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Inferring fetal fractions from read heterozygosity empowers
the noninvasive prenatal screening
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Purpose: Fetal fraction (FF) is the percent of cell-free DNA
(cfDNA) in the mother’s peripheral blood that is of fetal origin,
which plays a pivotal role in noninvasive prenatal screening (NIPS).
We present a method that can reliably estimate FFs by examining
autosome single-nucleotide polymorphisms (SNPs).

Methods: Even at a very low sequencing depth, there are plenty of
SNPs covered by more than one read. At those SNPs, we define
read heterozygosity and demonstrate that the percent of read
heterozygosity is a function of FF, which allows FF to be inferred.

Results: We first demonstrated the effectiveness of our method in
inferring FF. Then we used the inferred FF as an informative
alternative prior to computing Bayes factors to test for aneuploidy,
and observed better power than the Z-test. In analysis of clinical

INTRODUCTION

Fetal fraction (FF) is the percent of cell-free DNA (cfDNA) in
maternal peripheral blood that comes from the placenta of the
fetus. FF plays a pivotal role in noninvasive prenatal screening
(NIPS), which aims to examine whether a given chromosome
is trisomy in the fetus. The American College of Medical
Genetics and Genomics (ACMG) recommended in its
position statement that all laboratories should include a
clearly visible FF on the NIPS report, and all laboratories
should establish and monitor analytical and clinical valida-
tions for FF.! The lower limit of FF maintaining a reliable
result is approximately 4%, and a low FF in maternal
circulation was associated with an increased risk of fetal
aneuploidies.2 Thus, ACMG recommends that no call due to
low FF needs to be specified in the NIPS report.’

Given the importance of the FF in NIPS, many methods
have been proposed to detect FF. Early methods examined
DNA sequences from the Y chromosome, either using
polymerase chain reaction (PCR)’ or massive parallel
sequencing technology.” Since methods based on the Y

samples, we were able to identify female-male twins thanks to the
accurate FF inference.

Conclusion: Knowing FF improves efficacy of NIPS. It brings a
powerful Bayesian method, allows “no call” for samples with small
FFs, renders screening for XXY syndrome simpler, and permits an
adaptive design to sequence at a higher depth for samples with
small FFs.
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chromosome can only be applied to male fetuses, researchers
focused efforts on developing methods that can apply to both
male and female fetuses. Some used fragment size of cfDNA,
where fetal cfDNA is generally shorter than maternal cfDNA;’
some explored the methylation differences between paternal
and maternal cfDNA.*” However, these methods were not yet
accurate enough for practical use. There are two very
promising and elegant approaches that require no additional
data. One explores the difference between DNA digestion of
fetal and maternal cell-free DNA.® The other explores the fact
that fetal cfDNA sequences are not uniformly distributed
along the genome,” presumably because actively expressed
genomic regions were digested faster than those dormant
gene regions. But these two methods present difficulties for
smaller FFs.

The most successful methods are those that utilize
inheritance patterns in single-nucleotide polymorphism
(SNP) markers. Early methods assumed both maternal and
paternal genotypes are known, and at a set of loci where the
father is AA and the mother is BB, one can deduce FF by
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counting reads carrying As and Bs at those loci from
sequencing data of maternal cfDNA.'™'" A recent method
only genotyped the mother.'” It first identified maternal
homozygous loci, tallied and computed nonmaternal allele
fractions at these loci from low-coverage sequencing data of
maternal plasma, and used these to train a linear model to
predict FF. High-depth targeted sequencing of maternal
plasma was successfully used to determine FF.'>'* Because
of high sequencing depth, minor allele frequencies can be
reliably estimated, the informative maternal-fetal joint
genotypes can be inferred (one homozygous, one hetero-
zygous), and based on this, FF can be determined. These
methods, however, are not completely satisfactory as they
are either not accurate enough, not cost-effective, or too
laborious.

In this paper we introduce a statistical method that can
infer FF using low depth sequencing of maternal cfDNA. The
precision of the FF inference can be greatly improved if we
also sequence maternal white blood cell DNA (wbcDNA) at a
low depth. Our method is based on the read heterozygosity
(RHet). A SNP locus is called RHet if it is covered by at least
two reads carrying different alleles. RHet is determined
mainly by the unobserved maternal-fetal joint genotypes and
the FF. Other contributing factors include the inbreeding
coefficient of the mother, the inbreeding coefficient of the
fetus, the sequencing error rate, and SNP allele frequencies of
the reference population. Sequencing of maternal wbcDNA
contributes to the FF inference in two ways: it can be used to
infer maternal inbreeding coefficient, and we can combine
reads from the maternal ¢fDNA and wbcDNA sequencing
to infer a diluted FF from a higher coverage data set and
scale back.

The traditional Z-test method for NIPS first estimates
chromosomal dosages for a sample (assuming a euploid
mother carrying a single fetus), then it calculates the
deviation of the chromosomal dosages from the mean
dosage of a set of euploid controls (euploid mothers each
carrying a euploid fetus), and lastly it normalizes the
deviation by the sample standard deviation of the euploid
controls to obtain a Z-score. Samples with Z >3 are declared
trisomy positive. The cutoff of 3 is chosen such that the false
positive rate is about 0.001 if the Z-score is normally
distributed. If the fetus is trisomy, then the deviation is
expected to be the FF. Thus, the higher the FF, the higher
the power to detect true trisomy.

When FF is known (denoted by /), a more powerful test can
be developed. Z-test only compares the deviation of the
centered chromosomal dosage from 0. Since for a trisomy
sample the chromosomal dosage is expected to be h above the
mean dosage of euploid controls, we can also compare how
close the centered chromosomal dosage is to k. In addition to
increased power to screen for trisomy, knowing FF brings
several other benefits. First, if FF is too small, which is a major
source of false negatives, we can declare “no call.” Second,
testing aneuploidy of sex chromosomes, such as Klinefelter
syndrome (47, XXY), Turner syndrome (45, X), and XYY
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syndrome, becomes a much simpler problem. Third, it allows
us to develop an adaptive design to sequence at a higher depth
for samples with small FFs.

MATERIALS AND METHODS

NIPS samples

Beginning 15 March 2016, we enrolled pregnant women who
were undergoing routine obstetrical care at the Beijing
Hospital. The institutional review board of the Beijing
Hospital approved the study. All experiments were performed
in accordance with relevant guidelines and regulations.
Written informed consent was obtained from all patients.
To be eligible for the study, pregnant women had to be at least
18 years of age and had to be carrying a fetus with a
gestational age of at least 8 weeks. More information is in
the Supplementary Material and Methods.

Naive model

An ideal scenario would be no sequencing errors, and both
mother and the fetus have an inbreeding coefficient of 0.
Denote FF by h, and at an arbitrary biallelic SNP (A and B)
denote the frequency of allele A as p. Assuming no
inbreeding, the Hardy—-Weinberg equilibrium holds for each
genotype of one individual, such that fi4 = p%
fas = 2p(1 — p), and fgg = (1 — p)*. The distribution of the
joint maternal-fetal genotypes and the A allele frequency of
the mixture can be derived, as shown in Table 1.

Those SNPs covered by one read are ignored because of
their likelihood containing no h. Suppose a SNP has coverage
of 2, with counts of two alleles as (2, 0), (1, 1), and (0, 2). To
evaluate likelihood for each count, we are conditioning on the
joint genotype to obtain a weighted sum of binomial
likelihood.

Pr((2,0)lp, h) = 1/op(1 = p)(1 = h+ h?) + p?

Pr((1,1)|p,h) = p(1 —p)(1 +h — h?) (1)

Pr((0,2)[p,h) = Yop(1 = p)(1 = h+ 1) + (1~ p)’
The read heterozygous (1, 1) has the probability of
p(1 = p)(1 + h — h?). If we assume p is uniformly distributed

Table 1 Allele frequency in the mixture

MM-FF Prob fa
AA-AA o’ 1

AB-AB p(1—p) 12
BB-BB 1-p)? 0

AA-AB PP(1—p) 1—hR2
BB-AB p(1—p)? h/2
AB-AA PP(1—p) 172+ hr2
AB-BB p(1—p)? 1/2 — hi2

Note joint genotypes AA-BB and BB-AA are Mendelian incompatible and excluded
from the table.
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and integrate out p, we have the expected proportion of read
heterozygosity among SNPs covered by two reads as
L(1+ h — h?*), which is a function of h.

Full model

Let p, q be the allele frequency of the A, B allele with p 4+ g =1,
and F be the individual’s inbreeding coefficient. The standard
model to account for inbreeding coefficient as a generalization
of Hardy-Weinberg equilibrium'” is

AA ~ p* + pqF, AB ~ 2pq(1 — F), BB ~ q* + pqF. (2)

The joint distribution of mother—fetus genotypes can be
computed (Tables 2).

The only possible errors that can occur after bi-allelic
ascertainment are A to B or B to A, and the sequencing
errors are different from A to B (denote e, ) and from B to
A (denote ep,). Accounting for sequencing errors, we can
write the allele frequency of the mixture for each instance of
joint genotype (Table 3), from which the likelihood can be
obtained by modeling reads covering a given locus as
binomial sampling.

At SNP i covered by more than one read, denote
G; = (c#,cP) the counts of reference and alternative alleles.
Let x be the frequencies of A; the binomial likelihood for G; is

(c +)!
AP

Denote G the collection of all G; for i in an index set of S.
For each SNP i, we write out the binomial likelihood
conditioning on the joint genotypes, weighted by the
probability of the joint genotype, and sum together to
obtain marginal likelihood

>~ PH)B(fa(), Gi). (4)

jEMMFF

x4 (1 —x)cf. (3)

B(X, Gl) =

Mi(h7F17F27e) =

Table 2 Probability of joint genotypes
AA AB BB

AA  p(p+qF)(p + qF2)
AB  pq(1—F)(p+qF2) pq(l1—F)(1 - F) pq(l — Fi)(q + pF)

BB 0 a(q +pF)p(1 —F)  q(q+ pF)(q + pF)
Each row is the genotype of the mother and each column is the genotype of the
fetus.

plp+qF)q(1-F) O

Table 3 Allele frequency in the mixture of maternal and
fetal cell-free DNA

MM-FF Prob fa

AA-AA p(p +qF)(p+ qFZ) 1—eap

AB-AB pq(1 —Fp)(1 — 1/2 4+ 1/2(epa — eap)

BB-BB Q+PF1)(‘1+PF2) €ga

AA-AB pq(p+qF1)(1 —F) (1 —h/2)(1 — eap) + h/2epa

BB-AB pa(q+pF)(1 - F) h/2 + eap — h/2(eap + epa)

AB-AA g 1—F1)(p+qug (1/2 + h/2)(1 — epa) + (1/2 — h/2)eas

(

AB-BB pq(1 — F1)(q + pF> (1/2—=h/2)(1 —ega) + (1/2+ h/2)eap
Fetal fraction (FF) is denoted by h. The column marked “Prob” is the probability
of the joint genotypes in the first column. f4 denotes frequency of A allele con-
ditioning on joint genotypes, taking into account sequencing error.
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Multiplying the marginal likelihood for each SNP to obtain
a composite likelihood

= L5

Finally, from nonpolymorphic markers covered by exactly
one read, we can estimate the error spectrum used in the
model (esp and ep, for A and B in four nucleotides). We may
optimize Eq. 5 to obtain h.

L(h;FbFZ? hF17F27 ) (5)

RESULTS

Read heterozygosity informs FF

The rationale to infer FF from low depth sequencing data is
detailed in the scientific facts and logic arguments in this
section. First, even at a low coverage, there are sizable
numbers of SNPs from the 1000 Genomes Project that are
covered by more than one read. This can be deduced simply
by assuming Poisson distribution at each locus and verified by
real data (Supplementary Table S1). Second, at those SNPs
covered by at least two reads, we can define read
heterozygosity (and similarly read homozygosity). For
example, at coverage of two, we may define (A, B) or (B, A)
as read heterozygous, and (A, A) or (B, B) as read
homozygous, where A and B are reference and alternative
alleles respectively. Note that read heterozygosity, which
involves sampling uncertainty, is different from the genotype
heterozygosity. For example, at coverage of two, a genotype
heterozygous AB has a 50% chance to produce read
heterozygosity. Third, the percent of read heterozygosity is a
function of FF (denoted by 4). Under the naive model with
ideal assumptions (see “Materials and Methods”), the percent
of SNPs that are read heterozygous among SNPs covered by
two reads is (1 +h — h*). Thus h can be inferred. Note,
however, the naive model only has theoretical value and
performs poorly in real data analysis, as real data violate most
of its assumptions.

Statistical model to infer FF

For a given biallelic SNP, its allele frequency largely
determines how likely we observe read heterozygosity. We
identified three additional factors that affect read hetero-
zygosity: the inbreeding coefficient of the mother Fj, the
inbreeding coefficient of the fetus F,, and the sequencing error
rate e. Because a majority of the ¢fDNA comes from the
mother, F; determines the baseline of percent of read
heterozygosity of a sample and is critical to the accuracy of
FF inference. We therefore sequenced maternal wbcDNA and
developed a statistical model to infer F; (Supplementary
Material and Methods). F,, on the other hand, contributes
little to the percent of read heterozygosity, particularly when
the FF is small. In practice, we can safely ignore F, by setting
it to 0. Sequencing errors produce more read heterozygosity
than read homozygosity. The effect can be modeled and the
sequencing error rate can be estimated for an individual
sample from the nonpolymorphic part of genomes covered by
a single read. At each marker covered by more than one read,
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we can write the single-marker likelihood, which involves
parameters (h, F, F,, and e) and data (counts of reference and
alternative alleles and population allele frequencies). Multi-
plying all the single-marker likelihoods we obtain the
composite likelihood, which is a function of h (with F; and
e inferred and plugged in and F, set to 0). Maximizing the
composite likelihood we obtain the maximum likelihood
estimate of FF (see “Materials and Methods”).

Numerical results on FF inference

To demonstrate the effectiveness of our statistical method in
inferring FF, we performed (in silico) simulations to mix
reads from sequences of a mother and her son, conducted
(in vitro) laboratory experiments to mix DNA of mothers and
their male children, and reanalyzed real data from clinical
NIPS samples with putative male fetus (in natura). These
study designs allow us to compare fetal fractions estimated by
our method against those estimated from the sex chromo-
somes. The details of FF estimates from sex chromosomes can
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be found in Supplementary Material and Methods, Supple-
mentary Figs. S1 and S2, and reference.'®

In the in silico experiments, we first mix reads from
mothers and their children at different FF (Supplementary
Material and Methods) to examine how F,; and F, impact the
inference of FFs. Fig. 1a, b demonstrates that F; has a large
effect on FF and F, has a negligible effect. We then focused on
the variations of the FF estimates due to sampling.
The data were simulated from mixing reads of two samples
(a mother—child pair) in the 1000 Genomes Project
(Supplementary Material and Methods). Figure 1c plotted
the mean (of 100 replicates) with bar of the sample standard
deviation of the inferred FF (y-axis) versus the true FF
(x-axis). The sample standard deviation is 0.006 for FF = 0.02
and 0.008 for FF = 0.20. Lastly, we investigated how different
sequencing depths affect the uncertainty of the FF estimates.
Here we assume maternal wbcDNA was sequenced at the
same depth as the cfDNA. We sampled and mixed reads to
simulate 100 NIPS samples with FF=0.10 at different
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Fig. 1 Performance in in silico mixtures. (a) Fetal fraction (FFs) inferred using the full model at the coverage of 0.5x (x-axis) versus FFs inferred using the
full model but setting F; = 0 (y-axis). (b) FFs inferred using the full model at the coverage of 0.5x (x-axis) versus FFs inferred using the full model but setting
F, =0 (y-axis). (c) True FF (x-axis) versus inferred mean of 100 replicates (y-axis) + sample standard deviation (not sd of the mean) from the in silico mixture
experiments. (d) Variations of FF estimates at different coverage when the true FF is 0.1.
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Fig. 3 Performance of fetal fraction (FF) inference in retrospective
clinical noninvasive prenatal screening (NIPS) samples. These 69 sam-
ples with male fetus were selected to have a good representation of FFs,
with emphasis on smaller ones. The inset histogram is the distribution of
ratios between FFs inferred from read heterozygosity and FFs inferred from
sex chromosomes. Note that the two outliers, marked by asterisks, were
confirmed female-male twins.

sequencing depths. Violin plots in Fig. 1d confirmed that
the higher sequencing depth, the smaller the variation of
the FF estimates, and it appears that 0.5x would provide a
good balance between sequencing depth and accuracy. The
same simulations were done for FF=0.04 and FF=0.06

GENETICS in MEDICINE | Volume 22 | Number 2 | February 2020

and similar patterns of variation were observed (Supplemen-
tary Fig. S3).

In the in vitro experiments, we used DNA from 11
mother-son pairs, mixed the DNA at different fetal propor-
tions, sequenced the mixture at 0.5%, and inferred the FFs
separately using sex chromosome dosages and read hetero-
zygosity. Figure 2a compared the inferred FFs. The two sets of
inferences are in high concordance to each other, with the
coefficient of determination of R?> = 0.987, and maximum
absolute deviation being 0.014. Comparing both sets of
inferences against the truth, however, showed that both
estimates have slight upward biases and larger variations for
large FFs (Fig. 2b, ¢). Experimental variation in DNA quantity
measurements for mixing experiment is likely to be the
explanation (Supplementary Material and Methods).

In the in natura experiments, we used samples from
patients who consented to participate in an ongoing study to
improve methods of NIPS (Supplementary Material and
Methods). The study was approved by the Institutional
Review Board of Beijing Hospital and the DNA samples were
de-identified. We first retrospectively selected 69 clinical
samples who carry putative male fetus with FFs (obtained
from sex chromosome dosages) ranging from 0.03 to 0.15 and
we intentionally collected more samples of small FFs,
resequenced their cfDNA and wbcDNA at 0.5, and inferred
FFs. Figure 3a compared FFs inferred from sex chromosomes
with those inferred from the read heterozygosity. The overall
pattern of this plot is highly similar to that of Fig. 2a, with
exception of two outliers whose FFs inferred by read
heterozygosity are about twice as large as those inferred by
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sex chromosomes (Fig. 3b). We hypothesize these two
samples are female-male twins. Following the IRB protocol,
we obtained anonymized patient data and confirmed that
those two samples are indeed female-male twins and both
pregnancies were results of in vitro fertilization (IVF). For
samples with a single male fetuses, FFs inferred by our
method are in high concordance with FFs inferred from
sex chromosomes (coefficient of determination R? = 0.972)
and the largest three absolute deviations are 0.017, 0.016,
and 0.015.

To further evaluate our method in real data and examine
the prevalence of IVF in our clinical samples, we randomly
chose 443 clinical samples and performed the same data
collection and statistical analysis as those 69 retrospect
samples. Figure 4 demonstrated that our method works
well. The 23 red dots (about 5% of 443) in Fig. 4 are IVF
pregnancies with two embryos implanted. Along the blue
line (y=2x) are all red dots, indicating female-male twin
pregnancies. Those vertical clusters of dots along the y-axis
are female fetuses, and the dots along the diagonal line are
male fetuses. For samples with a single male fetus, FFs
inferred by our method are in high concordance with FFs
inferred from sex chromosomes (R> = 0.971) and the
largest three absolute deviations are 0.027, 0.019, and 0.013.

Incorporating priors on FFs to test for aneuploidy

The Z-test compares chromosomal dosages of a sample
against a set of euploid controls to detect fetal trisomy.'”
Because chromosomal dosage estimates have a heavier tail
than the normal distribution (Supplementary Fig. S4), the
Z-test tends to produce more false positives at a fixed
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Fig. 4 Performance of fetal fraction (FF) inference in clinical non-
invasive prenatal screening (NIPS) samples. For each sample (repre-
sented by a dot), FFs estimated from sex chromosomes are on the x-axis and
FFs estimated from read heterozygosity are on the y-axis. Dots marked in
red (23/443) are twin pregnancies after in vitro fertilization (IVF). Samples
with female fetuses are marked in gray, and samples with male fetuses are
marked in black. The gray diagonal line is y =x and the blue line is y = 2x.
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threshold.'® By incorporating an informative null prior to
account for the heavy tail, our Bayesian method can reduce
false positives.'® With the knowledge of the FF, we can also
incorporate the informative alternative prior to compute a
Bayes factor to test for the aneuploidy (Supplementary
Material and Methods). Intuitively, the Z-test only examines
how far a chromosomal dosage is away from the euploid
dosage; with the knowledge of the FF, we can also examine
how close a chromosomal dosage is to the putative dosage by
assuming fetal trisomy. We may use a normal prior for FF
under the alternative hypothesis to capture the uncertainty of
the FF estimates, which critically depends on the sequencing
depth (Supplementary Tables S2 and S3). Note that the ability
to incorporate informative priors (both under the null and
under the alternative) is a deciding advantage of the Bayesian
approach over the Z-test method, which is oblivious to the
alternative hypothesis by design.

To compare powers between the Z-test and our Bayesian
method that incorporates informative priors, we simulated
slightly overdispersed chromosomal dosages under the null,
and used this to decide the cutoff value for both Z and
Bayesian methods (Supplementary Material and Methods).
Then for each target FF denoted by ©, we simulated
chromosomal dosages from N(®, o) and computed Z scores
and Bayes factors, where o depends on sequencing depth and
different chromosomes or regions have different os (Supple-
mentary Tables S2 and $3). The power can be estimated by
the percent of test statistics surpassing their respective cutoff
values. Table 4 demonstrates that the Bayesian method
outperforms the Z-test, particularly for more difficult
situations (smaller sequencing depths and smaller FFs). More
power simulation results using different priors can be found
in Supplementary Tables S4 and S5.

DISCUSSION

We developed a statistical method to infer FF in NIPS,
extensively studied its performance, and demonstrated that
incorporating the knowledge of FF improves statistical
power of NIPS. Our method makes use of read hetero-
zygosity of SNP markers on autosomes and can be applied
to samples with either female or male fetuses. The use of
read heterozygosity, however, makes our method sensitive
to maternal inbreeding coefficient. We therefore propose
to sequence maternal wbcDNA in addition to cfDNA.
Sequencing maternal wbcDNA brings several benefits. First,
it allows us to infer the maternal inbreeding coefficient to
better estimate FF. Second, one can mix sequencing reads
from wbcDNA and cfDNA to infer a diluted FF under a
higher sequencing depth, and the diluted FF can be used to
estimate FF after appropriate scaling. Third, although we
didn’t pursue here, we would like to note that maternal
wbcDNA sequencing can improve NIPS by providing
individual-specific reference.

Sequencing wbcDNA in addition to cfDNA bears extra cost.
Our method, however, can make do without sequencing
wbcDNA. One approach is to plug in the population average
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Table 4 Power comparison between Bayesian method and the Z-test method

FF? Method 0.1x 0.2% 0.5x 1x 2x 5x

0.04 BF 0.8306 0.9845 0.9998 1.0000 1.0000 17.0000
0.04 z 0.8125 0.9779 0.9993 1.0000 1.0000 1.0000
0.06 BF 0.9963 1.0000 1.0000 1.0000 1.0000 1.0000
0.06 z 0.9930 0.9999 1.0000 1.0000 1.0000 1.0000
0.08 BF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.08 z 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.12 BF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.12 z 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FFP Method 0.1x 0.2x 0.5x 1x 2x 5x

0.04 BF 0.0602 0.0800 0.3620 0.6710 0.8830 0.9914
0.04 Z 0.0396 0.0529 0.3500 0.6550 0.8436 0.9832
0.06 BF 0.1797 0.2365 0.7398 0.9575 0.9973 1.0000
0.06 z 0.1521 0.2240 0.7039 0.9321 0.9932 1.0000
0.08 BF 0.3622 0.4539 0.9391 0.9981 1.0000 1.0000
0.08 Z 0.3540 0.4535 0.9163 0.9952 0.9999 1.0000
0.12 BF 0.7092 0.8348 0.9994 1.0000 1.0000 1.0000
0.12 Z 0.6767 0.7973 0.9984 1.0000 1.0000 1.0000

The comparisons were done at different FFs (row) and different coverages (column). The recorded power is at the type | error of 0.001.

BF Bayesian method, Z Z-test.
@Simulated based on empirical data of chromosomes 13, 18, and 21.
bBased on three 5-Mb regions each drawn from the three chromosomes.

inbreeding coefficient, and fit the full model to obtain fetal
fraction (the plug-in method). The other is to jointly fit the
full model to infer both maternal inbreeding coefficient F;
and fetal fraction h. This can be done efficiently using an
iterative method by fixing F; to update h and then fixing h to
update F; until both converge (the iterative method). The
plug-in method worked well for samples with modest
inbreeding coefficient (say, between —0.03 and 0.03), but
suffered significant bias for samples with extreme inbreeding
coefficient. Such an example can be found in Supplementary
Fig. S5 (left), in which the outlying sample has an inbreeding
coefficient of 0.085. The iterative method, on the other hand,
worked well for samples with extreme inbreeding coefficients,
but produced a larger variation for samples with modest
coefficients (Supplementary Fig. S5, middle). Naturally we
combined the plug-in method and the iterative method via
thresholding F; (estimated from the iterative method), such
that if |F;| >0.03 we used the iterative method to estimate h
and otherwise we used the plug-in method. Supplementary
Fig. S5 (right) demonstrated the strength of the combined
approach. More extensive numerical studies are warranted.
Our method is designed for nonadmixed samples, but it can
be extended to work with admixed samples such as African
Americans and Mexicans. The trick is to select a subset of SNPs
to make the inference. The natural weight goes into the
likelihood calculation for each SNP is p(1 — p) where p is the
reference allele frequency. Taking African Americans as an

example, we defined logr = log, p;gtﬁ;; for each SNP where p;

and p, are reference allele frequencies of a SNP in European and
African populations respectively. We select SNPs whose logr are
in a small range, e.g, (—1, 1), to make inferences. Since these
SNPs are less ancestry informative, our Hardy-Weinberg
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assumption is arguably applicable to these SNPs. Supplementary
Fig. S6 showed such SNPs are plenty (more than 60%) among
SNPs whose minor allele frequencies are >0.01 between any
pair of ancestral populations. We simulated ¢fDNA from
African American samples with different fetal fractions
(Supplementary Material and Methods), and used selected
SNPs to infer their fetal fractions, using either European allele
frequencies or African allele frequencies. Supplementary
Fig. S7 showed that this approach works well, particularly
when the two sets of estimates were averaged.

The knowledge of FF is critical to increase the efficacy of
NIPS. One study suggests that samples with smaller FFs may
have increased risk of fetal aneuploidy.” Reporting a “no call"
and referring the subject to an invasive test is an effective way
to reduce false negatives among these samples. Alternatively,
we can perform additional sequencing to increase the
sequencing depth to a level that has sufficient power for a
given FF. The similar adaptive design can be applied to screen
microduplications and microdeletions, where the power tends
to be much smaller than the whole chromosome trisomy
screening (Table 4).

Because of the widespread practice of drastically reducing
costs, NIPS is usually done at the raw sequencing depth of
0.1x in China. When the FF is as large as 6%, 0.1x appears to
have sufficient power to screen for trisomy of whole
chromosomes. When the FF is at 4%, however, the power is
83% at the type I error of 0.001, which is unsatisfactory given
the high social and economic cost of false negatives (Table 4).
The situation is much worse for using NIPS to screen for
microdeletion and microduplication (NIPS+). Such screen-
ings are done at the raw sequencing depth of 0.5x in China.
At such a sequencing depth, our power simulation suggested
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that for a 5M region, the power is merely 36% at FF of 4%,
and 74% at FF of 6% (Table 4). On the other hand, our data
suggested that there are 2.2% clinical samples whose FF is
<4% and 12.9% clinical samples whose FF is <6% (Supple-
mentary Fig. S8). Therefore, it is imperative to increase
sequencing depths for both NIPS and NIPS+ to guarantee the
efficacy of the screening.
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