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Summary

Partial nitritation-anammox (PNA) permits energy
effective nitrogen removal. Today PNA is used for
treatment of concentrated and warm side streams at
wastewater treatment plants, but not the more
diluted and colder main stream. To implement PNA
in the main stream, better knowledge about micro-
bial communities at the typical environmental condi-
tions is necessary. In order to investigate the
response of PNA microbial communities to decreas-
ing substrate availability, we have operated a moving
bed biofilm reactor (MBBR) at decreasing reactor
concentrations (311–27 mg-N l�1 of ammonium) and
low temperature (13°C) for 302 days and investigated
the biofilm community using high throughput ampli-
con sequencing; quantitative PCR; and fluorescence
in situ hybridization. The anammox bacteria (Ca.
Brocadia) constituted a large fraction of the biomass
with fewer aerobic ammonia oxidizing bacteria (AOB)
and even less nitrite oxidizing bacteria (NOB; Nitro-
toga, Nitrospira and Nitrobacter). Still, NOB had con-
siderable impact on the process performance. The
anammox bacteria, AOB and NOB all harboured
more than one population, indicating some diversity,

and the heterotrophic bacterial community was
diverse (seven phyla). Despite the downshifts in sub-
strate availability, changes in the relative abundance
and composition of anammox bacteria, AOB and
NOB were small and also the heterotrophic commu-
nity showed little changes in composition. This indi-
cates stability of PNA MBBR communities towards
decreasing substrate availability and suggests that
even heterotrophic bacteria are integral components
of these communities.

Introduction

Autotrophic nitrogen removal from wastewater can be
achieved by partial nitritation together with anaerobic
ammonium oxidation (anammox). Partial nitritation-ana-
mmox (PNA) saves energy due to a reduced need for
aeration by > 50% (Siegrist et al., 2008) and enables a
higher utilization of organic carbon for production of valu-
able products, for example, biogas, compared to conven-
tional nitrogen removal with nitrification-denitrification.
Together, this makes energy positive wastewater
treatment plants (WWTPs) possible (Kartal et al., 2010).
Today, PNA is established for treatment of warm and

concentrated wastewater side streams (Lackner et al.,
2014), where the conditions for growth of aerobic ammo-
nia oxidizing bacteria (AOB) and anammox bacteria are
beneficial and inhibition of unwanted aerobic nitrite oxi-
dation by nitrite oxidizing bacteria (NOB) can be effec-
tive. However, the side stream nitrogen removal at
WWTPs treats only 15–20% of the total nitrogen. To uti-
lize the benefits of PNA in the wastewater main stream
is highly desirable and has recently become a prioritized
research area. In the main stream, the conditions for
PNA are much more challenging (De Clippeleir et al.,
2013; Hu et al., 2013; Laureni et al., 2016). The cold
and diluted water causes low activity and slow growth
rate of particularly the anammox bacteria (Hendrickx
et al., 2014; Lotti et al., 2015), even though some adap-
tations to low temperatures have been observed (Dosta
et al., 2008; Hu et al. 2013; Hendrickx et al., 2014).
Moreover, the competition between AOB and anammox
bacteria with NOB and denitrifying bacteria is challeng-
ing at these conditions (see e.g. De Clippeleir et al.,
2013; Perez et al., 2014), which necessitates detailed
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knowledge about the dynamics of these microorganisms
in order to understand process performance.
Despite the challenges, maintenance and activity of

AOB and anammox bacteria at low temperatures and
low substrate concentrations have been demonstrated in
biofilm- and granular sludge reactors (De Clippeleir
et al., 2013; Gustavsson et al., 2014; Lotti et al., 2014a;
Gilbert et al., 2015; Ma et al., 2015; Laureni et al., 2016)
and in a few studies the major population of AOB, anam-
mox bacteria and NOB have been identified (Gilbert
et al., 2014; Lotti et al., 2014a). Little is, however, known
about the microbial community structure and dynamics
at main stream conditions (Gilbert et al., 2014) and how
such communities differ from the communities in the
PNA reactors treating concentrated wastewater with
higher substrate availability. Furthermore, the hetero-
trophic bacteria in PNA reactors (Gilbert et al., 2014;
Pellicer-N�acher et al., 2014; Chu et al., 2015) most likely
affect the nitrogen turnover and process performance,
but the composition, diversity and roles of these are little
investigated, particularly at main stream conditions.
Here, an experiment was designed to investigate the

role of the substrate concentration in shaping the PNA
microbial community in a MBBR over 302 days. The
influent nitrogen concentration was decreased from 500
to 45 mg-N l�1 at low temperature (13°C) to stepwise
approach main stream conditions. For investigation of
the composition and diversity of the total bacterial com-
munity (including heterotrophic bacteria), the abundance
of key functional groups and their localization in the bio-
films, a multiphase approach of high throughput ampli-
con sequencing (Illumina MiSeq), quantitative PCR
(qPCR) and fluorescence in situ hybridization (FISH) in
conjunction with confocal laser scanning microscopy
(CLSM) of cryosectioned biofilms was used. Reactor

performance and potential activity of key functional
groups was also monitored.

Results

Reactor performance

The concentration of the influent was decreased from
target concentrations of 500 to 45 mg-N l�1 from per-
iod I to period VI (Figure S1) resulting in average
ammonium concentrations of 311 to 27 mg-N l�1 in
the reactor. During periods I to V, the nitrogen removal
rate (NRR) was rather similar, with a decrease in per-
iod VI, at the lowest influent ammonium concentration
(Table 1). The biomass weight on the carriers was
stable, with insignificant changes during the study per-
iod (Figure S3, ANOVA, P > 0.05). The set-up and the
performance of the reactor is summarized in Table 1.
Time-course displays of nitrogen species are found in
Figure S1.

Abundance of autotrophic nitrogen converting bacteria

The anammox bacteria dominated the total bacterial com-
munity in all periods, as measured by qPCR (Fig. 1). The
gene copy numbers of AOB (amoA) were about two
orders of magnitude lower than the anammox bacteria
(16S rRNA). The abundances of the NOB, Nitrobacter and
Nitrospira, were even lower. There were no major
changes in the relative abundances of the anammox bac-
teria, AOB, Nitrobacter and Nitrospira over the course of
the study, as measured by qPCR (ANOVA, P > 0.05),
and correlations between the relative abundances for
each sampling occasion (n = 17) and the reactor concen-
trations of nitrogen species, COD and alkalinity were non--
significant (P > 0.05). The methods of qPCR, FISH and

Table 1. Study design and operational data of the MBBR.

Period I Period II Period III Period IV Period V Period VI

Operational set-up
Time (d) 1–55 62–99 106–133 136–189 195–258 262–302
NH4-N infl (mg l�1) 496 � 32 249 � 14 170 � 19 129 � 11 86 � 8 43 � 2
COD infl (mg l�1) 313 � 36 174 � 7 155 � 26 84 � 9 56 � 4 48 � 8
HRT (d) 3.3 � 0.2 3.2 � 0.0 3.2 � 0.0 2.3 � 0.1 1.6 � 0.0 0.8 � 0.0
NLR (g-N m-2 d�1) 0.75 � 0.03 0.39 � 0.02 0.26 � 0.03 0.29 � 0.02 0.28 � 0.03 0.26 � 0.02
pH 7.9 � 0.12 7.7 � 0.09 7.8 � 0.08 7.5 � 0.19 7.1 � 0.07 7.2 � 0.12
DO (mg l�1) 0.93 � 0.08 0.67 � 0.04 0.64 � 0.07 0.82 � 0.25 0.49 � 0.06 0.48 � 0.10

Reactor performance
NH4-N effl (mg l�1) 311 � 70 136 � 21 119 � 12 63 � 22 31 � 10 27 � 5
NO2-N effl (mg l�1) 12.5 � 5.6 6.0 � 5.7 2.2 � 1.0 2.8 � 1.4 1.6 � 0.7 1.8 � 0.3
NO3-N effl (mg l�1) 98 � 41 33 � 23 8 � 4 17 � 13 21 � 7 9 � 6
COD effl (mg l�1) 281 � 15 153 � 19 118 � 8 67 � 14 53 � 8 40 � 6
ARR (g-N m�2 d�1) 0.28 � 0.10 0.18 � 0.04 0.11 � 0.07 0.14 � 0.05 0.18 � 0.04 0.10 � 0.04
NRR (g-N m�2 d�1) 0.11 � 0.06 0.12 � 0.03 0.09 � 0.07 0.10 � 0.03 0.10 � 0.03 0.03 � 0.03
NO3 production (%) 51 � 19 28 � 16 15 � 8 23 � 11 35 � 12 58 � 26

HRT = hydraulic retention time, NLR = nitrogen loading rate, DO = dissolved oxygen, ARR = ammonia removal rate, NRR = nitrogen removal
rate. COD and nitrogen species are dissolved (filtered, 0.45 lm).
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amplicon sequencing, all showed that anammox bacteria
was the largest group followed by AOB and NOB (Fig. 1
and Table S4). FISH detected a higher percentage of
AOB than the other methods, but it should be noted that
only 20 to 40% of the cells detected by a general DNA
stain (SYTO62) were detected by the general FISH EUB
probe mix (Figure S4).

Batch activity tests of nitrogen converting groups of
microorganisms

Batch tests (Fig. 2) were performed to assess the poten-
tial aerobic ammonium oxidation (AOB), aerobic nitrite
oxidation (NOB), anammox and nitrate uptake rate (po-
tential denitrification). Although the variations between

samples and sampling occasions were considerable, the
data showed a gradual decrease in potential anammox
(ANOVA, P < 0.01, F = 5.7) and an increase in potential
nitrite oxidation (ANOVA, P < 0.01, F = 4.6). For the aer-
obic ammonium oxidation and the nitrate uptake rate,
the changes between the periods were not significant
(P > 0.05).

Composition and diversity of the biofilm communities

High throughput amplicon sequencing of the 16S rRNA
gene (V4 region) showed that the bacterial communities
at four periods in the MBBR consisted of similar num-
bers of OTUs (477 to 523), when resampled at 10 000
sequences (Table S2) and of all the 886 OTUs detected,
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236 were shared by all samples. The diversity of the
sample from the final period (VI) was somewhat higher,
indicative of a slightly more even community (Table S2).
Pairwise comparisons of the biofilm communities (Bray-
Curtis) in periods I, III and V resulted in coefficients of
0.10–0.11, while period VI differed slightly more (0.15–
0.18). However, the dissimilarity coefficients were gener-
ally low, indicating similar community structure of all
samples.
The composition at the phylum level showed that the

majority of the sequences belonged to Planctomycetes,
with Chloroflexi and Proteobacteria also having large
contributions to the community (Fig. 3). In addition, Bac-
teroidetes, Acidobacteria, Chlorobi, the candidate phylum
BRC1, Actinobacteria and Deinococcus-Thermus were
present in relative sequence abundances > 0.5%.
The anammox bacteria were all affiliated to the genus

Ca. Brocadia in one single OTU that dominated the bac-
terial biofilm community in all reactor periods (Table 2).
Further subdivision of the sequences within Ca. Broca-
dia, by applying a more stringent criterion of 99%
sequence similarity of OTUs, revealed that most anam-
mox bacteria were similar to Ca. Brocadia sp. 40, with a
smaller population of Ca. Brocadia fulgida-like bacteria
(Table S3). This population was also detected by FISH
(0.5–2.0% of total bacteria).
All identified AOB were affiliated to Betaproteobacteria

and the major OTU (OTU 85) was affiliated to the Nitro-
somonas europaea/eutropha cluster (Table 2). Separate
populations of Nitrosomonas europaea and Nitro-
somonas eutropha within this cluster could be detected
at 99% sequence similarity (Table S3). OTUs similar to
Nitrosomonas sp. JL21 and Nitrosospira multiformis
were also observed (Table 2), but at very low relative
abundances. The presence of Nitrosomonas europaea/
eutropha, Nitrosomonas oligotropha (JL21) and Nitrosos-
pira was confirmed by FISH (Fig. 5) at relative

abundances of 2.4–6.7%, 0–0.2% and 0.06–0.6%
respectively.
Among the NOB, one OTU belonged to the order

Nitrospirales (Table 2) but could not be affiliated to any
described bacterium. However, BLAST analysis showed
high similarities to unclassified sequences from other
nitrogen converting wastewater reactors (OTU1534-1535
in Table S3), suggesting that these non-described Nitro-
spirales converted nitrogen. In addition, the presence of
Nitrospira was demonstrated by qPCR and FISH
(Table S4), but no FISH signal was seen with comam-
mox probes for Nitrospira nitrosa and N. nitrificans
(Table S1). One OTU highly similar to Nitrotoga was
detected in all biofilm communities (Table 2) and Nitro-
toga cells were also detected by FISH (Table S4). No
OTU was assigned to Nitrobacter, although Nitrobacter
was detected by qPCR and FISH (Table S4). However,
OTUs with high similarity to Nitrobacter sp., but also to
other species within Bradyrhizobiaceae, were revealed
by BLAST (OTU 0176, 0226 in Table S3). Hence, the
sequence information in the V4 region of the 16S rRNA
gene was not sufficient for Nitrobacter identification.
In the MBBR, 43–50% of the sequences were affili-

ated to putative heterotrophic bacteria. These bacteria
were subdivided into 25 orders with a sequence contri-
bution > 0.5% in any of the samples (Fig. 4).

Localization of key bacterial groups in the biofilm

FISH-CLSM of biofilm cryosections was used to show
the localization of key bacterial groups (for FISH probes,
see Table S1). Clusters of AOB (Nitrosomonas euro-
paea/eutropha, Fig. 5A) and Nitrosospira, Fig. 5B), and
clusters of NOB (Nitrospira, Fig. 5C) were detected near
the biofilm–water interface. Anammox bacteria were
observed in high numbers deeper in the biofilm (Fig. 5),
with two populations present closer to the biofilm–water
interface (Fig. 5E). Bacteria within the phylum Chloroflexi
were also detected both near the biofilm–water interface
and deeper in the biofilm (Fig. 5D).

Discussion

Substrate availability is a main factor that determines
microbial competitive interactions and thereby shapes
the structure of microbial communities (Hibbing et al.,
2010; Litchman et al., 2015). PNA is used for treatment
of highly concentrated as well as diluted streams of
wastewater and the substrate concentrations vary a lot
(e.g. Hu et al., 2013; Lackner et al., 2014; Lotti et al.,
2014a), but very few systematic studies of the commu-
nity response to changes in substrate availability have
been made. Here, we test the hypothesis that a reduc-
tion in substrate availability influences the PNA microbial
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community structure and function in a MBBR at low tem-
perature, gradually approaching main stream conditions.
The stepwise diluted influent resulted in decreased reac-
tor ammonium concentrations, from 311 to 27 mg-N l�1,
as well as decreased concentrations of COD (Table 1).
Despite these decreases in substrate concentrations, no
major effects on the reactor biomass were observed.
The biofilm weight did not change significantly
(Table S3). The anammox bacteria dominated the bacte-
rial community with AOB and NOB being considerably
fewer (Fig. 1, Table 2, S4), located near the biofilm–

water interface (Fig. 5). Changes in the relative abun-
dances of anammox bacteria, AOB and NOB (qPCR)
were non-significant between test periods and could not

be related to the reactor concentrations of nitrogen spe-
cies, COD and alkalinity. Changes in potential activity of
the anammox bacteria and NOB were observed (Fig. 2)
and reflected the nitrogen conversions in the reactor
(Table 1), but in general reactor operation was stable
(Table 1), suggesting similar functionality of the microbial
community.
The estimation of the relative abundances of anam-

mox bacteria, AOB and NOB generally agreed between
the methods (Table S4). The largest deviation was the
higher AOB percentage assessed by FISH, but smaller
differences among the methods were observed also for
anammox bacteria and NOB. Discrepancies between
rRNA-based FISH and DNA-based qPCR and
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Table 2. Autotrophic nitrogen converting bacteria in the biofilm communities, as revealed by high throughput amplicon sequencing. OTUs clus-
tered at 97% sequence similarity. BLAST analysis was used for classification.

OTU Classification Similarity Period I Period III Period V Period IV

2 Ca. Brocadia sp. 40/Ca. B. caroliniensis 20b 98 56% 56% 57% 50%
85 Nitrosomonas europaea/N. eutropha 99 0.32% 0.27% 0.14% 0.25%
3 Nitrosomonas sp. JL21 100 0.038% 0.026% 0.032% 0.014%

2049 Nitrosospira multiformis 97 0.017% 0.010% 0.012% 0.028%
930 Ca. Nitrotoga sp. clone JS16NT08 100 0.13% 0.051% 0.071% 0.047%
354 Nitrospirales 4-29a N.A. 0.11% 0.18% 0.059% 0.079%

a. No described species with > 90% similarity from BLAST analysis. Classification by the Greengenes taxonomy.
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sequencing can be expected. A large fraction of the
microbial community had a ribosomal content below the
FISH detection limit (Figure S4). However, AOB are
known to retain their ribosomes even at challenging con-
ditions such as starvation (Morgenroth et al., 2000),
which may help to explain their particularly high relative
abundance observed by FISH. Also, the DNA extraction
methodology, the choice of PCR primers and the cell
copy numbers of target genes influence relative abun-
dances (see e.g. Acinas et al., 2004; Albertsen et al.,
2015). Quantification by high throughput amplicon
sequencing is furthermore technically challenging (Zhou
et al., 2015). Although sequence processing has
improved significantly with pipelines, such as Mothur
used here (Kozich et al., 2013), relative abundances,
especially of rare OTUs (e.g. the NOB), have to be inter-
preted with caution. Hence, all methods suffer from limi-
tations and multiple methods provide important
complementary information. The methods also vary in

response time. Specific populations can be estimated by
qPCR and FISH on suspended biofilms within a day or
two, which is useful for routine monitoring. High through-
put amplicon sequencing and FISH biofilms cryosections
provide more detailed information, but takes
considerably longer time.
The major anammox population was highly similar to

Ca. Brocadia sp. 40 (Table 2, Table S3), which has pre-
viously been observed in several anammox reactors
(van der Star et al., 2008; Park et al., 2010; Costa et al.,
2014; Gilbert et al., 2014). Only one population of anam-
mox bacteria is usually observed in PNA reactors (Hu
et al., 2013; Gilbert et al., 2014; Laureni et al., 2015).
However, using 99% similarity for sequence clustering
(Table S3) and a competitor probe to improve the FISH
specificity (Table S1, Persson et al. (2014)), a second,
closely related, Ca. Brocadia fulgida-like population was
detected (Fig. 5, Table S3). It is likely that the two popu-
lations have different niches, just as described for

(A) (B)

(D) (E)

(C)

Fig. 5. FISH-CLSM of biofilm cryosections. The water-biofilm interface is oriented to the lower left. In all images, anammox bacteria (Amx820)
are in red and nonspecific bacteria (EUB-mix) are in white-grey.
A. In green: AOB within the Nitrosomonas europaea/eutropha cluster (Nse1472).
B. In green: AOB within Nitrosospira (Nsv443).
C. In green: NOB within Nitrospira (Ntspa662).
D. In green: Bacteria within Chloroflexi (CFX123 + GNSB941).
E. In green: Ca. Brocadia fulgida (Bfu613). Scale bar: 25 lm.
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closely related Nitrospira strains (Gruber-Dorninger
et al., 2014). This was supported by the localization of
the smaller Ca. Brocadia fulgida-like population near the
biofilm–water interface while the Ca. Brocadia sp. 40
population was detected throughout the biofilm. Further-
more, despite studies showing that Ca. Kuenenia have
higher substrate affinity than Ca. Brocadia, and hence
would be selected for at low substrate concentrations
(van der Star et al., 2008; Oshiki et al., 2011), Ca. Bro-
cadia fulgida and/or Ca. Brocadia sp. 40, rather than Ca.
Kuenenia have dominated the anammox guild in this
and other main stream PNA studies (Gilbert et al., 2014;
Lotti et al., 2014a,b).
The AOB community was dominated by two popula-

tions within the Nitrosomonas europaea/eutropha cluster
(Table 2, S3), which are commonly found in PNA reac-
tors (Park et al., 2010; Vlaeminck et al., 2010; Pellicer-
N�acher et al., 2014). Minor OTUs similar to N. olig-
otropha (sp. JL21) and Nitrosospira multiformis were
also detected. This diverse AOB community was
confirmed by FISH.
NOB were constantly present (Fig. 1) and were active

during all periods, as seen by the production of nitrate
(Table 1, Figure S1) and batch activity tests (Fig. 2). In
particular, they had large impact on the process perfor-
mance in period VI, resulting in low nitrogen removal effi-
ciency (11%). Strategies to abate NOB include careful
control of DO- and substrate concentrations (Perez
et al., 2014) as well as intermittent periods of anoxic and
aerated phases, either at high-or low-DO concentrations
(Wett et al., 2013; Ma et al., 2015). Despite maintained
ammonium concentrations and careful DO control, NOB
could not be repressed in the MBBR biofilms. Unwanted
NOB activity in main stream PNA reactors is frequently
reported (De Clippeleir et al., 2013; Gilbert et al., 2014;
Lotti et al., 2014a) and the strategy for NOB repression
depending on the aggregation state of the biomass (sus-
pended, granular, biofilm) and the ecophysiology of AOB
and NOB.
The NOB consisted of Nitrobacter, Nitrospira and

Nitrotoga. In PNA reactors, the low bulk concentrations
of nitrite would select for Nitrospira, rather than Nitrobac-
ter, due to their higher substrate affinity (Isanta et al.,
2015). Nitrospira is furthermore hard to outcompete
using low DO concentrations due to their high oxygen
affinity (Isanta et al., 2015). Nitrospira has, in fact, been
the only NOB observed in some main stream PNA reac-
tors (De Clippeleir et al., 2013; Gilbert et al., 2014), but
as shown here and elsewhere (Liu et al., 2012), even
Nitrobacter can sustain at such conditions. Interestingly,
the long-term operation of the MBBR at 13°C allowed
the establishment of a small Nitrotoga population
(Table 2, S4). Nitrotoga has been shown to be important
in activated sludge communities at 7–16°C (L€ucker

et al., 2015), but so far little is known about their eco-
physiology, except for their low temperature require-
ments. Nitrotoga has, to the best of our knowledge, not
been previously detected in PNA reactors and this
finding may have implications for NOB suppression
strategies.
In the MBBR, 43–50% of the sequences were affiliated

to putative heterotrophic bacteria. Also in other studies of
PNA systems, significant fractions of the microbial com-
munities have been heterotrophs, although little is known
about their composition, dynamics and roles (Chu et al.,
2015; Gilbert et al., 2014; Pellicer-N�acher et al., 2014).
The relative abundances of the major contributors of the
heterotrophic community in the MBBR (from seven phyla)
were stable in relative abundance throughout the study
(Fig. 4). This implies that the decreasing COD concentra-
tions in the reactor (Table 1) had little impact on the het-
erotrophic community and suggests that even
heterotrophic bacteria were an integral part of the commu-
nity, possibly with defined roles in the PNA biofilm. Hetero-
trophic bacteria may contribute to nitrogen removal via
denitrification, but their competition with AOB and anam-
mox bacteria for space and electron acceptors can also be
detrimental (Kumar and Lin, 2010). Furthermore, they can
utilize soluble microbial products (SMP) from the biofilm
(Ni et al., 2012) and aid in biofilm formation (Cho et al.,
2010). A minor fraction of the influent COD was consis-
tently removed in the MBBR (Table 1) and batch activity
tests showed anoxic nitrate uptake (Fig. 2), which sug-
gests some denitrification. We found members of
Rhodocyclales, Burkholderiales, Rhizobiales and Xan-
thomonadales (Fig. 4), which all are important contributors
to wastewater denitrification (Baytshtok et al., 2009; McIl-
roy et al., 2016) and have been detected in PNA reactors
treating organic-free wastewater (Pellicer-N�acher et al.,
2014; Chu et al., 2015), suggesting SMP utilization. SMP
may also have sustained the biofilm population of the non-
denitrifying, protein degrading Saprospirales (Xia et al.,
2008). Chloroflexi were abundant here (Figs. 3 and 4), as
well as in other PNA communities (Gilbert et al., 2014;
Chu et al., 2015). Chloroflexi can provide biofilm structural
integrity (Cho et al., 2010) and metabolize SMP from auto-
trophs at both aerobic and anoxic conditions (Okabe et al.,
2005; Kindaichi et al., 2012), which would explain their dis-
tribution throughout the biofilm (Fig. 5). Phycisphaerae,
Ignavibacteriales, Deinococcales (Fig. 4) harbour bacteria
with mostly undefined ecophysiologies, but their presence
here and in other PNA- and anammox communities (Costa
et al., 2014; Chu et al., 2015) suggests defined functions.
There are several possible explanations for the

observed stability and maintained diversity of the micro-
bial community at the decreasing substrate concentra-
tions. The main anammox bacteria (Ca. Brocadia sp. 40
and Ca. Brocadia fulgida) and AOB (Nitrosomonas
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europaea/eutropha) have been detected at high relative
abundances at different conditions, including a wide
range of substrate concentrations (Park et al., 2010;
Vlaeminck et al., 2010; Almstrand et al., 2014; Gilbert
et al., 2014; Lotti et al., 2014a; Pellicer-N�acher et al.,
2014), which indicates broad ecophysiologies and a
competitiveness at all tested concentrations. Further-
more, the presence of numerous micro-environments in
the thick biofilms with gradients of substrate and electron
acceptors likely promoted diversity and permitted the
coexistence of competing as well as of commensal com-
munity members. As mentioned, the community had
both active and non-active bacteria; the low ribosomal
content of a large fraction of the bacteria indicated inac-
tivity (Figure S4). The protected environment in the bio-
film carriers may offer a refuge site for active and
inactive cells, which may slow down community
changes, as would the low temperature. Although the
time between subsequent test periods may have been
too short for major community changes to occur, for the
entire study, spanning 302 days, time was likely suffi-
cient. In municipal wastewater, the continuous variations
over time in influent composition of substrates and sus-
pended bacteria, are factors that may affect the stability
of the microbial community, but these were not
addressed here. Very few studies have been performed
on PNA using real main stream wastewater, and the
impact of these factors is yet not valuated. Maintenance
and activity of anammox and AOB populations for at
least 240 days in PNA MBBRs receiving pre-treated
municipal wastewater was recently shown (Laureni
et al., 2016), indicating that, at least for biofilm systems,
the influence of these factors for the stability of the key
functional populations is manageable.
In conclusion, the bacterial community in a PNA

MBBR system was stable during decreasing concentra-
tions of substrate, approaching main stream conditions.
Within the guilds of AOB, anammox bacteria and NOB,
composition and diversity was maintained at all tested
concentrations. The composition was largely stable even
for the diverse heterotrophic community, suggesting that
they were an integral part of the community.

Experimental procedures

The pilot moving bed biofilm reactor

A 200 l MBBR was filled with biofilm carriers (Kaldnes
K1) at 40% filling degree. It received reject water after
anaerobic digestion from the Himmerfj€arden WWTP in
Stockholm, diluted with tap water. The study period
(302 days) was divided into six periods with stepwise
decreased influent concentrations of ammonium from
500 mg-N l�1, representative of reject water, to 45 mg-N
l�1, representative of main stream wastewater, with

concomitant decreases in nitrogen loading rate and
hydraulic retention time (Table 1). The MBBR was oper-
ated at 13°C corresponding to low main stream tempera-
tures in moderate climates.
Redox, pH and DO was measured using online sen-

sors (Cerlic AB, Segeltorp, Sweden). Air supply was pro-
vided from the bottom of the reactor and was controlled,
via the DO, by a PID controller. The temperature was
monitored and controlled by a compact controller (JUMO
GmbH & Co. KG, Fulda, Germany) and a cooler
(JULABO GmbH, Seelbach, Germany). Mixing of the
bulk water and biofilm carriers was achieved by a two-
blade stirrer (50 rpm).
For analysis of inorganic nitrogen species and COD in

the influent and effluent (filtered 0.45 lm), Dr. LANGE
cuvettes were used on a XION 500 Spectrophotometer
(HACH LANGE GmbH, D€usseldorf, Germany).

Batch tests for potential activity measurements

Batch tests were performed to measure potential micro-
bial activities at 25°C. The activity measurements of
AOB and NOB was based on the oxidation rate of
ammonium (present in the test medium) and nitrite
(formed by the AOB during the test) by measuring the
oxygen uptake rate (OUR) using a DO probe (YSI 5905;
YSI Inc. Yellow Springs, OH, USA). The method was
adopted from Surmacz-G�orska et al. (1996). At the start
of each measurement, ammonium was available at
100 mg N l�1. First, the total OUR was measured. After
5 minutes, NaClO3 (17 mM) was added for the inhibition
of NOB. After 10 minutes, allylthiourea (43 lM) was
added for the inhibition of AOB. The activity of NOB and
AOB was obtained from the OUR before minus the
OUR after the addition of NaClO3 and allylthiourea
respectively. The remaining OUR, after addition of both
inhibitors, is represented by endogenous respiration and
substrate oxidation by heterotrophs and was not
reported. The potential anammox activity was measured
as the production of nitrogen gas (headspace pressure)
according to Dapena-Mora et al. (2007) with NH4

+ and
NO2

� at initial concentrations of 70 mg N l�1 each.
Nitrate uptake rate measurements were used for mea-
surements of potential heterotrophic denitrifying activity.
The tests were performed at anoxic conditions in reject
water diluted with distilled water at an initial COD con-
centration of 200 mg O2 l�1, with NaNO3 at an initial
concentration of 100 mg N l�1. Samples for measure-
ment of NO3

�were taken every 12 minutes for 4 hours.

DNA extraction

DNA was separately extracted from three carriers at
each sampling occasion. From each carrier, 30 mg of
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biofilm was used for extraction using the FastDNA spin
kit for soil (MP Biomedicals, Santa Ana, CA, USA)
according to the manufacturers’ recommendations. The
concentration of the extracted DNA was measured using
a NanoDrop ND-1000 spectrophotometer (Thermo
Scientific NanoDrop products, Wilmington, DE, USA).

Quantitative PCR

qPCR was used for quantification of autotrophic nitrogen
converting bacteria according to Persson et al. (2014). In
brief, primers for the 16S rRNA gene were used to tar-
get all bacteria, anammox bacteria, Nitrospira and
Nitrobacter and primers for the amoA gene were used to
target AOB. The qPCR was carried out on an iQ5 (Bio-
Rad Laboratories. Inc., Hercules, CA, USA) thermal cycler
using the SYBR green chemistry. Plasmid target gene
inserts were used as standards. The results are presented
as copy number fractions of the nitrogen converging bac-
teria to all bacteria, to get relative abundances. Differ-
ences in the relative abundances between periods I–VI
was tested by one-factor analysis of variance (ANOVA).
Prior to ANOVA, variance homogeneity was confirmed by
Levene’s test. To assess whether there was a link
between the reactor conditions and the relative abun-
dance of the key microbial groups at each sampling occa-
sion (n = 17), the preceding reactor concentrations of
nitrogen species, COD and alkalinity was averaged over
10 days. Correlations between these average concentra-
tions and the relative abundances were tested for using a
linear model (Pearson’s r).

High throughput amplicon sequencing

PCR was carried out using the primers 515F and 806R
to amplify partial V4 region sequences of the 16S rRNA
gene (Caporaso et al., 2011) with dual indexing of the
primers (Kozich et al., 2013). Sequencing was performed
on an Illumina MiSeq (Illumina Inc., San Diego, CA,
USA) using the MiSeq Reagent Kit v2 with PhiX control
library spiked in at 7.5%. For details on PCR, purifica-
tion, and quality control, see supporting methods. The
obtained sequences were processed in Mothur (Schloss
et al., 2009) for assembly of contigs, denoising, removal
of putative chimera, alignment, classification and con-
struction of operational taxonomic units (OTUs) at 97%
taxonomic identity (Kozich et al., 2013). For classification
with the Bayesian classifier within Mothur, the Green-
genes database v. 13.8.99 (McDonald et al., 2012) was
used at 80% confidence threshold. Prior to analysing
alpha- and beta-diversity, the OTU dataset was subsam-
pled at 10 000 sequences. Raw sequence reads were
deposited at the NCBI Sequence Read Archive, no.
SRP059362.

Fluorescence in situ hybridization and confocal laser
scanning microscopy

For FISH, samples were taken in the periods II, IV and
VI. The carriers were fixed in paraformaldehyde (4% w/
v) for 8 h at 4°C. For FISH on biofilm suspension, two
carriers form each sampling period were used. The fixed
biofilm was brushed off the carriers and homogenized in
PBS before storage in PBS-ethanol (1:1) at �20°C. The
biofilm suspensions (2–4 ll) were spotted on diagnostic
microscope slides (8 9 6 mm diameter wells; Menzel
GmbH, Braunschweig, Germany) for FISH and images
were acquired from 10 random fields of view for each
carrier. For FISH on biofilm cryosections, the carriers
with fixed biofilm were embedded, frozen and cryosec-
tioned in 20–25 lm thick slices which were captured on
microscope slides and subjected to FISH. FISH was car-
ried out at 46°C for 2 h for biofilm suspensions and 4 h
for biofilm cryosections according to Almstrand et al.
(2014). The probes (Table S1) were 50 labelled with Cy3,
Cy5, or Alexa 488. The relative abundances of the
anammox bacteria, AOB and NOB was estimated on
biofilm suspensions as the ratios of the FISH-targeted
biovolumes of the specific populations to the total bacte-
ria (EUB338 I-IV probe mix, Table S1) using daime 2.1
(Daims et al., 2006). See supporting methods for details
about embedding, cryosectioning, image acquisition and
image analysis.
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Fig. S1. Influent and effluent concentrations of ammonium,
nitrite and nitrate in the MBBR. Dashed vertical lines high-
light the different periods in the study.
Fig. S2. Biofilm carrier from the MBBR.
Fig. S3. Biomass wet weight of the biofilm carriers. Dashed
lines show the transition between different periods. Average
values of eight carriers at each sampling occasion. Error
bars show standard deviation.
Fig. S4. Comparison between FISH (using EUBmix probe)
and staining of cells with SYTO 62.
Table S1. FISH probes used in the study.
Table S2. Diversity of the biofilm communities by high
throughput amplicon sequencing. 1000 resamplings of
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10 000 sequences. OTUs clustered at 97% sequence simi-
larity.
Table S3. Potential autotrophic nitrogen removing OTUs
clustered at 99% sequence similarity.
Table S4. Percentage of anammox, AOB and NOB during
the experiment. Data are range of percentages over periods
during the experiment (see Table 1 for time periods). FISH
data are biovolume of specific probe targeted guilds in per-
centages of the total biovolume measured by EUB probe

mix (see Table S1 for probes). FISH data are from periods
II, IV and VI. High throughput amplicon sequencing data are
percentages of OTUs from target group out of the total num-
ber of OTUs during periods I, IV, V and VI. qPCR data are
percentages of the different target groups of the total bac-
teria measured by a universal primer pair. qPCR data are
from periods I – VI. See Experimental Procedures for
details.
Data S1. Supporting methods and references.
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