhHLSec plasmid was amplified using QIAGEN Giga Preps (Qiagen, Germany). The mammalian
expression of PcCSP and PcTRAP were carried out in roller bottles using the standard PEI transfection
of HEK293T cells according to the protocol published previously [18]. Briefly, the PhHLSec PcCSP
or PcTRAP plasmid (500 µg) was transfected in HEK-293T cells using polyethyleneimine (PEI) in
roller bottles under standard cell culture conditions. Five days after transfection, cells were discarded,
and media was filtered through 0.22 µM disposable filters. The secreted protein was purified from
the supernatant by Ni Sepharose affinity chromatography (HisTRAPTM, GE Healthcare), using the
Äkta Start chromatography system and eluted with imidazole 500 mM. Finally, the eluted protein was
dialyzed using Slide-A-LyzerTM cassette (Thermo Fisher Scientific, Rockford, IL. USA) against 1×PBS.

2.3. Ethics Statement and Immunization in Mice

Female C57BL/6, 6-8 weeks old mice were purchased from Envigo and used for potency assay
(n = 3 mice per group). All animals used for this study were in accordance with UK Home Office
Animals Act Project license. Procedures were approved by the University of Oxford Animal care and
Ethical Review Committee (PPL 30/2414). The experimental design considered the 3Rs (replacement,
reduction and refinement). Groups of mice (n = 3) were injected intramuscularly with either ChAdOx1
PcCSP or ChAdOx1 PcTRAP at a concentration of 1 × 108 infectious units (IU). Similarly, MVA PcCSP
and MVA PcTRAP were evaluated for immunogenicity in the same animal model, at concentrations of
1 × 106 plaque-forming units (PFU) per mouse. ChAdOx1/MVA prime-boost (8 weeks apart) was also
assessed in C57Bl/6 using the same concentration as described above. A blood sample was withdrawn
at week 2 after prime or prime/boost.

2.4. Ex-Vivo IFNγ ELISpot Assay

ELISpot was performed according to the methods previously published [18,19]. Briefly, MAIP
ELISpot plates (Millipore UK, LTD) were coated with anti-mouse IFNγ antibody (mAb AN18, Mabtech),
after 1h blocking with complete DMEM media (10% FCS). Erythrocytes were lysed using an ACK
lysing buffer and leucocytes were stimulated with peptide pools spanning the whole sequence of
PcCSP or PcTRAP. Twenty-mer specific PcCSP and PcTRAP structural peptides overlapped by 10 a.a.
(10 µg/mL) and 2.5 × 105 splenocytes from naïve mice per well. After 16 h of incubation, cells were
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discarded, and plates washed with PBS. Following this, 50 µL of biotinylated anti-mouse IFNγ mAb
(mAb R4-6A2, Mabtech) (1:1000 in PBS) was added to each well and incubated for 2 h. After washing,
plates were incubated with 50 µL of Streptavidin-ALP (Mabtech) at 1:1000 dilution in PBS for 1 h.
After another washing step, developing solution (BioRad, Watford H., U.K.) was used. Once spots
were visible, the reaction was stopped by rinsing the plates with water. Spots were acquired using an
ELISpot reader. Spot Forming Cells (SFC)/106 PBMCs producing IFNγ were calculated. For macaque
samples, monkey IFN-γ ELISpot kit (3421M-2A, MABTECH) was used to determine Spot Forming
Cells (SFC)/106 PBMCs producing IFNγ according to the protocol. The ELISpot values were analyzed
by determination of p-values by Kruskal–Wallis test and Dunn’s multiple comparisons test.

2.5. Enzyme-Linked Immunosorbent Assay

Antibody binding to PcCSP or PcTRAP in macaque plasma were measured by an IgG enzyme
linked immunosorbent assay (ELISA) using previously described methods [18–20]. Briefly, Nunc
Maxisorp Immuno ELISA plates coated with PcCSP or PcTRAP antigens diluted in PBS to a final
concentration of 2 µg/mL and incubated at room temperature (RT) overnight. Plates were washed
6 times with PBS/0.05% Tween (PBS/T) and blocked with 300 µL with PierceTM protein-free (PBS)
blocking buffer (Thermo Fisher Scientific, Waltham, MA, U.S.) for 2 h at RT. Macaque plasma was
added and serially diluted 3-fold down in PBS/T with 50 µL per well as final volume and incubated
for 2 h at RT. Following washing 6 times with PBS/T, bound antibodies were detected following a
1 h incubation with 50 µL of alkaline phosphatase-conjugated antibodies specific for monkey IgG
(Sigma Aldrich, SLM, U.S.). Following additional 6 washes with PBS/T, development was achieved
using 100 µL of 4-nitrophenylphosphate diluted in diethanolamine buffer and the absorbance values
at OD405 were measured and c using a CLARIOstar instrument (BMG Labtech, Aylesbury, GB). Log
reciprocal antibody titers were defined by an absorbance value three standard deviations greater than
the average OD405 of the control. The antibody titers were analyzed by unpaired t-test to determine
the p-values.

2.6. Immunogenicity Responses and Challenge in Rhesus Macaque

Before the start of the study, ethical approval was obtained from the animal ethics committee
(Dierexperimentencommissie (DEC)) of the Biomedical Primate Research Centre (BPRC). The study
protocol was registered under the DEC accession no. 745. All housing and animal care procedures
took place at the BPRC in Rijswijk, the Netherlands, and were in compliance with European directive
2010/63/EU, as well as the Standard for Humane Care and Use of Laboratory Animals by Foreign
Institutions provided by the Department of Health and Human Services of the United States National
Institutes of Health (NIH, identification number A5539-01). The BPRC is accredited by the American
Association for Accreditation of Laboratory Animal Care. Ten healthy purpose-bred rhesus macaques
(4 female, 6 male) (Macaca mulatta) were stratified into two groups of five after which treatment was
randomly assigned to each group. Stratification was based on sex, age, and body weight. All animal
handling and biosampling was performed under ketamine sedation (10 mg kg−1, by intramuscular
injection). At the end of the infection animals were euthanized by intravenous injection of pentobarbital
(200 mg kg−1) under ketamine sedation. Vaccines were administered i.m. on days 0 and 56 (ChAdOx1
at dose of 1 × 1010 IU, MVA at dose of 1 × 108 PFU respectively). Challenge was performed on day 70
by 10,000 P. cynomolgi sporozoites M strain administered i.v. The challenge data was analyzed and
p-values were determined by the Kaplan–Meier method.

3. Results

3.1. Transgene Design in ChAdOx1 and MVA Vaccines Expressing TRAP and the CSP

We constructed both, chimpanzee adenovirus (ChAdOx1) and MVA vaccines expressing the
Plasmodium cynomolgi Circumsporozoite Protein (PcCSP) and Thrombospondin Related Adhesive
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Protein (PcTRAP). To this end, the annotated CSP sequences from P. cynomolgi strain B (Uniprot P08676;
GeneBank AAA29539.1) and TRAP from P. cynomolgi (Uniprot 044019; GeneBank CAA73140.1) were
used for the gene synthesis (Figure 1A). Upon enzymatic restriction of the initial PcCSP cassette, a band
of 1,125 bp was visualized in a 1% agarose gel, whilst the PcCSP cassette yielded band corresponding
to a size of 1,521 bp (Figure 1A). Each cassette was transferred to a Shuttle vector plasmid (pMONO)
(Figure 1B) for subsequent cloning into an adenoviral (ChAdOx1) or to entry plasmid MVA which
was co-transfected to produce and a Modified Vaccinia Ankara (MVA) plasmid vectors (Figure 1B–E).
This resulted in the production of four viral vectored vaccines: ChAdOx1 PcCSP, ChAdOx1 PcTRAP,
MVA PcCSP, and MVA PcTRAP.

Figure 1. Design, cloning and production of ChAdOx1 and MVA viral vectored vaccines expressing
P. cynomolgi (Pc) circumsporozoite protein (PcCSP) and Thrombospondin Related Adhesive Protein
(PcTRAP). (A–E). (A) Agarose gel showing restriction fragment length polymorphism (RFLP) of the
initial plasmids containing the synthetic genes of PcCSP and PcTRAP genes (B) Agarose gel showing
PcCSP and PcTRAP bands upon enzyme restriction of from Shuttle Vectors and final virus plasmids.
(C–E) Each cassette was cloned into a Shuttle vector and subsequently into both, adenoviral ChAdOx1
and Modified Vaccinia Ankara (MVA) vectors.

3.2. Design and Production of PcTRAP and the PcCSP Proteins

We designed PcCSP and PcTRAP plasmid constructs for expression, production and purification
of soluble PcTRAP and PcCSP proteins in mammalian system, to be used for the analysis of antibody
responses. To this end, the PcCSP and PcTRAP genes were cloned into the pHLsec expression vectors to
produce PcTRAP and PcCSP proteins with a C-terminal His tag (Figure 2A–B). These constructs were
expressed in HEK293T cells and the secreted proteins were purified by nickel column chromatography.
The purified proteins were analyzed by SDS-PAGE gel with coomassie staining and Western blot (WB)
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using an anti-His tag antibody (Figure 2C). Specific bands of 50 kDa and ~75 kDa were visualized,
corresponding to PcCSP and PcTRAP proteins in WB respectively.

Figure 2. Design and cloning of PcCSP and PcTRAP transgenes for protein expression. (A) Agarose
(1%) gel showing the PcCSP and PcTRAP PCR products following the restriction with AgeI and KpnI
enzymes. (B) Agarose (1%) gel showing a single or double digestion with AgeI and KpnI to confirm
the insertion of the PcCSP and PcTRAP into the PhLSec plasmid. (C) SDS-PAGE coomassie-stained gel
(left) and Western blot (WB) with an anti-His monoclonal antibody (right) for detection of PcCSP and
PcTRAP proteins upon transfection of HEK293 cells with PhLSec plasmids expressing either transgene.

3.3. Pre-Clinical Immune Responses after Vaccination in Mice

An immune potency assay was performed in mice in order to assess immunogenicity of our new
viral vectored vaccines prior to the rhesus trial. C57Bl/6 mice (n = 3) were immunized with either
ChAdOx1 PcCSP or ChAdOx1 PcTRAP using a standard dose of 1 × 108 IU [21]. Similarly, MVA PcCSP
and MVA PcTRAP were assessed for immunogenicity in the same animal model, using standard doses
of 1 × 106 PFU/mouse [22]. Mock control mice received a boost with MVA with twice the concentration
(2 × 106 PFU/mouse) to match the amount of MVA in the other groups. 2 weeks after immunization,
T cell responses were quantified by an ex vivo IFN-gamma ELISpot, by stimulating Peripheral Blood
Mononuclear Cells (PBMCs) with a specific pool of overlapping peptides spanning the PcCSP or
PcTRAP proteins (Figure 3). C57Bl/6 mice immunized with MVA PcCSP and PcTRAP induced low
T-cell responses, as described in previous reports [23]. C57Bl/6 mice receiving the ChAdOx1 PcTRAP
vaccine showed good T cell frequencies of ~1500 spot-forming cells (SFC)/106 PBMCs (Figure 3B)
while ChAdOx1 PcCSP vaccine induced only modest mean T cell frequencies of ~130 spot-forming
cells (SFC)/106 PBMCs (Figure 3A). The T cell responses increased significantly to reach mean T cell
frequencies of ~15,000 SFC/106 PBMCs by prime-boost vaccination (ChAdOx1-MVA) of PcTRAP,
whereas mice receiving a prime-boost vaccination of ChAdOx1-MVA PcCSP, reached a mean of
~200 SFC/106. Whilst we confirmed that all viral vectors were immunogenic, we observed a modest
immunogenicity by PcCSP when compared to that PcTRAP vectored vaccines were more immunogenic
than the PcCSP counterpart.
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Figure 3. Cellular immune responses elicited by ChAdOx1 and MVA vaccines. C57Bl/6 mice (n = 3
per group) were injected with either ChAdOx1 PcCSP or ChAdOx1 PcTRAP at a concentration of
1 × 108 IU/mouse, and MVA PcCSP and MVA PcTRAP at concentrations of 1 × 106 PFU/mouse.
A heterologous Prime-Boost using ChAdOx1-MVA vaccination regimen was also tested. Peripheral
blood mononuclear cells (PBMCs) were cultured with peptide pools spanning the PcCSP and PcTRAP
proteins and responses were assessed using an ex vivo IFN-gamma ELISpot. Values represent the
spot-forming cells (SFC) per million PBMCs resulting from stimulation with 20-mer overlapping by
10 peptides spanning the whole PcCSP (A) and PcTRAP (B) structural proteins (10 µg/mL). Line shapes
represent mice vaccinated with each vaccine. p-values were determined by Kruskal–Wallis test and
Dunn’s multiple comparisons test. p > 0.05 (ns), p < 0.05 (*).

3.4. Humoral and Cellular Immune Responses after Vaccination in Rhesus Macaque Prior to Challenge

A macaque trial was designed to run for 168 days (Figure 4), during which nonhuman primates
(NHPs) were vaccinated on day 0 with a combination of ChAdOx1-PcCSP + ChAdOx1-PcTRAP
(Malaria group, n = 5) or ChAdOx1-NS1 (Mock control group receiving a 2x of a dengue NS1 vaccine,
n = 5) (Figure 4). NHPs received a boost with MVA-PcCSP + MVA-PcTRAP or an MVA-NS1. Blood
samples were taken on days 0, 14, and 70 (PBMCs) or 0, 56 and 70 (Plasma). All NHPs were challenged
with 10,000 P. cynomolgi sporozoites delivered intravenously and followed up to assess parasitemia
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from day 78, treated with chloroquine to eliminate blood stage parasitemia and followed up to detect
two relapses up until day 168 when the experiment was terminated.

Figure 4. Description of Nonhuman Primates (NHP) challenge experiment. Created with BioRender.com.

Prior to the rhesus macaque challenge, we assessed vaccine-elicited immunogenicity after the
prime or the prime-boost (Figure 5). At 8 weeks post-prime immunization, only 1 out of 5 animals
seroconverted for PcCSP (Figure 5A) while the anti-PcTRAP antibodies were detected in 3 out of
5 animals at the log reciprocal antibody titer values of 2 (Figure 5B). Two weeks after the boost
immunization, the log reciprocal antibody titer values for both anti-cCSP and anti-cTRAP increased
significantly to ~2.47 and ~2.38 respectively (Figure 5A,B). Anti-cCSP and anti-cTRAP antibodies,
in plasma from the control group, were negative in all timepoints.

Antigen-specific cellular T responses were quantified using an ex vivo IFN-gamma ELISpot
assay from PBMCs (Figure 6). Results showed that only small frequencies of T cell responses were
induced after priming with ChAdOx1-PcCSP+PcTRAP. T cell responses increased to reach mean T cell
frequencies of ~490 and ~720 SFC/106 PBMCs for PcCSP and PcTRAP, respectively with a mean overall
response of ~1210 SFC/106 PBMCs when adding T cell responses for both antigens. We concluded that
good humoral and cellular responses were induced after prime-boost vaccination of rhesus macaques
prior to sporozoite challenge. These results conclude that good humoral and cellular responses were
induced in all prime-boost vaccinated group of rhesus macaques (n = 5) prior to sporozoite challenge.
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Figure 5. Humoral immune responses elicited by ChAdOx1/MVA vaccines in rhesus macaques.
A group of rhesus macaques (n = 5) were co-immunized with ChAdOx1 PcCSP and ChAdOx1 PcTRAP
at 1 × 1010 iu and the control group (n = 5) were immunized with unrelated ChAdOx1 DENV NS1
vaccine. Eight weeks after prime vaccination, the animals were boosted with MVA encoding the same
antigens. Plasma samples were collected at 8 weeks after prime immunization and 2 weeks after P-B
immunization. Antibody responses elicited by vaccines were quantified by ELISA in plates coated
with a PcCSP (A) or PcTRAP (B) proteins. p-values were determined by unpaired t-test. p > 0.05 (ns),
p < 0.05 (*), p < 0.01, p < 0.001, p < 0.0001 (****).
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Figure 6. T cell immune responses elicited by ChAdOx1/MVA vaccines in rhesus macaques by ELISpot.
PBMCs were cultured with peptide pools spanning the PcCSP and PcTRAP proteins and responses
following prime and prime-boost immunizations were assessed using an ex vivo IFN-gamma ELISpot.
Values represent the spot-forming cells (SFC) per million PBMCs resulting from stimulation with 20-mer
overlapping by 10 peptides spanning the whole PcCSP and PcTRAP structural proteins (10 µg/mL).
Individual data are shown as symbols and mean + SD are represented as the horizontal bars. PBMC
samples were collected at 2 weeks after prime immunization and 2 weeks after P-B immunization.
p-values were determined by Kruskal–Wallis test and Dunn’s multiple comparisons test. p > 0.05 (ns),
p < 0.05 (*), p < 0.01 (**).

3.5. Challenge of NHPs with P. cynomolgi sporozoites

Macaques were challenged with 10,000 P. cynomolgi sporozoites following an MVA boost (Figure 4).
When parasitemia became patent (thin smear positive), macaques were treated with chloroquine
to eliminate only the blood-stage parasites without affecting hypnozoites. Macaques were then
followed-up for a maximum of 24 weeks to assess time and number of relapses and determine whether
a difference between control and vaccinated animals could be detected. There were no significant
differences between mock-control and vaccinated animals, neither for the time taken for 1st patency or
the time or number of relapses, which suggest that the vaccination with ChAdOx1 or MVA viral vectors
expressing PcTRAP or PcCSP do not protect against pre-erythrocytic malaria or relapses (Figure 7A–C).
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Figure 7. Macaques challenge with 10000 P. cynomolgi sporozoites. Macaques were followed to assess
time and number of relapses; (A) 1st patency, (B) First relapse and (C) Second relapse. Survival curves
are represented as the time when the relapses occur. p-values were determined by the Kaplan–Meier
method. p > 0.05 (ns).

4. Discussion

P. vivax presents a more challenging landscape than P. falciparum for vaccine development, due to
the need to prevent relapses caused by hypnozoites in the liver. Vaccine clinical trials for P. falciparum
have moved decisively forward, and leading pre-erythrocytic P. falciparum candidates (R21, RTS, S,
and Ad-M ME.TRAP) based on CSP and TRAP proteins alone or in combination have been tested in a
control human malaria infection with encouraging results showing that such vaccines offer partial
protection against malaria sporozoite challenge on their own [24]. Results indicate that protective
immunity against malaria may require the stimulation of strong humoral and cellular responses against
more than one antigen [25]. Our previous studies have shown that tailoring a combination of these two
pre-erythrocytic antigens (CSP and TRAP) could enhance protection to mouse sporozoite challenge
in mouse malaria models using P. berghei and P. vivax antigens [13,22]. In this study, we constructed
two P. cynomolgi vaccines encoding the PcCSP and PcTRAP antigens based on viral-vector platforms
(ChAdOx1 and MVA vectors) to address the question whether these pre-erythrocytic antigens expressed
in viral vectored vaccines can prevent relapse in non-human primates (NHP). To assess the potency of
our vaccines prior to the NHP immunizations and challenge, the immunogenicity of our viral-vectored
vaccines was first assessed in mice by measuring cellular response in C57Bl/6 mice which suggested
that MVA PcCSP and PcTRAP vaccines immunized as prime induced low T-cell responses as described
previously [23] while the ChAdOx1 vaccine counterpart demonstrated significantly higher T cell
responses as previously shown by other ChAdOx1 vaccines encoding various different antigens [18].
Interestingly, PcTRAP vaccines stimulated higher T cell frequencies than PcCSP regardless of whether
it was given as a prime (ChAdOx1) or prime-boost (ChAdOx1-MVA) regimen, which is consistent to
the observations made previously in P. vivax CSP and TRAP publications where no T-cell epitopes have
been identified for CSP as opposed to multiple T-cell epitopes for TRAP [12,21,26]. Our results show
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that despite induction of humoral and cellular responses in all vaccinated group of NHPs immunized
with ChAdOx1–MVA (PcCSP/PcTRAP), there was no effect in protection against P. cynomolgi sporozoite
infection or relapse, as shown by the development of the parasite blood-stage in both scenarios.
The challenge was carried out using a high challenge dose of 10,000 P. cynomolgi sporozoites in order to
make it a very stringent test and this may account for the lack of protection in the challenge model. It
has been shown by later studies using the same model that the challenge can be performed reproducibly
with 500–1000 sporozoites which is much less than the number of sporozoites used in this study.

Recent studies published by the start of this work have shown a reduction of anti-CSP antibodies
as well as the reduction in efficacy when both, CSP and TRAP were delivered by viral-vectored vaccines,
contrary to an adenovirus prime and protein–CSP boost regimen led to increased anti-CSP antibody
titers as well as optimal protection in mouse model [13]. It is possible that the heterologous ChAdOx1
and MVA prime-boost strategy (ChAdOx1–MVA used in this study led sub-optimal induction of
PcCSP and PcTRAP specific antibodies and antigen specific T-cell responses that failed to provide
any protection in the NHP challenge model. Therefore, alternative vaccination strategies such as the
adenovirus prime and protein PcCSP boost regimen could be tested to determine if such strategy
could increase the anti-PcCSP titers and efficacy in the future. We have recently shown that a VLP
based on Hep B Surface antigen (Rv21) provided 100% sterile protection against P. berghei/Pv CSP
transgenic sporozoite challenge in rodent malaria models [21] and this scenario indicates that it would
be interesting to generate a P. cynomolgi–specific VLP to assess if relapse could be prevented. Another
recent study tailoring a combination of P. vivax CSP+TRAP vaccine has shown that a combination
of VLP (PvCSP)+ viral vectors (PvTRAP) was superior in efficacy against infection to that of viral
vectors expressing both antigens [22] and thus, such combination could also to be tested in the future.
Furthermore, it was recently shown that elimination of the N-terminus from CSP in a VLP can enhance
protecting efficacy in mouse challenge model (Atcheson et al. Vaccine. In press). Therefore, it would be
interesting to eliminate the N-terminus from PcCSP to assess if this enhances protective efficacy. These
results were not available at the time when our vaccines were tested in NHP challenge model described
in this work, but they will be invaluable for generation of new vaccine candidates that could be tested
by a future NHP trial. Interestingly, major advances to support P. falciparum and P. vivax vaccine
development have been the availability of transgenic parasites, in which a target protein vaccine
candidate of either parasite can be inserted into P. berghei, to allow testing efficacy in mouse models.
Our results highlight the importance of the generation of P. berghei transgenic parasites expressing
P. cynomolgi transgenes to assess efficacy of new vaccines before taking candidates to NHP trials, in an
attempt to select the best candidates.

5. Conclusions

This study reports the development of viral vectored vaccines consisting of ChAdOx1 and MVA
platforms expressing P. cynomolgi PcCSP and PcTRAP vaccine candidates, as well as the expression of
PcCSP and PcTRAP proteins in mammalian cell culture. We have demonstrated that despite induction
of humoral and cellular responses against both PcCSP and PcTRAP in NHP prior to the sporozoite
challenge, neither infection, nor relapse were prevented. This prompts towards further research in the
generation of novel vaccine platforms, such as the leading VLPs based on Hepatitis B Surface antigen
like Rv21 for P. vivax and its combination with additional antigens to explore relapse prevention.
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