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Abstract

We describe an empirical Bayesian linear model for integration of functional gene annotation data
with genome-wide association data. Using case-control study data from the North American
Rheumatoid Arthritis Consortium and gene annotation data from the Gene Ontology, we illustrate
how the method can be used to prioritize candidate genes for further investigation.

Background
By definition, heritable complex traits like rheumatoid
arthritis (RA) are caused by several mutations with
inherently small effect size. Some of those mutations
have low frequency and therefore can not be reliably
detected, even in large studies. Nevertheless, it is
plausible that causal mutations for a given disease
belong to a set of common biological pathways. Such
external biological information about gene function is
now widely available (e.g., gene ontogeny (GO) [1] and
KEGG [2]). Methods for integration of this biological
knowledge were first developed by microarray analysts
in order to improve power and reproducibility of
transcriptome studies. Recently, some attempts [3,4]

have been made to transfer this approach into the
genomics field. The aim of such data integration is
twofold. Firstly, this approach could be used to identify
whether some predefined gene sets are over-represented
in genome-wide association studies (GWAS) and thus
are likely to play a role in disease etiology. Secondly, the
available biological information could be used to
supplement the candidate disease gene hierarchy pro-
vided by the GWAS data. We focus on the second of
those two objectives using case-control GWAS data from
the North American Rheumatoid Arthritis Consortium
(NARAC) provided by Genetic Analysis Workshop 16
(GAW16). Currently existing methods are still in their
infancy [4,5] (see Sohns et al. [6] in this issue for an
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application of the method). We have previously pro-
posed a modeling framework for integration of linkage
data [7] with pathway information and have applied it to
a linkage scan of the NARAC sample set [8] using 47 GO
biological processes known to be involved in rheuma-
toid arthritis [9]. In this paper, we have now derived a
similar model for integration of GWAS signals and gene
set or pathway information that will enable researchers
to prioritize candidate genes for further investigation.

Methods
Data definition
The pathway gene annotation provides information at
the gene level. Formally, all n human genes may or may
not be involved in the n pathways considered relevant to
the disease of interest. This information is gathered in
the n × p design matrix n where Xij = 1, if gene n belongs
to pathway n and Xij = 0, otherwise. In turn, the GWAS
signal is measured at the single-nucleotide polymorph-
ism (SNP) level. As in Wang et al. [3], we chose to
summarize the GWAS signal at the gene level so as to
drastically reduce the dimension of the problem. Each
SNP was assigned to the nearest gene (to more than one
gene when genes overlap) and was analyzed using the
Cochrane-Armitage trend test after application of stan-
dard filtering criteria (genotype call rate > 95%, Hardy-
Weinberg equilibrium p-value > 0.001, minor allele
frequency > 0.01, and exclusion of seven individuals
with sex classification inconsistent with genetic data).
For each gene, the signal at the most significantly
associated SNP was selected. Note that the chosen
SNP-to-gene annotation strategy may lead to incorrect
annotation if a SNP is in linkage disequilibrium with
another SNP within a more distant gene or plays a role in
the regulation of that gene. The effect size and the related
asymptotic variance of the maximal SNP for each gene
were then estimated by logistic regression using the
number of SNP alleles as a continuous variable in the
model. Note that the sign of the effect size was arbitrarily
chosen as positive to ensure the incorporation of simple
parameters of pathway effects in Model (1). For each
gene indexed by n, we therefore obtained a GWAS signal
denoted yi equal to the positive allelic effect (on the log
odds scale) of the maximal SNP mapping to the gene
and a related variance σ i

2 given by the asymptotic
estimate.

A hierarchical model for integration of GWAS signal with
pathway information
As defined above, yi is an estimate of the underlying gene
effect μi. We further assume that yi ~ N(μi, σ i

2 ) and
although the corresponding observations at nearby genes
may be correlated, we use a diagonal working covar-
iance. The association signal at the SNP level has mean

equal to 0 on the log odds scale if the SNP is unrelated to
disease, the yi values have positive expectation because
they are taken as the positive log odds effect of the most
significant SNP mapped to each gene, and their
distribution is skewed and departs from normality. In
addition, while it is not entirely clear how σ i

2 (defined
as the variance of a SNP effect) relates to the variance of
the yi signal (taken as the maximal signal), it remains
closely related to it and is used in our approximate
model. In order to introduce pathway effects in the
model, we denote by bj the effect of pathway j and
further assume that given pathway effects, genes act
independently and are distributed as

μ μ β τi ij j

j

X~ N ( ),0
2+ ∑ , (1)

where μ0 is an overall average gene effect (this parameter
includes the positive bias that results from the definition
of yi as a positive quantity) and τ2 denotes the between-
gene variance. Marginally, the summarized GWAS signal
yi is thus distributed as

y N Xi ij j

j

i~ ( , ).μ β σ τ0
2 2+ +∑ (2)

Given τ2, estimates μ̂0 , β̂ of μ0, b are given by the
normal equations and thus have an explicit form.
Maximum-likelihood estimates of all parameters can
thus easily be obtained by numerical maximization of
the profile likelihood.

Posterior gene effects
The previous model can be given an (empirical) Bayesian
interpretation. The prior gene effects μi reflecting path-
way effects are updated in the light of new GWAS data yi.
The posterior gene effects are distributed as

μ σ τ σ τ β σ τi i i i ij j

j

iN y X| y ~i
− − − − − − − −

+( ) +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+( )∑2 2 1 2 2 2 2 1
,

⎛⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(3)

and the standardized posterior gene effects provide an
overall ranking for genes. Note that each posterior gene
effect is a simple weighted average of the prior gene
effect (based on pathway information) and the GWAS
signal in the vicinity of the gene. The relative weight of
these two sources of information is governed by the
ratio σ i

2 /τ2.

Results
Integration of GWAS and pathway information
While we originally intended to use the same 47 GO
biological processes derived in Aidinis et al. [9] and used
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in Lebrec et al. [7], we have restricted our analysis to 27
pathways provided in the c5 MSigDB gene set definition
[10] to ensure comparability with other members of our
GAW16 working group. We carried out a forward-
stepwise regression procedure in Model (2) in order to
select the most relevant pathways among the 27
considered. The fitting process is shown in Table 1.
Model selection was based on the Akaike information
criterion (AIC). Biological processes associated with a
positive effect include GO:0009605 (response to exter-
nal stimulus), GO:0030036 (actin cytoskeleton organi-
zation and biogenesis), GO:0006508 (proteolysis), and
GO:0009100 (glycoprotein metabolic process). Other
negatively associated pathways have genes in common
with those four positive pathways and therefore help in
refining their effects. For instance, TP53 is a component
of both GO:0009605 ( β̂ = + 0.018) and GO:0006996
( β̂ = - 0.015), while ABCF1 is only found in
GO:0009605. The corresponding prior gene effects are
therefore +0.018 for ABCF1 and +0.018 - 0.015 = 0.003
for TP53. Table 2 shows the number of genes in each
GO set and the number of genes in common between
them. We then ranked all genes according to the
standardized posterior gene effect computed based
upon the distribution in Eq. (3) using the empirical
Bayes estimates β̂ and τ 2 . Genes with the highest
standardized posterior gene effects are located in the
HLA region on chromosome 6 where p-values of
association are the most significant. Due to the strong
effect of the GWAS signal in that region, any prior effect
based on pathway information is overruled by the
GWAS signal. It is however possible to tune the relative
influence of GWAS signal and pathway effects by
increasing the σ i

2 /τ2 ratio in the posterior gene effects
calculation. We focused on the 1% most highly ranking
genes when the tuning is extreme (σ i

2 /τ2 was set to
100), i.e., when only pathway effects determine poster-
ior gene effects. Seventeen consensus genes arose (they
were defined as being part of both extreme priority lists
obtained using the genes ranked in the top 1% when
either σ i

2 /τ2 is as initially estimated or when σ i
2 /τ2 is

set to 100): ABCF1, AGER, AIF1, BACE2, C2, CAPG,
CCL1, CCL18, CD40, CDKN1A, DOCK2, L3MBTL4,
NEBL, NFX1, RND3, RPS19, and TNXB. The list
generated is unlikely to be random because it contains
at least four genes reported to be associated with RA.
Under the assumption that 100 such genes have already
been identified among ≈20,000 human genes, the
probability of detecting four or more of those 100
genes in 17 genes drawn at random is ≈10-6. It therefore
seems that it contributes additional information as
compared to the results from GWAS alone. AIF1 and
CD40 were recently confirmed as susceptibility genes for
RA [11,12] but CD40 (rs1569723, nominal trend test
p-value ≈ 10-4) would not have been prioritized as an T
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RA-associated locus according to the NARAC GWAS data
alone.

Discussion
Our data and methodology point towards an added
value of combining pathway information with GWAS
data to possibly assist in the prioritization of candidate
genes for further study. However, we resorted to quite a
few approximations to cast the problem into the
gaussian framework of Model (2). In analogy to the
t-test, we can realistically hope that the forward stepwise
fitting process that we used is robust to the normality
assumption. It is beyond the scope of this manuscript to
fully assess the robustness of the methodology but the
equal variance assumption in Model (1) should
especially be challenged. Taking the SNP with max-
imum association as a response in Model (2) might
favor pathways with large genes, as suggested by one
reviewer, this bias might be reduced by inclusion of
gene size as a predictor in Model (2). This modification
of the regression hardly changed the selected model
(data not shown) and left top ranking genes unaltered.
It is of note that the proportion of between-gene
variance explained by the retained model (≈1%) is
much smaller than in the case of linkage data (≈50%)
[6]. In spite of the fact that SNP data is at a higher
resolution than gene-level data, we have chosen a gene-
level summary signal due to computational limitations.
This may represent a simplistic model that may result in
large amount of information being discarded. It will
therefore be highly relevant to run this algorithm with
SNP-level information for association signals together
with pathway information at SNP level to exploit all the
available data being generated. Given the wealth of
biological information available, it is enticing to use
Model (2) with hundreds of candidate pathway pre-
dictors. However, the risk of over-fitting would be high.

In our opinion, restricting the set of initial candidate
pathways to a limited number represents a better
approach.

Conclusion
The empirical Bayesian linear model for GWAS and
pathway data derived in this study offers a simple and
flexible framework for data integration. Because new
tools for candidate gene prioritization are rapidly arising
[4,5,13], comparison between methods and their relative
usefulness for researchers to prioritize genes is war-
ranted.
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Genome-wide association study; NARAC: North Amer-
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Table 2: Number of genes in common between 8 GO biological processes retained in model for NARAC SNP dataa

Modelb GO:0009605 GO:0006996 GO:0006968 GO:0030036 GO:0007015 GO:0006508 GO:0009100 GO:0006629

β̂ 0.018 -0.015 -0.024 0.035 -0.055 0.013 0.017 -0.008
GO:0009605 283 15 14 9 1 8 1 13
GO:0006996 424 0 97 23 11 1 10
GO:0006968 49 0 0 0 0 1
GO:0030036 97 23 1 0 1
GO:0007015 23 0 0 0
GO:0006508 166 6 6
GO:0009100 76 11
GO:0006629 279

aRow 2 displays the corresponding pathway effect estimate in selected model.
bGO definitions: GO:0009605, response to external stimulus; GO:0006996, organelle organization and biogenesis; GO:0006968, cellular defense
response; GO:0030036, actin cytoskeleton organization and biogenesis GO:0007015, actin filament organization; GO:0006508, proteolysis;
GO:0009100, glycoprotein metabolic process; GO:0006629, lipid metabolic process.
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