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A B S T R A C T   

The Fenton process is widely employed for decolorizing industrial wastewater. Therefore, it is 
imperative to construct a model for optimizing the operational parameters and estimating the 
efficiency of decolorization within this process. In this study, an artificial neural network (ANN) 
model was created based on experimental data provided by a previous researcher who examined 
the decolorization of Direct Red 16 dye (DR16) using a heterogeneous Fenton process within a 
microchannel reactor. This model was utilized to optimize and forecast the efficiency of decol
orization in the Fenton process. The accuracy of the model was validated by comparing its out
comes with actual experimental data. To further improve the efficiency of decolorization, optimal 
operational parameters were ascertained utilizing the genetic algorithm method. The study 
revealed that as dye concentrations increased from 10 to 40 mg/l, decolorization efficiencies 
improved proportionately, peaking at 89.78 %. Optimal operational parameters for maximizing 
efficiency were identified as a feed flow rate of 1 ml/min, H2O2 concentration at 500 mg/l, Fe2+
concentration of 4 mg/l, and maintaining pH between 2.6 and 2.8. Insights derived from both 
experimental and model-generated data were used to analyze the impact of operational param
eters on decolorization efficiency.  

Nomenclature  

Acronym Parameter 
ANN Artificial neural network 
DR16 Direct Red 16 dye 
ARIMA Autoregressive integrated moving average 
MLR Multiple linear regression 
R2 correlation coefficient 
MSE mean square error 
AARE mean absolute relative error 

(continued on next page) 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: sadeghzadehj@ripi.ir (J. Sadeghzadeh Ahari), M.Esfandyari@ub.ac.ir (M. Esfandyari), m.rahimi@razi.ac.ir (M. Rahimi).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e33862 
Received 17 February 2024; Received in revised form 10 June 2024; Accepted 27 June 2024   

mailto:sadeghzadehj@ripi.ir
mailto:M.Esfandyari@ub.ac.ir
mailto:m.rahimi@razi.ac.ir
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e33862
https://doi.org/10.1016/j.heliyon.2024.e33862
https://doi.org/10.1016/j.heliyon.2024.e33862
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e33862

2

(continued ) 

Xmin minimum values of the raw data 
Xmax maximum values of the raw data 
n number of data points 
X the mean of X over the n samples 
Xobs actual values 
Xcal predicted values  

1. Introduction 

The textile industry stands out as one of the most significant contributors to pollution due to the substantial quantities of dyes and 
chemicals it encompasses. The presence of these substances in water significantly contributes to environmental pollution and disrupts 
the ecosystems of various living organisms [1–3]. With over 100,000 commercial colors available, approximately 7 × 107 tons of 
dyestuff are produced annually [4–6]. Dye wastewater primarily originates from industries such as papermaking, food processing, 
cosmetics, sanitation, textiles, dyeing, printing, and tanning [7,8]. Within the realm of aromatic organic dyes, azo dyes represent the 
most extensive group commonly utilized across diverse industries [9,10]. 

Due to their ease and cost-effectiveness of synthesis, stability, and wide range of available colors, synthetic dyes have become the 
primary choice over natural dyes in the textile industry. These dyes typically contain a chromophore group with one or more azo (-N] 
N-) groups, often conjugated with benzene and/or naphthalene systems. However, the release of these dyes into water bodies poses 
significant environmental risks, causing aesthetic issues, reducing light penetration, and presenting health hazards such as toxicity, 
mutagenicity, and carcinogenicity to living organisms [1,11]. 

It is crucial to effectively treat wastewater contaminated with dyes that are discharged from textile industries in order to prevent 
the pollution of surface water, soil, and the surrounding environment [2]. In recent times, a range of physicochemical and biological 
treatment methods have been recommended for the removal of dyes from these industrial wastewater streams [12,13]. Physical 
techniques like absorption and adsorption involving adsorbents primarily focus on capturing the colored pollutants through the 
process of adsorption and phase change without altering the fundamental nature of the pollutants [14,15]. 

Conversely, while chemical treatment methods like oxidation, flocculation, and precipitation offer high treatment effectiveness for 
color removal, they are met with hesitation due to issues such as high expenses, increased sludge generation, limited applicability 
across all dye types, and the generation of hazardous carcinogenic byproducts [16,17]. Biotechnological strategies, such as biological 
treatment methods, have gained global acceptance for treating dye-contaminated wastewater, primarily due to their reduced sludge 
production, cost efficiency, and environmental friendliness [18,19]. In biological treatment processes, microorganisms play a crucial 
role in breaking down and treating azo dyes present in wastewater [19,20]. 

A wide array of dyes are accessible in the market, with 80 % of them being Azo chromophores. Azo dyes are chemical substances 
that feature Azo groups (-N]N-) bonded to benzene or naphthalene rings within their molecular structure. Numerous techniques have 
been devised for handling dye pollutants found in the wastewater of textile industries [21,22]. These methods encompass coagulation, 
ozonation, activated carbon adsorption, flocculation, and Fenton oxidation as effective strategies for dye removal [22,23]. 

Recent research endeavors have directed their attention towards utilizing the Fenton process as a means to eliminate various types 
of Azo dyes [22,24]. The Fenton process stands out as a highly efficient and rapid wastewater treatment method, functioning by 
producing highly reactive hydroxyl radicals from the Fe2+ and H2O2 reagents [25,26]. An essential benefit of the Fenton process lies in 
its straightforward nature and the absence of a requirement for intricate equipment. Furthermore, the chemicals employed in this 
process are readily accessible at affordable prices. 

Azo dyes are extensively utilized in various industries such as textiles, paper, leather tanning, printing, coatings, and cosmetics, 
owing to their rapid chemical stability, diverse color range, vividness, cost-effective production, and other beneficial properties [2,22, 
27]. However, a portion of these dyes is lost during the manufacturing process, leading to the presence of azo dyes and other hazardous 
chemicals in the wastewater generated by these industries. Azo dyes consist of chemical compounds with azo groups (-N]N-) attached 
to benzene or naphtha rings within their molecular framework. Unfortunately, due to their intricate molecular composition, these 
colors are not easily biodegradable. 

The discharge of azo dyes into wastewater adversely impacts the photosynthesis process of aquatic ecosystems by obstructing 
sunlight penetration and diminishing dissolved oxygen levels. To address pollutants in industrial wastewater, a plethora of methods 
are available, with the Fenton process emerging as one of the most efficient solutions. The primary advantage of the Fenton process lies 
in its capability to completely break down pollutants into carbon dioxide, water, and mineral salts using cost-effective and easily 
attainable chemical substances. Through the combination of hydrogen peroxide and Fe2+, the Fenton process generates OH radicals as 
potent oxidation agents, facilitating the oxidation and elimination of organic pollutants from the wastewater [22,25,26]. 

Fenton reactions can be explained as equations (1)–(6): 

H2O2 + Fe2+ → Fe3+ + .OH + OH− (1)  

Fe2+ + .OH → Fe3+ + OH− (2)  

H2O2 +
.OH → H2O + HO.

2 (3)  
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Fe3+ +H2O2 → Fe2+ +H+ + HO.
2 (4)  

.OH+ .OH → H2O2 (5)  

.OH+Organic Components →Products (CO2 +H2O+ Salts) (6) 

A review of the literature on the Fenton process indicates that the majority of studies have focused on collecting experimental data 
in batch reactors for decolorization of various types of azo dyes [20,28,29]. Conversely, there is a scarcity of studies exploring the 
utilization of continuous flow reactors in the Fenton process [16,19,30,31]. In a notable study, Rahimi et al. [22] employed a Y-shaped 
continuous microchannel reactor to decolorize an Azo dye (DR16) using the Fenton process. Their findings suggest that utilizing 
microreactors for continuous flow Fenton processes yields higher decolorization efficiency when compared to the conventional use of 
batch reactors. 

Determining operational conditions that enhance the decolorization efficiency of the Fenton process is crucial. In light of the 
findings presented by Rahimi et al. [22] and the benefits associated with employing microreactors for the decolorization process, our 
study is dedicated to developing a suitable model for this purpose. Presently, numerous conventional methods exist for predicting 
water quality, including multiple linear regression (MLR) [18,32], autoregressive integrated moving average (ARIMA) [33,34], among 
others. 

The MLR method’s inherent linearity poses a limitation in detecting non-linear relationships among water quality parameters. On 
the other hand, the ARIMA method’s primary drawback lies in its reliance on a linear model assumption [35]. With the continuous 
enhancement of computing capabilities in modern computers, artificial neural network (ANN) models and data-driven approaches 
have seen significant advancements. ANN models prove valuable in situations where establishing a mathematical model between input 
and output data proves challenging. Moreover, artificial neural networks necessitate fewer initial assumptions [18,21,36] and can 
deliver superior accuracy [37,38] compared to traditional modeling techniques. The capability of artificial neural networks to address 
non-linear challenges has garnered increased attention in water quality research [39]. 

Following the establishment of the optimal model, the study delved into examining the impact of operational conditions on 
decolorization efficiency. Subsequently, the modeling proficiency and the application of the genetic algorithm (GA) optimization 
method were implemented to derive the optimal values of operating parameters that maximize decolorization efficiency. Given the 
demonstrated advantage of heightened decolorization efficiency through the utilization of microreactors in the continuous flow 
Fenton process as opposed to conventional batch reactors, it becomes imperative to identify the operational conditions that would 
optimize the decolorization efficiency of this process [23,40]. 

Furthermore, given the distinct advantages of the ANN method in comparison to other approaches, the novelty of this study lies in 
the creation of an optimal ANN model for modeling the microreactor involved in the Fenton process, as informed by the findings 
presented by Rahimi et al. [22]. Additionally, following the development of the ANN model, the genetic algorithm (GA) was applied to 
determine the optimal values of operating parameters aimed at maximizing the decolorization efficiency of the process. 

2. Experimental data 

For the experiments, a total of 105 samples were meticulously prepared and tested. The prescribed quantity of FeSO4⋅7H2O was 
introduced into the dye solution, followed by pH adjustment of the solution. Flow rates for both feeds were accurately gauged using 
two distinct flow meters. Subsequently, samples were extracted from the output stream of the microreactor. Analysis of the samples 
was conducted using a UV spectrophotometer from UNIC Company. The absorption spectrum of the DR16 solution was scrutinized to 
pinpoint the wavelength of maximum absorption. Next, the decolorization efficiency was determined by assessing the absorption 
intensity of the solution at 524 nm. In this study, the experimental data documented by Rahimi et al. [22] was harnessed for model 
development. Their research entailed an exploration of decolorization efficiency under varying experimental conditions, including 
solution pH, feed flow rate, FeSO4, H2O2, and dye concentrations. The range of parameters investigated is detailed in Table 1, with all 
experiments conducted at a consistent temperature of 25 ◦C. 

Further insights into the experimental setup and procedure can be found in their publication [22]. In a summary, the chemicals 
utilized in their study, including hydrogen peroxide (H2O2, 35 %), ferrous sulfate heptahydrate (FeSO4⋅7H2O, 99 %), sulfuric acid 
(H2SO4, 98 %), and sodium hydroxide (NaOH), were procured from Merck. The azo dye Direct Red 16 (DR16) with a purity of 99 % 
was obtained from Alvan Sabet Company in Iran. The decolorization of the DR16 dye was conducted continuously within a micro
reactor featuring a quartz cover plate. Within this reactor, a Y-shaped Plexiglas microchannel with dimensions of 0.9 mm depth, 1 mm 

Table 1 
Experimental data ranges used in this study.  

Parameter Range 

pH 2–5.5 
[Fe2+] (mg/l) 0.5–4 
[H2O2] (mg/l) 150–500 
[DR16] (mg/l) 10–40 
Flow rate (ml/min) 1–8 
Temperature (◦C) 25  
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width, and 70 mm length was employed. The initial pH of the solutions was adjusted using sulfuric acid and sodium hydroxide, verified 
using a pH meter. The concentration of the DR16 solution was measured and recorded pre and post each experimentation using a 
UV–visible spectrophotometer sourced from UNIC Company. 

3. Method 

3.1. Artificial neural network 

Modeling serves as a valuable tool for predicting process outcomes and identifying optimal operating conditions efficiently and 
cost-effectively. In traditional chemical reactor modeling, the standard approach involves solving mass, energy, and momentum 
balance equations simultaneously using conventional mathematical techniques. However, in the case of the Fenton Process for 
decolorizing DR 16 dye, where reaction rates are not readily available, the conventional modeling methods are not applicable. Hence, 
resorting to black box methods becomes necessary for modeling this process. In this study, the neural network modeling method was 
employed for this purpose. The utilization of Artificial Neural Networks (ANN) for process modeling has been extensively explored in 
various scientific and engineering domains, as documented in numerous articles [23,34,41–47]. Artificial neural networks function as 
dynamic, non-linear systems comprising a multitude of processing units (neurons) interconnected akin to a biological neural network. 

Artificial neural networks consist of two main types: feedforward neural networks and recurrent neural networks. In a feedforward 
neural network, input information flows solely in a forward direction, moving from the input nodes to the output nodes. Each node 
within a layer is connected to nodes in both the subsequent and preceding layers, creating a unidirectional flow without backward 
connections. The most prevalent form of a feedforward neural network is the Multilayer Perceptron (MLP), which typically comprises 
an input layer, an output layer, and one or more hidden layers. The number of nodes in the input and output layers corresponds to the 
number of input variables and the number of variables to be predicted, respectively. Determining the optimal structure of the hidden 
layers, their nodes, and the transfer functions between layers often involves an iterative process of trial and error. This iterative 
approach allows for the exploration of various network architectures, ultimately aiming to identify a structure with fewer layers and 
nodes that minimizes prediction errors [4,18,21]. 

In this investigation, a combination of statistical and graphical criteria was employed to identify the most suitable network ar
chitecture. The statistical metrics utilized for evaluation included the correlation coefficient (R2), mean square error (MSE), and mean 
absolute relative error (AARE). In an ideal scenario, the optimal values for R2 is 1.0, and for both MSE and AARE, it is 0.0. These 
statistical indicators are determined as described in equations (7)–(9): 

R2 =1 −

∑n

i=1
(Xobs − Xcal)

2

∑n

i=1
(Xobs − Xcal)

2
(7)  

MSE=
1
n
∑n

h=1
(Xobs − Xcal)

2 (8)  

AARE=
1
n
∑

⃒
⃒
⃒
⃒
Xobs − Xcal

Xobs

⃒
⃒
⃒
⃒ ∗ 100 (9)  

Where ‘n’ represents the number of data points, and X is the mean of X across the n samples, with Xobs and Xcal denoting the actual and 
predicted values, respectively. Meanwhile, the graphical criterion assesses the model’s quality based on the proximity of all data point 
pairs to the Xobs = Xcal line (referred to as the first bisectrix). 

3.2. Genetic algorithm 

John Holland introduced the genetic optimization method in 1975 at Michigan State University, drawing inspiration from Darwin’s 
theory of evolution. This approach stands out from traditional optimization techniques as it operates as a parallel and evolutionary 
search method that does not rely on calculating derivatives of the objective function to identify optimal solutions. A notable advantage 
of this method over classical approaches is its resistance to the initial starting point’s influence on optimization outcomes. Conse
quently, the likelihood of encountering a local optimum is significantly minimized when utilizing this method [48]. 

4. Result and discussion 

4.1. Experimental 

The experimental study of this research reports on the decolorization of an Azo dye (DR16) in a Y-shaped microreactor utilizing the 
Fenton process. The impact of key operational parameters—such as dye, H2O2, and Fe2+ concentrations, solution pH, and feed flow 
rates—on decolorization efficiency under continuous conditions is explored. The findings demonstrated that within pH levels ranging 
from 3 to 4, higher disappearance of DR16 was observed in the feed stream. Additionally, greater decolorization efficiencies were 
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achieved with elevated Fe2+ and H2O2 concentrations, lower dye concentration, and reduced feed flow rate. Remarkably, an efficiency 
of 86 % for DR16 dye decolorization was attainable in just 4.2 s of residence time using this microreactor, attributed to effective mixing 
of reactants at the microreactor’s mixing point. This research underscores the advantages of employing microreactors for continuous 
flow decolorization processes compared to traditional batch stirred tank reactors. Further investigations performed by other scientists 
elaborated the technical aspect of this research summarized bellow briefly. 

In 2021, Cruz and colleagues undertook a study on the degradation of Acid Black 210 dye in synthetic and industrial effluents, 
leveraging a CoFe2O4/NOM magnetic hybrid catalyst. Their research demonstrated that the heterogeneous electro-Fenton process 
outperformed the generation of hydrogen peroxide in terms of efficiency. Remarkably, the catalyst, crafted using an environmentally 
friendly solvent, sustained exceptional activity over multiple uses, leading to significant advancements in contaminant removal [4]. 

In 2022, Kumar and Gupta delved into the electrochemical oxidation of Direct Blue 86 dye using a Ti electrode coated with a mixed- 
metal oxide. Their research elucidated the ideal parameters for maximizing dye and COD removal, leading to complete dye miner
alization. Moreover, the study delved into degradation pathways, modeling techniques, and projected treatment expenses, under
scoring the method’s efficacy in treating textile wastewater [49]. 

In 2022, Bravo-Yumi and colleagues directed their efforts toward the electrochemical oxidation of diverse azo dyes, including 
mono-azo, diazo, and tetra-azo variants often encountered in the tannery sector. By pinpointing the optimal conditions for effective 
oxidation, their work resulted in substantial color removal and COD degradation while maintaining low energy usage. Furthermore, 
the investigation delved into the transformation of carboxylic acids to gauge the extent of dye oxidation [36]. 

In 2023, Chi and collaborators delved into the remediation of Reactive Red 2 azo dye wastewater via the Electro-Ce(III) (E-Ce(III)) 
process. Through meticulous exploration of the optimal operational parameters to attain heightened removal efficiencies, the study 
unraveled the underlying mechanisms and energy utilization of the process. The E-Ce(III) approach demonstrated significant potential 
in fostering efficient dye degradation, characterized by minimal energy consumption and improved biodegradability of wastewater. 
These findings underscore its viability as a sustainable water treatment technique [7]. 

4.2. Predictive modeling with artificial neural network 

To ascertain the dye concentration in the output stream, several ANN architectures were devised. These networks were constructed 
utilizing the Neural Network Toolbox within MATLAB (R2020b) software. Given its efficient convergence capability, the Back- 
propagation training method employing the Levenberg-Marquardt algorithm was selected. To expedite convergence and enhance 
the neural network’s accuracy, all data were normalized within the range of − 1 to 1 using the following equation (10). 

Xn =
2(X − Xmin)

Xmax − Xmin
− 1 (10)  

where Xmin and Xmax are the minimum and maximum values of the raw data. 
Following the normalization of the experimental data comprising 105 data points, they were randomly partitioned into two distinct 

sets. The training data set, constituting 70 % of the total data, was employed to estimate neural network parameters (weights and 
biases), while the remaining 30 % formed the test data set for network validation. In Table 2, the statistical outcomes and specifics of 
the chosen neural network model, determined by the lowest error metrics (MSE and AARE) and the highest R2 value, are elaborated 
upon. 

As indicated in Table 2, the ideal neural network configuration for predicting the effluent color concentration comprises an input 
layer, a hidden layer, and an output layer. The respective neuron counts in these layers are 5, 5, and 1, illustrated in Fig. 1. 

The activation function in developed model and for the hidden layer and the output layer is tansig (Eq. (11)). 

f(x)=
1 − e− x

1 + e− x (11) 

The input parameters for this neural network encompass the inlet flow rate, pH level, and the concentrations of Fe2+, H2O2, and 
dye. The network’s output corresponds to the dye concentration in the outlet flow. Graphical representations are detailed in Fig. 2, 
depicting the assessment of the final neural network model’s efficacy in predicting decolorization efficiency. Notably, the parity plot 
illustrates the close clustering of all points around the first bisectrix, emphasizing the model’s accuracy. Overall, the statistical and 
graphical evaluations affirm the proposed model’s strong alignment with experimental findings. 

Table 2 
Statistic results and details of the final neural network model.  

No. of Hidden Layer 1 

No. of Nodes 5-5-1 
Type of Transfer Function tangsig-tansig 
R2(Train) 0.997 
MSE(Train) 5.05e-4 
AARE%(Train) 2.28 
R2(Test) 0.995 
MSE(Test) 6.34e-4 
AARE%(Test) 2.38  
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4.3. Effect of operating parameters 

The effectiveness of the developed ANN model in simulating the Fenton process was evaluated through a comparison of predicted 
and experimental data on decolorization efficiency. Simulations involved adjusting two key operating parameters while holding the 
remaining parameters constant (refer to Figs. 3–6). The outcomes validate that the ANN model, which was created, can reliably 
forecast the decolorization efficiency of the Fenton process with a high degree of accuracy. 

The efficiency of oxidizing organic pollutants, such as azo dyes, through the Fenton process is directly linked to the concentration of 
oxidants introduced into the reaction medium (solution). Hydrogen peroxide (H2O2) serves as the primary oxidant in the Fenton 
process. The impact of varying H2O2 concentrations on decolorization efficiency is depicted in Fig. 3, showcasing the influence at H2O2 
concentrations of 150 mg/l, 250 mg/l, and 500 mg/l while maintaining a consistent DR16 concentration, ferrous ion concentration, 
solution pH, and temperature at 30 mg/l, 1 mg/l, 3.5, and 25 ◦C, respectively. The data demonstrates a positive correlation between 
higher H2O2 concentrations within the range of 150 mg/l to 500 mg/l, at a constant feed flow rate, and enhanced decolorization 
efficiency. This trend is attributed to the rise in hydroxyl ion concentration with increasing H2O2 levels, consequently elevating the 
degradation reaction rate (as per Eq. (6)) and overall process performance. 

The impact of pH on decolorization efficiency was explored across various feed flow rates. As illustrated in Fig. 4, at a consistent 

Fig. 1. A three-layer feed-forward neural network used for prediction of effluent Dye concentration.  

Fig. 2. Comparison between the actual test data set and the ANN model predictions for Decolorization efficiency%.  

Fig. 3. Comparison between the actual data (symbols) and the ANN model predictions (dashed lines) for Decolorization efficiency% as a function of 
feed flow rate at several H2O2 concentrations (DR16 = 30 mg/l, pH = 3.5, Fe2+ = 1 mg/l, T = 25 ◦C). 
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feed flow rate, increasing the pH initially enhances decolorization efficiency up to a peak level before exhibiting a decline. The pH level 
plays a critical role in the generation of free radicals and consequently influences the effectiveness of the Fenton process. It is widely 
acknowledged that at pH levels below the optimal range (around 2.5–3.5), hydrogen peroxide (H2O2) reacts with excess H+ ions to 
form oxonium ions (H3O2

+), which are stable and do not engage in the production of hydroxyl radicals. This circumstance leads to a 
decrease in decolorization efficiency. Conversely, at pH levels beyond the optimal range, ferrous ions become unstable and tend to 

Fig. 4. Comparison between the actual data (symbols) and the ANN model predictions (dashed lines) for Decolorization efficiency% as a function of 
pH at several feed flow rates (DR16 = 30 mg/l, H2O2 = 150 mg/l, Fe2+ = 1 mg/l, T = 25 ◦C). 

Fig. 5. Comparison between the actual data (symbols) and the ANN model predictions (dashed lines) for Decolorization efficiency% as a function of 
feed flow rate at several dye concentrations (pH = 3.5, H2O2 = 150 mg/l, Fe2+ = 1 mg/l, T = 25 ◦C). 

Fig. 6. Comparison between the actual data (symbols) and the ANN model predictions (dashed lines) for Decolorization efficiency% as a function of 
Fe2+ concentration at several feed flow rates (pH = 3.5, H2O2 = 150 mg/l, DR16 = 30 mg/l, T = 25 ◦C). 
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precipitate, forming ferrous and ferric hydroxides (as per Eq. (2)). These species impede the reaction between Fe2+ and H2O2, resulting 
in limited hydroxyl radical generation and a subsequent reduction in decolorization efficiency [46,47,50]. 

The synergistic impact of dye concentration and feed flow rate on decolorization efficiency is illustrated in Fig. 5. The findings, 
documented at a pH of 3.5, H2O2 concentration of 150 mg/l, ferrous ion concentration of 50 mg/L, and varying feed flow rates from 1 
to 8 ml/min, demonstrate that, at a consistent flow rate, escalating dye concentration leads to a reduction in decolorization efficiency. 
This decline in efficiency with increasing dye concentration can be attributed to the insufficient availability of hydroxyl radicals for the 
degradation of all dye molecules. 

In the Fenton process, the concentration of Fe2+ serves as a crucial catalyst that significantly impacts decolorization efficiency. 
Illustrated in Fig. 6, the decolorization efficiency trends across Fe2+ concentrations ranging from 0.5 to 4 mg/l depict an increase in 
efficiency with higher Fe2+ concentrations across all feed flow rates. This relationship can be elucidated by the direct proportionality 
between the production of hydroxyl radicals in the Fenton process and Fe2+ concentrations. As Fe2+ concentrations rise, there is a 
corresponding enhancement in decolorization efficiency. 

Furthermore, the analysis of feed flow rate influences on decolorization efficiency across various operational conditions, as out
lined in Figs. 3–6, reveals a decrease in decolorization efficiency with escalating feed flow rates. This decline can be attributed to the 
reduced contact time within the reactor resulting from increased feed flow rates. 

4.4. Optimization 

In this work, MATLAB (R2020b) optimization toolbox was employed by using of the function “GA”. The optimal problem at 
constant inlet Dye concentration could be expressed in the following equation (12): 

f(xi)=max(DecolorizationEfficiency%) (12)  

Where: xi = pH, Inlet Flow rate (ml/min), Fe2+ and H2O2 Concentration (mg/l). 
In tackling the optimization conundrum at hand, the decision variables, representing the pivotal operating parameters, were 

meticulously selected based on the stipulated boundaries outlined by Rahimi et al. [22], as delineated in Table 1. Employing a potent 
ANN model integrated with genetic algorithm techniques, the research sought to pinpoint the optimal operational parameters 
conducive to the maximization of the decolorization efficiency within the Fenton process framework [39,51–54]. The outcomes un
veiled in Table 3 encapsulate the optimal operating parameters at distinct dye concentrations, as ascertained through the adept uti
lization of the developed ANN model in conjunction with the genetic algorithm optimization approach. Notably, the findings in Table 3 
unequivocally underscore that peak decolorization efficiency at each dye concentration within the designated range of operating 
parameters (as detailed in Table 1) was concomitantly achieved at the minimal feed flow rate (maximum contact time), while 
simultaneously leveraging maximum levels of H2O2 and Fe2+ concentrations to amplify OH radical generation [25,26,55,56]. 
Moreover, maintaining the pH within the confines of 2.6–2.8 further augmented the efficacy of the Fenton process optimization 
endeavor. 

The escalating dosages of H2O2 and Fe2+ coupled with the decreased feed flow rate and their favorable impact on enhancing 
decolorization efficiency have been elucidated earlier. Furthermore, the findings underscore a notable trend—amid identical opera
tional settings, elevating dye concentrations yield optimum efficiency levels at lower pH values. This phenomenon can be attributed to 
the heightened effectiveness of hydroxyl radicals formation in acidic environment. Consequently, with a rise in dye concentration 
within the same operational context, it becomes imperative to foster an environment conducive to heightened hydroxyl radical 
production, consequently necessitating a reduction in the solution’s pH [22,28,57–59]. 

Delving into the optimal pH range as delineated in Table 3 warrants elucidation. Notably, existing literature, including references 
[21,30,59–61], advocates for a pH approximation of 3 as an optimal for the Fenton process. Consequently, the optimal pH range 
presented in this study harmonizes aptly with the values expressed in prior research endeavors, underscoring a good alignment with 
established scientific literature [62–65]. 

5. Conclusion 

This article presents a comprehensive modeling approach employing artificial neural networks to facilitate the decolorization of the 
DR16 azo dye utilizing the Fenton process within a microchannel reactor setting. The pinnacle of this endeavor was the development of 
an optimal ANN model tailored for estimating the effluent dye concentration. This develped model comprises a three layers encom
passing neurons distributed as 5, 5, and 1, respectively. Within this model’s construct, the neural network’s input variables contain 
pivotal parameters including the inlet flow rate, pH level, as well as the concentrations of the dye, Fe2+, and H2O2. On the output, the 
network’s encapsulates the effluent dye concentration. 

The comparative analysis between the experimental data and the outcomes generated by the proficiently developed ANN model 
unequivocally established the model’s adept predictive capabilities. The probing investigation into the operational parameters’ in
fluence on the system’s performance, facilitated by the adept ANN model, unraveled key insights. Notably, the findings underscore the 
pivotal roles played by the pH level, feed flow rate, and concentrations of Fe2+, H2O2, and the dye in steering the decolorization of 
DR16. Evidently, escalating concentrations of Fe2+ and H2O2 can influence in augmenting dye decolorization. Conversely, the 
diminish in dye concentration and feed flow rate induce adverse impact on decolorization efficiency. These findings underscore 
interplay between the operational variables and the decolorization efficacy within the experimental framework, shedding light on the 
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strategic optimization imperatives for system performance enhancement. 
The synergistic integration of the developed ANN model with a genetic algorithm was leveraged to derive optimal operational 

parameters aimed at maximizing decolorization efficiency across varying dye concentrations. The outcomes unveiled that the peak 
decolorization efficiencies at 10, 20, 30, and 40 mg/l dye concentrations stood at 72.82 %, 85.94 %, 87.72 %, and 89.78 %, 
respectively. The meticulous calibration rendered the following optimal parameters: a feed flow rate of 1 ml/min, H2O2 concentration 
set at 500 mg/l, Fe2+ concentration at 4 mg/l, and a pH range spanning from 2.6 to 2.8. 
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