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A B S T R A C T

Epidemiological studies show that COVID-19 variants-of-concern, like Delta and Omicron, pose different risks
for severe disease, but they typically lack sequence-level information for the virus. Studies which do obtain
viral genome sequences are generally limited in time, location, and population scope. Retrospective meta-
analyses require time-consuming data extraction from heterogeneous formats and are limited to publicly
available reports. Fortuitously, a subset of GISAID, the global SARS-CoV-2 sequence repository, includes
‘‘patient status’’ metadata that can indicate whether a sequence record is associated with mild or severe disease.
While GISAID lacks data on comorbidities relevant to severity, such as obesity and chronic disease, it does
include metadata for age and sex to use as additional attributes in modeling. With these caveats, previous
efforts have demonstrated that genotype-patient status models can be fit to GISAID data, particularly when
country-of-origin is used as an additional feature. But are these models robust and biologically meaningful?
This paper shows that, in fact, temporal and geographic biases in sequences submitted to GISAID, as well as
the evolving pandemic response, particularly reduction in severe disease due to vaccination, create complex
issues for model development and interpretation. This paper poses a potential solution: efficient mixed effects
machine learning using GPBoost, treating country as a random effect group. Training and validation using
temporally split GISAID data and emerging Omicron variants demonstrates that GPBoost models are more
predictive of the impact of spike protein mutations on patient outcomes than fixed effect XGBoost, LightGBM,
random forests, and elastic net logistic regression models.
1. Introduction

Throughout the COVID-19 pandemic, SARS-CoV-2 has mutated in
ways that have significantly impacted pathogenesis. Epidemiological
studies can show different risks of severe disease due to different
COVID-19 variants, such as Delta and Omicron, but typically lack
resolution at the level of specific combinations of changes in viral
genome sequences. The emergence of the COVID-19 pandemic, how-
ever, has coincided with the widespread availability of lower cost, rapid
whole genome sequencing. As of writing, over 10 million SARS-CoV-
2 sequences were available to researchers from the GISAID website
(http://www.gisaid.org) [1,2]. GISAID includes a metadata field for
‘‘patient status’’ for a subset of sequences, which represents a poten-
tially unparalleled resource for genetic analysis. If its potential can be
unlocked, GISAID could provide the data necessary to develop a model
of disease severity based on viral genotype and the limited patient
characteristics available on GISAID, age and gender.

Clinical data which differentiate SARS-CoV-2 genotype generally do
so at the level of lineages using the Pango nomenclature [3,4], or most
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commonly variants of concern (VOC) [5] based on those lineages, such
as Alpha (Pango lineage designation B.1.1.7), Beta (B.1.351), Delta
(B.1.167.2), and Omicron (BA.1 and BA.2). VOC designations generally
refer not only to the original lineage but other ‘‘sublineages’’, such as
AY.x sublineages of Delta and Omicron sublineages, such as BA2.12.1,
B.4, and B.5. Studies have shown differences in case outcomes between
lineages, supported in at least some cases with in vitro or animal model
evidence for changes in virulence. The Delta variant had clear-cut
increases in transmissibility and virulence, as indicated by both epi-
demiological estimates [6] and laboratory studies that show increased
fitness over previous variants, including enhanced viral replication due
to modification in the furin cleavage site of the spike protein [7,8].
Alpha, also appears to have resulted in more severe disease than the
ancestral genome [9–12]. Overall, while Alpha resulted in elevated
hospitalizations, ICU admissions, and other markers of severe outcomes
as compared to ancestral lineages, Delta appears to have been yet
more severe than Alpha [13–16]. By contrast, following Delta, Omicron
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has appeared to result in less severe disease, even when controlling
for vaccination [17]. Lower risks of hospitalization, and in particular
shorter hospital stays, reduced ICU admissions, and less use of ven-
tilation rates, particularly as compared to Delta, have been shown in
studies from Denmark [18], the United States, [19,20], and the United
Kingdom [21,22]. Epidemiological data for Omicron are consistent with
in vitro and animal studies, which have shown a reduction in lower lung
infectivity, deficient cell entry, and a reduction in syncytium formation
due to reduced ability of the spike protein to mediate plasma membrane
fusion [23–26].

The aforementioned differences in case outcome are between appar-
ently sequential emergent SARS-CoV-2 genetic lineages. In fact, how-
ever, changes to SARS-CoV-2 properties often implicate combinations
of multiple mutations that emerge simultaneously—and then some-
times revert in whole or in part as the virus continues to evolve [27,
28]. For example, Delta, originally Pango-designated B.1.617.2, has
spawned complex sublineages (generally identified by an AY prefix)
with distinct immune evasion and virulence properties—and can ge-
netically share more in common with other lineages than the one from
which they apparently branched [29,30]. During a long-term infection,
a spike protein may emerge with multiple variations, i.e., a ‘‘long
branch’’ divergence from the phylogenetic tree, a process hypothesized
as the origin of the Omicron variant of concern (initially identified as
Pango lineage B.1.592, and soon redesignated as BA.1 and BA.2) [31].
As Omicron has become dominant, subsequent Omicron subvariants
have emerged, including subvariants of BA.1 and BA.2, as well as BA.3,
BA.4, and BA.5 [32]. These Omicron subvariants are characterized
by apparent recombination of mutations, as well as the appearance
of mutations that look similar to those in previous variants, such as
Alpha [33]. Recombinant variants of Delta and Omicron have also been
identified in larger numbers; these are designated in the Pango scheme
with an initial ‘‘X’’, e.g., XD and XE [34].

Conventional techniques for studying the effect of SARS-CoV-2
genotype on COVID-19 mortality and symptom severity have included
analysis of single nucleotide polymorphisms (SNP) and genome wide
association studies [35–37], literature meta-analysis [38]. Individual
studies have been limited in the number of patients, and meta-analyses
are time-consuming, complicated by having to access underlying data,
and generally exclude unpublished data. The viral sequences from
many such published and unpublished studies have been deposited in
the GISAID global SARS-CoV-2 sequence repository, along with data
for patient status. Various groups have investigated the incidence and
prevalence of mutations in GISAID entries with clinical metadata [39,
40]. While these studies have yielded some potential candidate mu-
tations, the data are often conflicting or not necessarily consistent
with epidemiological or laboratory observations. For example, some of
the latter studies showed a link between the D614G mutation, which
emerged early on as cases spread from Asia to Europe and North
America, with increased disease burden. But another study of case
fatality rates by region did not find a correlation with the dominant
clade in that region [41].

In general, efforts to build logistic regression and other statistical
models to predict mild versus severe disease on GISAID data have
shown that much of the explanatory power is provided by patient
age, gender, and region of origin, rather than clade or lineage [42].
However, it has been shown that adding sequence data to a logistic
regression method can produce a more accurate prediction of severe
versus mild disease than one with only age, gender, and region, al-
though the difference was not particularly large [43]. Moreover, an
updated of the latter model trained and tested on more recent se-
quence data resulted in deteriorated performance, even when employ-
ing a more accurate random forests classifier method [44]. Another
group employed a powerful gradient-boosted decision tree ensemble
classifier method, XGBoost, and found that models evaluated using
2

temporally split data, i.e. trained on earlier sequences and tested on
later-emerging sequences, substantially outperformed models evalu-
ated using cross-validation, in which the training and test samples
are randomly selected [45]. The authors analyzed the trained models
to identify mutations associated with increased severe disease risk.
However, key findings such as the V1176F mutation, while present in
VOC, have not been specifically linked to disease severity in laboratory
or epidemiological studies. Other methods have been employed, includ-
ing deep neural networks [46,47] and Bayesian multinomial logistic
regression to infer growth rate, and thus viral fitness, from individual
sequence mutations [48]. However, there is no consensus modeling
method for analyzing GISAID data, and the complexity of the data has
not been fully analyzed.

The modeling approach in this paper begins by first evaluating the
trends and structure of GISAID data—a critical step for developing
robust genotype-phenotype models. There are two issues that impact
the use of GISAID as a data source: (1) The nature of the pandemic
has changed over time, with more screening of asymptomatic or mild
cases, as well as improvements in therapeutics and widespread vaccina-
tion. (2) While unprecedented numbers of SARS-CoV-2 sequences have
been deposited, that still represents only a sampling of viral infections
worldwide. For example, as of April 2022, over half of all sequences in
GISAID are from the United States and United Kingdom [49]. The set of
sequences with GISAID patient metadata which we were able to curate
(excluding illegible or unknown metadata fields) are an even smaller
subsample. In practice, other work has shown that models trained on
earlier records do not perform well on later sequence records [44,45].
In part due to the evolution of novel mutations, but it may also have to
do with changes in the nature of what kind of sequences are submitted
to GISAID over time. For example, in our previous work, we showed
that, through September 2021, there had been a consistent increase in
‘‘mild’’ cases observed in the database [47]. In the analysis shown here,
we identify that the latter temporal trends may have now stabilized,
but that heterogeneity in the geographic origin of samples may be an
important confounder.

Notably, other potential risk factors, such as obesity or chronic
disease, are not provided in GISAID metadata. Moreover, while vacci-
nation status is a metadata field, only very few samples include an entry
for it. As a result, modeling efforts based on GISAID data will always
lack information on known co-founders. Even so, GISAID does have
many more samples than targeted studies that do include information
about comorbidities, which at least mitigates potential data bias. Also,
training om data after vaccination is more widespread, as shown here,
can mitigate biases due to vaccination status. That said, the foregoing
caveats are important for the work presented here as well as all efforts
to model the effect of viral genotype on disease severity.

Taking the aforementioned observations and caveats into account,
in this paper we examine the overall data set. Then, we identify a
timeframe for model training that can result in more robust models for
evaluation, and hypothesize that including geographic origin through
the ‘‘country’’ metadata field in a mixed effects model will result in
more robust models as well. We propose to use a recently-developed
mixed effects machine learning method, GPBoost, which incorporates
decision tree-boosting to efficiently train on large data sets with many
features [50]. GPBoost is compared to conventional methods, including
logistic regression, as well as ensemble decision-tree based methods,
Random Forests [51], XGBoost [52], and LightGBM [53]. The best-
performing methods, GPBoost, XGBoost, and LightGBM, are interpreted
using SHAP (SHapley Additive exPlanations) [54], which has pre-
viously been used to interpret XGBoost models [45]. The modeling
methodologies are evaluated on the spike protein sequence, as it binds
to host cell receptors, mediates cell entry, is a key target for the immune
response, and has a high rate of mutation [55–58]. Analyzing only the
spike protein sequence further reduces the risk of overfitting and make

models more computationally tractable.
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2. Methods

2.1. Spike protein sequence collection and pre-processing

Spike protein sequences are obtained from a FASTA file available
from the GISAID database (http://www.gisaid.org). The data for this
study were downloaded on sequences that were submitted to and
processed by GISAID as of April 15, 2022. Based on the metadata
for collection date, the latest-collected sample in this data set was
from April 10, 2022. GISAID performs various data curation tasks; of
relevance here, Spike protein sequences are preprocessed by GISAID
by multiple sequencing alignment, identifying ORFs, and translating
nucleotide sequences to obtain protein FASTA files [2]. The FASTA file
is parsed to obtain only those sequences for which patient metadata
are available. (The section below details how patient metadata are
obtained). The acknowledgment table for the sequences used in this
study may be found at https://doi.org/10.55876/gis8.220606hk.

Many of the spike sequences are truncated due to sequencing gaps
and errors. Therefore, the Spike protein sequences from the FASTA
file are aligned with respect to the consensus Spike reference sequence
(Wuhan-Hu-1 isolate) obtained by multiple sequence alignment of early
genome sequences [59]. The alignments are generated using the local
pairwise Striped Smith–Waterman (SSW) method [60,61], with BLO-
SUM62, implemented with the scikit-bio package in Python 3.8 [62].
Aligned sequences shorter than the reference (1273 residues) are front
and/or end padded with a ‘‘*’’, and otherwise all indels are at positions
corresponding to the reference. To preserve as many samples as possi-
ble, there is no filtering sequences with ‘‘*’’ (mask) or ‘‘X’’ (ambiguous
amino acid).

2.2. Patient status metadata collection and pre-processing

The GISAID database provides an option to identify sequence
records that include ‘‘patient metadata’’ and to download the metadata
file with that information. This study includes the data from the records
available for sequences collected by April 15, 2020: 414,297 records in
total. (By comparison, at that time, the aforementioned Spike protein
sequence FASTA file, that are from studies with and without meta-
data, included over 5 million sequences.) After metadata exclusions
are applied (described in the following paragraphs), 163,496 samples
remain available for machine learning. These records include an entry
for ‘‘patient status’’ as well as metadata fields generally available for
all SARS-CoV-2 sequences on GISAID, which include inter alia host, the
continent/country/region of collection, Pango nomenclature lineage,
NextStrain clade, sample collection and submission date, patient age,
and patient gender. As an initial matter, all samples for which the host
is not identified as ‘‘Human’’ are removed from the dataset.

The patient metadata consists of a single field with text provided by
the submitter of the sequence. There are many different kinds of entries,
including misspellings. As a preliminary step, these metadata entries
are translated to a ‘‘Status’’. The ‘‘Status’’ translates different entries
which may consist of different spellings or synonyms for the same
activity, such as cases obtained by screening asymptomatic carriers.
The table includes examples of entries assigned to these categories.
Table 1 shows all of the unique metadata entries in the full patient
metadata set (414,297 records) along with the corresponding ‘‘Sta-
tus’’ designation. The resulting status is then categorized, generally
following the commonly used case classification such as those defined
by the United States National Institutes for Health (NIH) COVID-19
guidelines [63]. 1 shows the categories and the status designation.
For example, sequences with metadata indicating ICU admission or
mechanical ventilation are categorized as ‘‘Severe’’. Some metadata
entries are categorized as ‘‘Unknown’’ even if they are not explicitly
entered as such, as they do not contain information about the patient’s
status, for example some appear to refer to the age of the patient
3

or to the location where the sample was taken. Metadata entries of
‘‘recovered’’ were also placed in the unknown category, as there was no
indication of the severity of prior illness. Notably, the ‘‘Asymptomatic’’
category is defined to also include paucisymptomatic cases which are
not expressly defined as ‘‘Mild’’. As such, there will be some overlap
between those two categories.

The categories are then assigned to ‘‘Mild’’, ‘‘Severe’’, and ‘‘Un-
known’’ classes, according to the NIH categories where there is suf-
ficient information. 1 shows the class assignments for each category.
For example, it is not clear whether ‘‘Alive’’ indices alive, but in
an ICU, or alive and with mild symptoms. Accordingly, the ‘‘Alive’’
category is assigned to ‘‘Unknown’’. Similarly, a ‘‘Symptomatic’’ or
‘‘Alive’’ patient may have severe symptoms or have been hospitalized;
therefore, the ‘‘Symptomatic’’ category is thus assigned to ‘‘Unknown’’.
The ‘‘Released’’ category indicates release from prior hospitalization,
and, therefore, ‘‘Released’’ is classified the same as ‘‘Hospitalized’’.
Cases in the ‘‘Screening’’ category are classified as ‘‘Mild’’. These are
cases with metadata entries such as ‘‘random screening’’, ‘‘community
screening’’, and ‘‘airport screening;’’ as such, they are assumed to be
from asymptomatic, or, at minimum, ambulatory individuals who were
not hospitalized for COVID-19 symptoms at the time of sequencing.
Cases in the Unknown class are dropped from the analysis.

The models described in this study also utilize metadata fields for
‘‘age’’ and ‘‘gender’’. Notably, the ‘‘gender’’ field includes entries that
suggest it is being used interchangeably for gender and sex. For the
purpose of simplicity and to align with the GISAID field names, the term
‘‘gender’’ is used in this paper. With respect to the gender field, any
entry that is cognizable as Male or Female (e.g., misspellings, foreign
language words such as ‘‘Homme’’, which is French for ‘‘man’’, etc.)
are classified accordingly. Any other entry is classified as ‘‘Unknown’’
and excluded from analysis. The ‘‘age’’ metadata entries are assigned
to an integer age where possible. Where the ‘‘age’’ entry is provided as
a range, e.g., ‘‘‘21-30’’, it is assigned to the mid-point, e.g., 25. Where
the ‘‘age’’ field entry is ‘‘unknown’’ or a value that cannot be translated
to an integer, the sample is excluded.

2.3. Machine learning

Five machine learning methods are used: (1) logistic regression
with elastic net regularization [64] (referred to as ‘‘elastic net’’ or
‘‘logistic regression’’ in this paper), which has previously been utilized
for genetic association studies [65,66]; (2) the random forests (RF)
ensemble tree-based method [51], which is used to classify SARS-CoV-
2 sequences to Pango lineages [3]; (3) eXtreme Gradient Boosting
(XGBoost) [52], a decision tree-based ensemble learning method which
has been used for SARS-CoV-2 nucleotide sequence classification [45]
and which our group and others have previously used to classify protein
sequences [67,68]; (4) LightGBM, which is a gradient-boosting method
developed by Microsoft that grows trees leaf-wise, unlike XGBoost,
which grows trees depth-wise, thus running much more efficiently
while achieving comparable results [53,69]; and (5) GPBoost, which
trains a mixed effects model including both features, implemented
using decision trees (trained using LightGBM), and random effects at
the group level [50].

2.3.1. Mixed effects models
Linear mixed effects models have been used for analyzing genetic

studies where there are group-level random effects, such as in longitudi-
nal studies and other sampling studies where there may be batch effects
due to different laboratory methods being used for samples taken at
different locations or times [70–73]. Eq. (1) shows the general matrix
formulation for a mixed effects model.

𝑦 = 𝐹 (𝑋) +𝑍𝑏 + 𝜖 (1)

𝐹 (𝑋) is the row-size evaluation of function F, and 𝜖. 𝑋 and 𝑍 are fixed
effects and random effects predictor variable matrices respectively,

i.e., the rows of 𝑋 are predictor variables for 𝑛 observations (columns

http://www.gisaid.org
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of 𝑋). In this study, the random effects vector 𝑏 is assumed to contain
grouped (i.e. clustered) random effects. In this case, the columns of 𝑍
will be one-hot encoded (i.e., 𝑍 will be an incidence matrix with 1s and
0s) with the categorical variables that define the structure of groups.
Assuming that the fixed effects model is linear, then Eq. (1) may be
written in terms of groups as shown in Eq. (2).

𝑦𝑖 = 𝑋𝑖𝛽 +𝑍𝑖𝑏𝑖 + 𝜖 (2)

In Eq. (2), the linear model for 𝐹 (𝑋) is given as 𝑋𝑖 is the 𝑛𝑖 × 𝑝 model
atrix for fixed effects for observations in the 𝑖th group, where there

re 𝑛 features, 𝛽 is a 𝑝×1 vector of model coefficients, and 𝜖𝑖 is the 𝑛𝑖×1
ector of errors for the 𝑖th group. 𝑍𝑖 is now a 𝑛𝑖 × 𝑞 model matrix of
andom effects for the 𝑖th group, where 𝑏𝑖 is the 𝑞×1 vector of random
ffect coefficients for the 𝑖th group.

In this paper, groups of random effects are identified by country
etadata. The means of 𝑏 and 𝜖, an unknown vector of random er-

ors, are 0; accordingly, we take the mean of the model response in
rder to evaluate its predictions. We implement mixed effects machine
earning with GPBoost, which has been made publicly available at
ttps://github.com/fabsig/GPBoost. GPBoost is a highly efficient pack-
ge for fitting mixed effects models to data, as it utilizes LightGBM
ree-boosting to model fixed effects [50]. Further elaboration of the
athematical foundation of mixed effects models relevant to this paper

an be found in [50]. GPBoost is thus able to handle the large feature
et required to include the full spike protein sequence.

.3.2. Feature representation
The input for machine learning are features vectors of integers for

ach sample, and training labels set at 0 (for Mild) and 1 (for Se-
ere). Features are obtained as follows. After the alignment procedure
escribed above, all of the resulting sequences have 1273 characters
amino acids, deletions, or masks). The sequences are tokenized, con-
erting each character, including the deletion symbol ‘‘-’’, to a distinct
onzero integer. A position with padding mask ‘‘*’’ or ambiguous amino
cids represented as X, B, J, or Z are considered to be missing data.
ccordingly, they are a value of NAN for XGBoost, LightGBM, and
PBoost, which can then treat them as missing values; or, they are
ssigned a value of 0 for logistic regression and Random Forests, which
annot handle missing data. The age is represented as an integer, as
escribe above, and gender is treated as 0 and 1. In total, then, there
re 1275 features: 1273 amino acid positions, age, and gender. As
escribed in the paper, we also tested using the metadata for ‘‘Country’’
f origin of a case as a feature (increasing the number of features to
276), or in the case of GPBoost, as a grouping of random effects in
mixed effects model. In that case, the ‘‘Country’’ was tokenized and

epresented as an integer using scikit-learn.

.3.3. Model interpretation to obtain feature importance
The feature significance shown in the Results section for XGBoost,

ightGBM, and GPBoost were obtained from SHAP (Shapley Additive
Xplanations) values of terms for the test data set using the TreeEx-
lainer method within the SHAP module (https://shap.readthedocs.io/)
n Python 3.7 [54]. Among the principal reasons for selecting GPBoost
o implement mixed effects machine learning was its compatibility
ith SHAP for interpretation [50,74]. Feature importance can also be
erived for the aforementioned ensemble decision tree methods by
omputing, for example, the number of times a feature is used to split
rees, or the gain in score towards the objective function obtained
y splitting trees based on a feature [75,76]. However, we found no
ubstantive differences between the features identified as significant
sing SHAP and those computed based on decision tree characteristics;
oreover, SHAP not only estimates feature significance, but can also

stimate whether a feature value tends to result in one classification or
nother.
4

.3.4. Hyperparameter tuning and model implementation
For the results of this paper, training and testing data splits were

etermined by sample collection date as described in the Results sec-
ion. Hyperparameter tuning was performed using a data set consisting
f 60,196 samples collected between May 6, 2021 through November
, 2021. Five-fold cross-validation was used to define training and
esting splits, and the mean class prediction accuracy on the testing
ets across three runs of the algorithm was computed for each hy-
erparameter combination. The hyperparameter combination with the
ighest accuracy was selected for the data presented in the Results.
ther hyperparameter combinations were tested on that data and were
ot found to perform better than those that were used. The hyperpa-
ameters for the respective methods are as follows. Where not provided
ere, hyperparameters were set at their default values.

• GPBoost. The number of boosters was set at 2000 (values from
500 through 3000 were tested), maximum tree depth set to 30
(values from 10 to 50, as well as unlimited, were tested), maxi-
mum number of leaves set to 20 (tested 10 to 50), and learning
rate set to 0.01 (tested 0.001 to 0.1).

• LightGBM. The number of boosters was set at 2000 (tested 500
to 3000), maximum tree depth set to 30 (tested 10 to 50 and
unlimited), maximum number of leaves set to 20 (tested 10 to
50), and learning rate set to 0.01 (tested 0.001 to 0.1).

• XGBoost. The number of estimators was set at 2000 (tested 500
to 3000), maximum tree depth set to 20 (tested 10 to 50 and
unlimited), lambda regularization set at 2.0 (tested 0.0 to 3.0),
gamma set to 1.0 (tested 0.0 to 2.0), and learning rate set to 0.01
(tested 0.001 to 0.1).

• Elastic Net. The l1 ratio is set at 0.65 (tested 0.4 to 1.0), C is set
to 0.1 (tested 0.01 to 0.8), and the maximum number of iterations
was set to 1000 (tested 200 to 2000).

• Random Forests. The number of estimators is set at 500 (tested
200 to 2000), the maximum depth is set at unlimited (tested 10–
50 and unlimited), the minimum number of samples required in
a leaf node is set at 1 (tested 1–3), and the minimum number of
samples required to split an internal node is set to 2 (tested 1–5).

The results in this paper were obtained using Python 3.7.13 or 3.94,
cikit-learn package version 1.0.2 [62] (for elastic net and ran-
om forests methods), and the Python implementations for xgboost
ersion 1.6.1, gpboost version 0.7.6.2, lightgbm version 2.2.3, and
hap version 0.40.0. Training and hyperparameter tuning were per-

ormed on the Drexel University Research Computing Facility’s Picotte
igh performance cluster using multithreaded implementations of the
ethods on Dell PowerEdge R640 servers with Intel® Xeon® Platinum
268 CPUs. Model evaluation and visualization were performed in the
oogle Colab environment.

.4. Resource availability

.4.1. Lead contact
Further information and requests for resources should be directed

o and will be fulfilled by the lead contact, Dr. Bahrad A. Sokhansanj
bahrad@molhealtheng.com).

.4.2. Data and code availability
• The datasets analyzed for this study were downloaded from GI-

SAID EpiCoV database pursuant to the GISAID terms of use. They
are availabile for download to users who register with GISAID at
the website http://wwww.gisaid.org. The list of GISAID accession
numbers used for this paper and data acknowledgments are avail-
able at https://epicov.org/epi3/epi_set/EPI_SET_20220606hk or
https://doi.org/10.55876/gis8.220606hk.

• The code used for pre-processing and analysis in this paper has
been deposited to and made publicly available from the authors’
GitHub repository, https://github.com/EESI/covid_severity.
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Fig. 1. Overview of age, sample collection date, and country metadata trends in GISAID data. (A – Upper Left) Mean case severity, where 0 is Mild and 1 is Severe,
which equates to the probability of a severe case) by patient age in the GISAID database. The bars show the count of samples for each age. Increasing age trends with increasing
severity, as expected, with differences at extremely low and old ages characterized by low sample counts. (B – Upper Right) Mean clinical severity (probability of severe case)
by sample collection date recorded in the GISAID data. For clarity, data have been binned over time periods; the bars indicate the number of samples. Over time, the proportion
of severe cases has declined, although that trend has been less consistent since Fall 2021. (C – Lower Left) Proportion of sequences in the GISAID patient data set (sequences
with patient metadata) for principal variants, including B.1 (the ancestral lineage with the D614G which emerged in Northern Italy and New York in February–March 2020) and
its sublineages, Alpha (B.1.1.7 and ‘‘Q’’ sublineages), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2 and AY sublineages), and the two major Omicron lineages, BA.1 and BA.2
(and their sublineages). The bars indicate the mean case severity for each date bin. The trends of sequential lineage waves in GISAID patient data appear to be consistent with
the larger GISAID data set, i.e., showing successive Alpha, Delta, and Omicron waves. (D – Lower Right) Mean case severity of samples separated by GISAID metadata for the
country where the sequence was collected for selected countries. The total number of sequences in the GISAID patient data set per country is shown within parentheses in the
legend. Fluctuations in severity observed in countries appear due to systemic issues or differences in where samples are collected (e.g., in hospitals or outside settings) at different
times.
• Any additional information required to reanalyze the data re-
ported in this paper is available from the lead contact upon
request.

3. Results

3.1. Descriptive analysis of GISAID patient data

To develop an understanding of the GISAID patient data set (i.e.
data with metadata subject to the exclusions described in the Methods
section), we analyze the trends for severity for the metadata fields
available in the GISAID data set: age, gender, sample collection date,
and geographic origin of the case. To quantitatively measure severity
trends, the classifications for Mild disease is assigned a severity level
of 0, and Severe, a severity of 1. (The classifications are derived from
patient status metadata based on Supplementary Tables S1 and S2 as
described in the Methods.) Thereby, the mean of the severity values
can be computed, which equates to the proportion of samples which
are classified as Severe cases.

Fig. 1A shows the mean severity for each age from 0 to 100, as well
as the number of samples in the GISAID patient data set for each age. In
general, the fraction of severe cases increases with age, which has been
a consistent feature of the pandemic [77,78]. Trends are different at the
extremes, very young and old ages. Notably, there are far fewer cases at
5

these ages, thus small biases in sample collection can have significant
effects. For example, very young patients may be likelier to be observed
in a hospital setting than observed in a screening study. Male sex
has also been identified as a potential risk factor for more severe
outcomes, such as ICU admission and death [79,80]. GISAID provides
sex information in a ‘‘gender’’ metadata field. As shown in Fig. 2A, the
relationship between increased age and increased proportion of severe
cases are consistent throughout the pandemic.

Fig. 1B shows that, in addition to known risk factors, over time
the mean case severity significantly decreases. The declining sever-
ity trend through 2020 in GISAID data is consistent with a period
of improved COVID-19 therapeutics. For example, a Canadian study
measured a decrease in case fatality rate (CFR) between the first and
second waves prior to any vaccination, even when controlling for age
and increased testing [81]. Later reduction is consistent with increased
levels of COVID-19 vaccination reducing severe outcomes [82–85], as
well as continued improvements in therapeutics such as monoclonal
antibodies [86]. Notably, while the trend shows an overall decrease,
which we had previously observed through October 2021, it is not
monotonic, which an increase shown in late 2021 and early 2022.
Moreover, the absolute level of severe cases suggests that while the
trend of decreasing severity is consistent with the global trend of
decreasing overall severity, the nature of reported cases also affects
the trend. For example, in the initial first binned time periods, there
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Fig. 2. Patient age and gender metadata trends in GISAID data. (A – Left) Mean clinical severity over time for patients in different age groups, showing that the overall
trends are generally consistent across age groups, with older patients having mean severity as shown in Panel A. (B – Middle) Mean clinical severity, separating male and female
samples, showing consistent trends across gender with male patients generally having a somewhat higher ratio of severe cases. (C - Right) Number of mild and severe cases across
all samples split by gender, showing that there are more mild cases than severe among samples from female patients.
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are over 70% severe cases. As illustrated in Fig. 3, the large majority
of these are hospitalizations, although approximately 10% of samples
are from dead patients according to the metadata entries. Studies
of the initial pandemic waves in March–April 2020 did show that a
CFR that approached or exceeded 10% [87–89]. Subsequent analysis
estimated that the infection fatality rate (IFR) was likely much closer
to 1%–2%, with the elevated CFR being due to underreporting of
cases [88,89]. Among the passengers of the Diamond Princess cruise ship
in February 2020, who were all tested, the IFR was 1% (in a population
which skewed older). Accordingly, while the proportion of deaths in
the GISAID patient data set did reflect community observations, at
least in this timeframe, they were elevated due to so many cases
being missed. However, the fraction of sequences submitted from dead
patients continued to run at 4%–5% even through October 2021. We
do observe that many cases have a metadata entry of ‘‘alive’’ or ‘‘live’’,
as a contrast with ‘‘dead’’. But ‘‘alive’’ or ‘‘live’’ metadata cannot be
identified as either Mild and Severe, and are thus excluded from the
data set analyzed in this paper and shown in Fig. 1. Sequences from
dead patients are thus overrepresented.

Fig. 2B and C show that GISAID gender metadata similarly indi-
cate elevated severe disease among male patients. Samples with Male
gender metadata are classified as 49.8% Mild and 50.2% Severe; by
comparison, samples with Female gender metadata are 55.1% Mild and
44.9% Severe. An increased proportion of severe disease for older and
male patients is consistently observed in GISAID samples collected at
different dates over time. Notably, the difference in severity between
male and female patients (defined according to gender metadata) was
much greater in samples collected up to mid-2021, and has decreased
since then. It is unclear whether this reflects a broader trend or is an
artifact of where GISAID samples are collected.

Moreover, the number of hospitalizations is much more elevated
even than the inflated hospitalization rates observed during the period
of significant underreporting in early 2020. As Fig. 3 shows, even by
March 2021, over 50% of GISAID samples being collected were from
individuals who were either hospitalized or released from hospital,
per their patient status metadata. This makes intuitive sense, since
sequence samples with clinical information may well come from clinical
settings, particularly hospitals. As a result, even though there is a
steady increase in cases classified as Mild (see Fig. 3), this is likely
at least in part because of a change in settings where sequences with
metadata are collected, with more of a mix of outpatient settings. We
observed a pronounced spike in the proportion of sequences annotated
as Asymptomatic or collected from population screening studies in
April–May 2021, from around 3% to 12%, which is consistent with
changes in sampling sources.
6
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Fig. 1C shows how the aforementioned distortions in the data can
practically impact the development of genotype-severity models. There
is a lower observed mean severity during the Delta wave as compared to
the timeframe of Delta’s emergence (when other lineages have a signif-
icant fraction of samples being collected) and before then, when Alpha
was a plurality lineage. While this potentially could be due to continued
vaccination resulting in less severe cases overall, and in turn fewer
sequences from severe cases in the GISAID patient data set, Fig. 1C
shows the trend of reduced severity reverses in the initial Omicron
(BA.1) wave. However, vaccination and improved therapeutics, while
certainly having resulted in a reduction in severe disease outcomes in
general, do not explain the observed reduction of mean severity within
the GISAID data set. We can show that as follows: Time-dependent
changes in external conditions, such as increased vaccination rates,
can be controlled for by looking only at the short timeframe where
Alpha and Delta were collected in similar numbers, circa May–June
021. As Fig. 1C shows, the reduction in severity over time at the
lpha–Delta transition point is abrupt. Significantly, during May–June
021, Delta samples were 60.7% Mild (5199 total samples) and Alpha
amples were 52.2% Mild (8658 total samples). As a result, a model
ased on the GISAID data set will show that Delta is milder than Alpha,
ontradicting the epidemiological and laboratory evidence discussed
bove [13–16]. It is also not the case that Delta samples during the
ay-June 2021 timeframe were collected in countries with higher vac-

ination rates than Alpha samples. The main source of samples during
his timeframe for both lineages was France (44% and 42% of Delta
nd Alpha respectively), and the second largest sources was Mexico
19% and 11%). Notably, in samples from France, Delta was 92.6%
ild and Alpha was 62.6% Mild, while in samples from Mexico, Delta
as 27.1% Mild and Alpha was 38.4% Mild. Therefore, the observed
ecrease in severity from Alpha to Delta, due to this apparent artifact
ound in data from France, will confound a genotype-patient status
odel. Mutations associated with Delta will appear to result in reduced

everity, in contradiction to epidemiological and other evidence.
Previous efforts in modeling GISAID patient data have found that in-

luding the location metadata for the country of origin of the sequence
esults in a more accurately predictive model [43]. As an initial matter,
ountry and sequence will likely have some correlation, since muta-
ions, including both the lineage an sublineage level, cluster between
ountries [90,91]. However, there is likely some variance in patient
utcomes between countries due to differences in the enforcement of
on-pharmaceutical interventions (NPI) which may be more protective
f vulnerable populations, differences in circulating virus and thus
ospital burdens, and differences in hospital capacity and standards
f care [92–94]. Fig. 1D shows, however, that inter-country variation

s more complex and does not appear to be directly related to the
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Fig. 3. GISAID patient status metadata trends over time. (A – Upper Left) Fraction of cases categorized as Hospitalized or Released (from hospital) over time, binning dates
as indicated by the bars. The definitions of hospitalizations and releases based on patient metadata are provided in 1 and 1. (B – Upper Right) Fraction of samples annotated
as being from dead individuals in the GISAID patient status metadata field, binned by date as in Panel A. The cases in Panels A and B are collectively classified as Severe. C -
Lower Left Fraction of cases categorized as Mild according to 1. (D – Lower Right) Fraction of cases categorized as Asymptomatic or Screening according to 1. Panels C and D
are collectively classified as Mild. The subgroups of Mild and Severe classifications show similar trends, showing that the overall trends in Fig. 1 are not due to changes in how
metadata are described and characterized.
aforementioned factors. Some of the data show consistent trends or
levels across all time points. For example, essential all records submit-
ted from Hong Kong, and the overwhelming majority of records from
Brazil, are classified as Severe (hospitalizations or deaths). Cases from
France, which as discussed above is the largest source of sequences,
show a decline over time, although with a lot of fluctuation. Cases from
neighboring Belgium, by contrast, have been consistently increasing
in severity since Summer 2021. Samples from the United States have
increased and decreased in severity with no discernible pattern. In sum,
samples originating from different countries follow distinct patterns,
which means that including country as a feature will likely improve
classification. But the country feature will reflect sampling differences
over time between countries—whether the sequences are being submit-
ted mostly from hospital settings, or if that is the case at different points
in time. While there is variance between samples from a country that
is independent from that of other countries, it is at least in large part
due to factors that are not relevant to disease outcome.

Accordingly, we hypothesize that sampling variations can be mod-
eled as a random effect in a linear mixed effects model [72,73,95],
where country of origin is a random effect group rather than a feature.
To test this hypothesis, in the following section we compare mixed
effect machine learning to other classification methods for predicting
disease severity. The comparison is based on GISAID data from a
timeframe when the overall decrease in severity will not confound a
model. Otherwise, as discussed above, any model will inevitably make
predictions that are not clinically relevant going forward. For example,
mutations that emerged in Delta will be found as leading to less severe
disease, and thus when they are found in Omicron sublineages, they
will be predicted as reducing severity—due to the potential artifact in
7

samples collected during the period when Delta and Alpha coincided
discussed above. We therefore limit our analysis of modeling methods
to samples collected beginning in July 2021, when the declining trend
in cases has stabilized (see Fig. 1B and C). The result is a training data
set made up of mostly Delta subvariants, along with a substantial num-
ber of Omicron sequences, and smaller numbers of other lineages such
as the Gamma (P.1) variant of concern, which has shown some ability
to evade neutralizing antibodies [96,97] and may result in increased
disease severity [98]. Doing so helps avoid confounders in analyzing
the impact of different mutations and combinations of mutations in
Delta and Omicron subvariants, allowing for predictions about whether
mutations observed in Delta will result in more severe disease if they
occur in future Omicron variants.

3.2. Comparison of machine learning methods

To evaluate our hypothesis that a mixed effect modeling approach
can be useful for GISAID patient data, where country should be treated
as a random effect group, we evaluate the GPBoost mixed effect ma-
chine learning method [50] alongside two popular highly efficient
ensemble decision tree methods which employ gradient-boosting, XG-
Boost and LightGBM [53], random forests [51], a well-established
ensemble decision tree method, and conventional logistic regression
with elastic net regularization [65]. To compare with GPBoost, two
feature sets of models are evaluated: (i) using sequence, age, and gender
as features, and (ii) using country metadata as an additional feature.

As discussed above, the following analysis focuses on GISAID data
starting from July 2021. Models are trained on the samples collected
between July 17, 2021 through December 25, 2021 (68,815 in total).
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Testing is performed on samples collected entirely after the training
period, from December 26, 2021 through the latest-collected sequences
from April 10, 2022 (42,420 samples). Although cross-validation is
a typical way of evaluating classifiers to avoid overfitting [99,100],
in this data set, as shown in Fig. 1 and discussed above, there will
be potential clusters of confounding variables at different times. For
example, a narrow range of sequence collection dates may correspond
to a study of patients with common characteristics, e.g., patients who
are all hospitalized, or mildly symptomatic patients from a screening
study. Cross-validation will sample time points evenly, and, as such,
a classifier may overfit to patterns within the confounders and then
appear to perform better than it otherwise would be on a realistic
prediction task. As an alternative, we evaluate the classifiers on tem-
porally split data: i.e., we seek to predict disease severity for sequences
from a model trained on samples collected earlier. Previous work has
confirmed that temporally split test and training sets provide a more
realistic evaluation of classification methods, in that methods perform
less well when evaluated on a temporally split validation data set
than they do using cross-validation [45]. Notably, there is some class
imbalance, which is similar between the training and test data sets:
39.2% of the test samples were severe and 37.4% of training were
Severe. Class or sample balancing did not substantially affect the results
for the methods which allow it, i.e., not GPBoost (data not shown).

Fig. 4 compares machine learning methods by showing aggregate
and class-specific test data classification metrics for models trained
using the different methods under evaluation. The aggregate metrics
shown in Fig. 4 are the accuracy, which is measured as the number
of correct class predictions divided by the number of total predic-
tions, and the balanced (weighted average) F1-score, which reflects
the sensitivity and specificity of the predictions, accounting for the
aforementioned class imbalance. The balanced F1-score is the harmonic
mean of precision (true positives divided by all positive predictions)
and recall (true positive rate, i.e., sensitivity). Fig. 4 also shows the
class-specific precision and recall, which is a useful measure as to
whether methods might underperform on predicting a particular class,
such as the minority (Severe) or majority (Mild) class.

Although the performance of the methods varies depending on
metric, two trends are clear. First, the best-performing methods are
consistently (1) the high-performance gradient boosting decision tree
methods, XGBoost, LightGBM, and GPBoost, with class prediction ac-
curacies above 75%. Second, the best-performing methods account for
country—either as an independent feature, in the case of XGBoost and
LightGBM, or as group level random effects for the mixed effects model
trained by GPBoost. Notably, these three methods, unlike classical
regression methods, can handle missing information for sequence po-
sitions, which are allowed to increase the number of data for training.
Fig. 5 further shows the receiver operator characteristic (ROC) curves
for the best-performing methods, and reports the area under the curve
(AUC), which provides a metric for comparing model performance.
Using the AUC metric, XGBoost with country as an independent feature
has the highest AUC. It is important to keep in mind, however, that as
shown in Fig. 1D, a model that includes country as a feature may be
overfitting to consistent sample collection biases. Notably, GPBoost out-
performs LightGBM and XGBoost when country is not an independent
feature of the latter two models. GPBoost also has a higher AUC than
LightGBM and only marginally lower than that of XGBoost.

To further compare the performance of the best-performing mod-
els, they can be tested on their ability to predict whether specific
sequence mutations affect the relative risk of severe disease. This
analysis focuses on two specific spike protein site mutations for which
there is substantial evidence from both epidemiological and laboratory
studies for increased disease severity: a leucine-to-arginine mutation at
position 452 (L452R) and a proline to arginine mutation at position 681
(P681R). These mutations are characteristic of the Delta variant [101].
8

SARS-CoV-2 with P681R has been found to have higher spike protein
Fig. 4. Comparison of classification metrics for different machine learning meth-
ods. Metrics are computed on test samples collected from December 26, 2021 through
April 10, 2022, for models trained on samples from July 17 through December 25,
2021. The top row shows, at left, the accuracy of the Mild/Severe classification and,
at right, the balanced F1-score, which is the harmonic mean of precision (true positives
divided by all positive predictions) and recall (true positive rate, i.e., sensitivity). The
middle row shows the precision for the Mild and Severe class predictions separately,
and the bottom row shows the recall. Metrics are shown for models trained with country
metadata used as a feature and without, as indicated in the labeled axes below, except
for GPBoost, which takes into account the country metadata by using it as the groups of
random effects. All models otherwise use age, gender, and each sequence position as a
feature. Error bars show the standard deviations across three runs with different random
number seeds, and in some cases are not visible. Statistics for GPBoost are computed
based on the mean of the response. GPBoost and LightGBM/XGBoost including country
as a feature consistently outperform other methods.

cleavage and viral fusogenicity in vitro, and result in higher pathogenic-
ity in a Syrian hamster animal model [102]. Another study introducing
P681R on an Omicron background showed an increase in fusogenicity
and synctitia formation, which have been correlated to pathogenic-
ity [103]. The L452R mutation has been found to also increase viral
fusogenicity in vitro, and to result in increased infectivity in a mouse
lung cell model [104]. Another in vitro study has also shown that
L452R resulted in increased spike protein stability, viral fusogenicity
and infectivity, and, in turn, increased viral replication [105]. And,
the Delta variant, which is characterized by the P681R and L452R
mutations, was to result in an increased risk of hospitalizations in epi-
demiological studies in Denmark [13], England [16], and Canada [14].
Accordingly, a model would be expected to show that a L452R or
P681R mutation will result in greater severity.

As an additional validation study, therefore, machine learning mod-
els are evaluated on whether they are more likely to a predict a Severe
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Fig. 5. Receiver operator characteristic curves for best-performing modeling
methods. ROC curves were obtained using the scikit-learn package version
1.0.2 [62] for test samples and trained models as described for Fig. 4 for XGBoost
and LightGBM (with and without country metadata) and GPBoost (using country as a
random effects group). The data are shown for one run; run-to-run variation was found
to be insignificant. GPBoost performs better than either LightGBM or XGBoost, unless
country metadata are used for the latter methods.

classification in the presence of L452R or P681R sequence changes.
However, the methods being compared here are decision tree-based
methods, which unlike classical logistic regression do not generate
coefficients that can be used to analyze individual features. The impact
of specific feature changes may be estimated instead. In particular,
SHAP values can be utilized in conjunction to provide an estimate of
the log-odds for a Severe case given a particular feature value [54].
SHAP values are typically generated for a subset of samples, as it is
a computationally intensive process. Fig. 6 shows SHAP dependency
plots for samples collected from March 8 through April 10, 2022 (5918
samples). The points in the plots represents the estimated SHAP value
(log-odds for a Severe case) for each sample; the color indicates the
age of the patient for the sample. This means that SHAP dependency
plots show how a specific feature interacts with another feature: the age
of the patient in Fig. 6. (As indicated in Fig. 1, age has a significant
correlation with disease severity in GISAID patient data, as well as
in real-world epidemiological studies.) The SHAP dependency plots
represent the potential sequence features at spike protein positions 452
and 681: L (ancestral), leucine, M, methionine, and R, arginine for
position 452, and P (ancestral), proline, H, histidine, R, and Y, tyrosine
for position 681. (P681H is a common mutation founds in Omicron
sequences [106]). The ‘*’ character indicates that there was a missing
amino acid at that position in the sampled sequence, likely due to
sequencer error, which is treated as missing data by the respective
methods. As Fig. 6 shows, GPBoost is the only method which shows
an increased SHAP value, or estimated log-odds of a Severe outcome,
for the L452R and P681R mutations.

3.3. Predicting the potential severity of emerging omicron variants

A key objective for training a sequence-phenotype model is to be
able to predict how novel combinations of mutations – such as the
reemergence of a mutation found in a separate lineage – could affect
9

pathogenicity and clinical outcomes. Here, the potential utility of a
spike protein sequence-clinical severity prediction model trained on
GISAID data is demonstrated for Omicron lineages emerging as signif-
icant threats as of May 2022: BA.4 and BA.5, which had become the
predominant variants in South Africa and found to be rapidly growing
in Portugal [107], and BA.2.12.1, which had accounted for substantial
case growth in the United States [108].

The predicted relative severity resulting from different spike se-
quences may be compared by looking at the relative raw (unrounded)
prediction of the model. In the context of this paper, the probability
on the logistic curve fit by the model that the binary classification will
be 0 or 1. In practice, the class prediction is provided by rounding the
model output to 0 (Mild) or 1 (Severe), i.e., to generate the classifi-
cation metrics shown in Fig. 4. However, as explained above, GISAID
data do not provide a realistic measurement of the actual observed
probability of severe outcomes, as there are far more hospitalized
and deceased patients than real-world hospitalization and CFR data
indicate. The quantitative model predictions should be interpreted,
therefore, in a relative manner. Accordingly, the raw model output can
help in providing relative predictions, but should not be interpreted
as an absolute probability of severe disease. In sum, predictions for
the aforementioned emerging sublineages may be compared against the
predictions for the original Omicron sublineages, BA.1 and BA.2.

Fig. 7 shows the output of the trained GPBoost, LightGBM, and
XGBoost models, where the latter two include country as a feature, as
shown above in Fig. 6. The sequences used to generate the predictions
in Fig. 7 are the most common of those variants found in the GISAID
patient data set used in this paper (collected before April 15, 2022),
with GISAID accession numbers as provided in the figure caption.
An additional BA.2.12.1 sequence collected after the data set used in
this paper was separately retrieved from GISAID (accession number
EPI_ISL_12048110). As Fig. 7 illustrates, Country has a substantial
impact on the predictions made using LightGBM and XGBoost. This
sharply limits the utility of LightGBM and XGBoost models as predictive
tools.

While it is possible to standardize the country and view the predic-
tion relatively, as shown in 7, the relative difference between variants
differs greatly between countries. For a simulated patient sample from
the United States, the variants have nearly identical (and very high)
predictions, while the predictions for simulated samples from France
vary differently, with much more dynamic range. Samples from Mexico
are in between. GPBoost models, by contrast, do not vary between
countries. The mixed effects model trained by GPBoost does not ac-
count for country in grouping only random effects. By considering only
the mean model response, random effects cancel each other out, and
there is only one prediction for any country. Given that, as shown in
Fig. 1D, the differences between countries are apparently unrelated
to actual local conditions, such as access to treatment, a country-
neutral prediction provides a more realistic, and likely more relevant,
of the relative increase in severe disease risk associated with a new
SARS-CoV-2 variant.

Accounting for the variation between countries, Fig. 7 generally
shows that BA.2, BA.2.12.1, BA.4, and BA.5 all have higher predicted
severity than BA.1. Notably, a study of infectivity in mouse and hamster
models suggested that there is no difference in infectivity, replication,
and pathogenicity between BA.1 and BA.2 virus [109]. Another study,
however, found greater fusogenicity and replication in nasal epithelial
cells studied in vitro, as well as more pathogenicity in a hamster model
for BA.2 as compared to BA.1 [110]. Moreover, a recently published
population study in England reports that individuals infected with BA.2
reported more symptoms than those with BA.1 [111]. Another study of
patients in Italy also reported more symptomatic disease when infected
with BA.2 rather than BA.1 [112].

The SHAP method used for feature analysis above can be used
to examine in detail how specific features influence the prediction
for emerging variants as well [54]. Fig. 8 shows exemplary SHAP
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Fig. 6. Comparison of SHAP dependence plots to severity for sequence positions 452 and 681 for the best-performing models. LightGBM and XGBoost with country as
a feature are compared to the GPBoost mixed effect model, trained aon data as described in 4. The predicted SHAP values for each of the samples used to generate the SHAP
estimate (sequences collected from March 8 through April 10, 2022) are plotted for the 452 and 281 sequence positions in the left and right columns respectively, showing the
SHAP values for predictions with sequences of the indicated amino acid at that position, i.e. L (ancestral), leucine, M, methionine, and R, arginine for residue 452; P (ancestral),
H, R, and Y for residue 681; and ‘*’ for missing amino acid in the sample. A positive SHAP value indicates that an amino acid change is positively related to increased severity.
The interaction of the patient age feature is shown by the coloring of the points, where more red points are from older patients and blue points from younger. GPBoost indicates
increased severity as expected from validated experiments of L → R for this time period.

Fig. 7. Predictions of Omicron subvariant severity. Trained GPBoost, LightGBM, and XGBoost models are simulated for representative BA.1, BA.2, BA.2.12.1, BA.4, and BA.5
sequences from a 60 year-old male patient obtained in the United States, France, and Mexico. The GISAID accession numbers of the sequences for the sequences are: EPI_ISL_6590782
(BA.1), EPI_ISL_7852877 (BA.2), EPI_ISL_12048110 (BA.2.12.1), EPI_ISL_11674447 (BA.4), and EPI_ISL_12029894 (BA.5). The predictions shown here are for models trained on
training data as shown in Figs. 4 and 6 where country is a feature for LightGBM and XGBoost. The GPBoost predictions shown here are for the mean of the model response,
and it does not vary by country, since country is not a fixed effect in the mixed effects model trained using GPBoost. By contrast, LightGBM and XGBoost predictions fluctuate
significantly by simulated country. Emerging Omicron subvariants are uniformly predicted to be more severe than BA.1.
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Fig. 8. SHAP force plot showing impact of features on BA.2.12.1 severity prediction by GPBoost. The ‘‘force plot’’ is a visualization which shows, based on SHAP values
estimating the log-odds contribution of features to the model prediction, how much a specific feature tends to weigh the decision between binary classes. This plot is based on a
simulated 30 year old male patient, and thus the Age feature tends to weigh the model towards a Mild prediction for this sample. Other features tend to weigh towards a more
Severe prediction, such as mutations at sites characteristic of BA.2, including positions 371 and 408.
visualization for the GPBoost prediction of the representative BA.2.12.1
sequences shown in Fig. 7 (GISAID accession EPI_ISL_12048110), sim-
ulated for a 30 year old male patient. The plot shows how key features
tend to make a prediction of greater severity (indicated by an increasing
value) or lower severity (decreasing value). In the case of this younger
patient, for example, the Age feature tends to reduce the predicted
severity. Notably, Fig. 8 suggests that three mutations characteristic
of BA.2 influence an increase in predicted severity for BA.2.12.1: a
deletion at positions 24 through 26, S371F (serine to phenylalanine),
and R408S (arginine to serine) [113]. S371F is a mutation in the
receptor binding domain (RBD) of the spike protein which has been
shown to be evasive to antibodies [114,115]. While an antibody evasive
mutant might not necessarily confer greater severity on an immunon-
aive patient, given the high rates of vaccination and/or prior infection
now, a model based on contemporary GISAID data can be expected to
shown greater severity for immune escape variants. While the impact is
smaller than for those features shown in Fig. 8, analysis of SHAP values
shows that another immune escape change found in BA2.12.1, E484 A,
also tends to elevate the severity prediction [116]. Similarly, BA.4 and
BA.5 have been found to be more immunoevasive in BA.1, which may
also result in increased severe disease among populations with acquired
immunity [117,118].

4. Discussion

Global genome repositories like GISAID have the potential to be an
unparalleled resource for understanding and quantitatively modeling
genotype-phenotype relationships. As the foremost repository for SARS-
CoV-2 genome sequences, GISAID offers the largest possible potential
data set with the greatest global reach. As a result, GISAID can solve
one of the key challenges with biomedical modeling problems: small
data set sizes which make them particularly vulnerable to overfitting,
because it is often difficult and costly to obtain experimental data [119–
121]. The best (and perhaps only real) solution to overfitting is to
have more data to develop models. Conventional meta-analyses require
searching for relevant studies and parsing through papers with often
inconsistent formats and data reporting methods, and they are also
limited to published or otherwise documented studies. However, be-
cause repositories are generally incorporating multiple studies collected
from different sites and under different conditions, heterogeneity is still
the key challenge [122]. As Fig. 1 and the accompanying text explain,
heterogeneity is a critical problem with GISAID data. The challenges
of GISAID source data heterogeneity are particularly exacerbated by
the very limited metadata associated with patient samples, even for
the small subset for which patient status metadata are available at
all. Sequence repository data will be more useful as efforts continue
to grow to collect and curate important information about the sample
and establish minimum information standards [123]. The results in this
paper demonstrate that, accounting for the aforementioned caveats,
useful information can be obtained by analyzing the GISAID patient
data set. There are three key problems with the data set that analytical
and modeling methods need to address.

First, it is hard to robustly define mild and severe cases based
on patient status metadata. As an initial matter, metadata entries
are often inconsistent between different entries or noisy and hard to
interpret reliable (see, e.g., Supplementary Table S1). This paper takes
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a hierarchical approach to defining mild and severe cases, based on
established clinical definitions [63], as described in Supplementary
Table S2. However, because of confounding variables like vaccination,
therapeutic availability, and prior infection, it has become difficult to
estimate the ‘‘intrinsic’’ severity of variants [124]. A particular chal-
lenging issue concerns whether hospitalizations should be considered
as mild or severe cases, especially given how prevalent they are in
the GISAID data set (see, e.g., Fig. 3 and accompanying text). While
this paper treats them as severe cases, that definition has become
increasingly unreliable as the vaccination has become more prevalent.
Studies from multiple sites suggests that as vaccination has increased,
more hospitalization patients classified have only tested positive on
admission but have mild or no symptoms [125–128]. Moreover, the
kinds of sequence variation that lead to more severe clinical outcomes
may change due to vaccination. As suggested in Fig. 8 and accompany-
ing text, as the overwhelming majority of individuals in many regions
have at least some immunity due to vaccination and/or prior infection,
immune escape variants may result inn severe disease because they can
evade immune responses that would otherwise rapidly clear the virus
and prevent infection. However, such variants may not result in more
pathogenicity in immunonaive hosts, and thus would not show more
severe outcomes earlier in the pandemic.

Second, conditions have changed over time, as shown in the re-
duction of case severity over time shown in Fig. 1, which consists
of reductions in the proportions of both hospitalizations and deaths
(see Fig. 3). While trends of decreasing severity are consistent with
improved patient outcomes due to vaccination and improved thera-
peutics [81–86], they may also reflect changes in sequence collection
practices, such as obtaining more sequences and performing more stud-
ies based on screening the general public outside of hospital settings.
These artifacts can have significant impacts on modeling studies. For
example, the models derived in this study similarly indicate that the
E1258D spike protein mutation has a significant impact on increasing
severity. In addition to our group’s previous work, another independent
investigation of GISAID terminating in Fall 2021 showed E1258D as the
strongest sequence feature in determining the severity prediction [44,
47]. While E1258D was observed in one publication as an observed
result of a missense mutation, that study did not show any effects for
that mutation on increased pathogenicity [129]. In fact, E1258D is only
found in 1898 of the over 160,000 samples analyzed in this paper.
Of those samples, 1849, or 97.4% originated from Mexico, of which
1772 were hospitalized or released from hospital (i.e. considered severe
in most studies), and 76 were deceased. Significantly, the metadata
were all consistent, including at the level of capitalization, whereas
metadata entries generally showed a high degree of heterogeneity.
(Supplementary Table S1 shows all unique entries.) Therefore, it is
highly likely that E1258D is either sequence artifact, particularly as
it is in the cytoplasmic tail of the spike protein and the result of a
missense mutation, and thus potentially an unreliable site for interpret-
ing short-read next generation sequencing technologies [130,131]. In
sum, caution must be employed in interpreting any features identified
as important.

Third, the region from which sequences are collected can have a sig-
nificant impact on data due to systematic bias. As the E1258D feature
demonstrates, large-scale studies in particular regions may interpret
sequence data in such a way that can identify a spurious variant if it is
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inconsistent with other studies. As Fig. 1D shows, even though it seems
logical to ascribe regional differences in clinical outcomes to factors
like vaccination, fluctuations at the country level are either virtually
constant or otherwise have no consistent pattern. As such, country-level
seem more reflective of how samples are collected and metadata are
annotated within countries, which motivates the use of mixed effect
models as has been previously used for genotype-phenotype modeling
where sample batches affect the data [70–73]. The results in this
paper demonstrate that a mixed effect machine learning approach in
which countries are groups for random effects can be successful in
developing a predictive model. The GPBoost method [50] proves to
be fast, effective, and robust to missing data, which suggests that it
should be more widely utilized in modeling genetic variation. Notably,
as Fig. 4 illustrates, using country as a feature does result in much more
accurate models. However, these models are overfitting to country-level
trends, as evinced by the predictions graphed in Fig. 7, which show
dramatic differences in predictions between different countries. As
such, while previous studies of GISAID data have shown that including
country metadata as a feature in models provides greater explanatory
power [42,43,46], any resulting models are likely overfitting as they
are here and will have difficulty being generalized to real-world predic-
tions. Accordingly, while region-level features may appear to result in
superior models, they risk creating artifacts. For example, as shown in
this paper, including country as a feature results in predictions for the
impact of L452R and P681R mutations at odds with epidemiological
and in vitro evidence (see Fig. 6). The challenges of country-level
variation are heightened by substantial regional imbalances in the
GISAID patient data set. The entire GISAID database is fundamentally
biased towards Europe, North America, and select countries in Asia and
elsewhere, with over half the sample originating in either the United
Kingdom or United States as of January 2022 [49]. Within the subset of
data with patient status metadata, the biases are similarly idiosyncratic;
for example, over 40% of the training and test samples shown in this
paper were obtained from France.

In addition to the foregoing issues, the work in this paper has further
limitations in scope. GISAID patient metadata omit information about
comorbidities known to increase the risk of severe clinical outcomes
and mortality, such as chronic disease and obesity [132,133]. Studies
have shown that host (patient) genetics may also be significant determi-
nants of infection outcomes. a [134–136] Indeed, a recent study showed
many genetic correlates of severe COVID-19 that were also correlates
for other chronic conditions associated with heightened severity, with
a particular focus on immune-mediated conditions [137]. Epigenetic
factors may also be significant [138], as well as the host transcrip-
tome [139]. In addition, to make the work shown here more tractable,
we focus on the spike protein. However, there is some evidence that
a mutation in the nucleocapsid gene may account for some of Delta’s
increased severity [140]. Finally, the methods described herein rely
on training or fitting to existing databases. Entirely novel mutations
will not be accounted for and may result in unpredictable outcomes.
However, it may be possible to train models on the predicted or in
vitro studies of novel mutations that could emerge in the future, such as
those identified in deep mutational scanning and other exploration of
the mutational landscape [141–144]. In sum, while there are important
caveats to utilizing the GISAID data set as a resource for modeling
clinical outcomes based on viral genotypes, it provides the most diverse
and largest data set possibility. Any other meta-analyses will inherently
suffer from the same kinds of data heterogeneity, and will necessarily
be more limited as there is data in GISAID beyond that contained
in published reports. The relative success of a mixed effect modeling
approach suggests that refining the modeling of group level random
effects or otherwise incorporate hidden variables are necessary to
account for structural issues in the data. Moreover, having established
a proof of concept in this study using logistic regression and boosted
decision trees, future work can explore the potential application of deep
learning methods, which have proven to be highly useful to genetic
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sequence to function modeling in other contexts [49,145–147].
5. Conclusion

Despite increasingly widespread vaccination and development of
new antiviral therapies, COVID-19 continues to represent a signifi-
cant threat to human health. The virus also continues to be highly
unpredictable. Significant genetic variants of SARS-CoV-2 continue to
proliferate, and the risk of severe disease in an emerging variant is
a particular concern. A critical tool in staying ahead of the virus
can be a predictive model for the risks of severe disease based on
viral genotype. Potentially predictive genotype-disease severity models
depend on a substantial amount of patient data, which exceeds the
capability of conventional epidemiological studies and meta-analyses.
Patient data within GISAID, the primary global SARS-CoV-2 sequence
repository, therefore, represents a key resource for building predictive
models. Unfortunately, GISAID patient metadata are limited, both in
number and quality; for example, there is no data on comorbidities or
vaccination status. Despite these caveats, it has been previously shown
that GISAID patient metadata can be used to develop predictive models.
However, until this paper, there has not been a rigorous analysis of
potential confounders within the data which may prevent such models
from being clinically useful.

As shown in this paper, there are temporal trends in sample collec-
tion biases which must be accounted for in model training. Moreover,
there are significant differences in sample collection biases between
countries. Models are more predictive if they take country-of-origin
of sequences into account, but such models are likely overfitting to
artifacts in how samples are collected in different countries. This study
demonstrates that a superior approach to accounting for variation
between the country-of-origin of viral sequence and patient data is to
employ mixed effects modeling, where country is treated as a random
effect group. Mixed effects modeling can be efficiently implemented
for the large number of sequence features analyzed in this paper by
using the recently developed GPBoost package, which uses gradient
boosted decision trees for fixed effects with performance comparable
to XGBoost and conventional LightGBM. This study also presents a
novel way to validate genotype-disease severity models for COVID-
19: interpreting models to determine whether they are able to show
that they can predict the effect of known mutations which affect
disease severity. This kind of validation further reinforces the poten-
tial superiority of mixed effects methods over conventional logistic
regression and boosted decision tree methods. Finally, trained GPBoost
genotype-severity models are shown to be able to predict severity of
emerging SARS-CoV-2 Omicron variants. For example, the GPBoost
model presented in this paper predicts that BA.2 and subsequent Omi-
cron variants may pose a greater risk of severe disease than Omicron
BA.1, in line with preliminary epidemiological evidence.
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