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Abstract: Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children,
comprising 75–85% of cases. Aggressive treatment of leukemias includes chemotherapy and antibi-
otics that often disrupt the host microbiota. Additionally, the gut microbiota may play a role in the
development and progression of acute leukemia. Prebiotics, probiotics, and postbiotics are considered
beneficial to health. The role of prebiotics in the treatment and development of leukemia is not well
understood, but inulin can be potentially used in the treatment of leukemia. Some probiotic bacteria
such as Lactobacillus shows anticancer activity in in vitro studies. Additionally, Bifidobacterium spp.,
as a consequence of the inhibition of growth factor signaling and mitochondrial-mediated apoptosis,
decrease the proliferation of cancer cells. Many bacterial metabolites have promising anticancer
potential. The available research results are promising. However, more research is needed in humans,
especially in the child population, to fully understand the relationship between the gut microbiota
and acute leukemia.

Keywords: microbiota; gastrointestinal tract; inulin; pectin; anticancer; lactobacillus; fiber; folic acid;
SCFA; tryptophan

1. Introduction

The most common type of leukemia in children is acute lymphoblastic leukemia
(ALL) comprising 75–85% of cases, with the highest incidence between 2 and 5 years
of age, although it can occur at any age. In most cases of childhood, ALL (about 85%)
are of B lineage. The current classification of B-line leukemia is based on seven specific
genetic aberrations. Typical B-ALL aberrations include: t(12;21) [ETV6–RUNX1] t(1;19)
[TCF3–PBX1], t(9;11) [BCR–ABL1]. Determining the type of mutation is very important
because it has a prognostic value and determines the method of treatment. The basis
for the development of leukemia is the formation of fusion genes such as ABL, ETV6, or
PAX5. In addition, there is a loss of the tumor suppressor gene CDKN2A. The second type
of leukemia is a T-cell line. It accounts for 10–15% of the leukemia cases in children. T-
lineage leukemias are characterized by a worse prognosis and the need for more aggressive
treatment with high doses of methotrexate, dexamethasone, or asparaginase. Genetic
lesions in T–ALL are diverse and complex. Chromosomal aberrations are present in 50% of
patients with T–ALL. Unfortunately, their prognostic value is not well defined and they
are not used for risk stratification. Based on the gene expression, four major subtypes of
T–ALL have been identified (TLX1, LYL1, TAL/LMO2, and TLX3). The basis of all leukemia
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subtypes is the formation of immature lymphoid cells, known as blasts, which are unable
to differentiate into functional lymphocytes [1]. They accumulate in the bone marrow and
blood and infiltrate other organs, damaging them and leading to systemic disease. The
treatment of acute leukemia typically involves chemotherapy, radiation therapy, and/or
stem cell transplantation. Advances in treatment strategies have led to high cure rates and
currently, 5-year overall survival (OS) rates exceed 90% [2]. The method of choice in ALL
treatment is chemotherapy, typically divided into three phases—induction, consolidation,
and maintenance phase [3].

The gut microbiota is the collection of microorganisms that live in the gastrointestinal
tract. In a state of health and normal circumstances, the microbiota of the digestive tract
is composed of several strains of bacteria such as Bacterioides, Fusobacteria, Firmicutes, Pro-
teobacteria, Actinobacteria, and viruses, fungi, and protozoa [4]. Many recent metagenomics
studies have showed that each person’s intestinal microbiota consists of a unique collection
of microorganisms that constantly interact with each other and with the host. The specific
composition of individual microbiota varies extensively and depends on many factors,
such as genetic variation age, diet, lifestyle, diseases, and medications [5]. Alterations
in the relatively stable microbiota are called dysbiosis, which according to recent studies
has a tremendous impact on human health [6]. The gut microbiota may play a role in the
development and progression of acute leukemia. Changes in the gut microbiota could be
associated with the response to treatment. Some studies have been undertaken in animal
models—germ-free mice had several unfavorable symptoms of immune problems, i.e.,
defects in lymphoid tissue function, immunoglobulin A deficiency, imbalance in the T
cell ratio, and disturbances in the population of hematopoietic cells [7]. However, more
research is needed in humans, especially in the child population, to fully understand the
relationship between the gut microbiota and acute leukemia [8]. These studies should not
be limited to the analysis of general microbiota composition but also should be holistically
focused on probiotics, prebiotics, and postbiotics.

1.1. Prebiotics

The current definition provided by the International Scientific Association for Probi-
otics and Prebiotics (ISAPP) indicates that a prebiotic is “a substrate that is selectively used
by host microorganisms that confer a health benefit” [9]. The main criteria to classify a sub-
stance as a prebiotic include resistance to digestion and absorption in the gastrointestinal
tract, lowering the pH of the intestinal content, the possibility of fermentation by intestinal
bacteria and stimulating their growth, as well as a positive effect on the health of the
host [10]. The classical prebiotics are galactooligosaccharides (GOS), fructooligosaccharides
(FOS), human milk oligosaccharides (HMO), xylooligosaccharide (XOS), mannanoligosac-
charide (MOS), and inulin. Polyphenols and polyunsaturated fatty acids (PUFA) have
been the “candidate prebiotics” [9]. The prebiotics are responsible for the gut microbiota
composition and therefore potentially influence, among other things, the development of
acute leukemia [11].

1.2. Probiotics

Probiotics are live microorganisms that, when consumed in adequate amounts, can
have health benefits [12]. Probiotics can produce antimicrobial substances, modulate im-
mune system response, compete with pathogenic bacteria for adhesion to the epithelium,
increase mucosal IgA production, and inhibit toxin production [13,14]. Some probiotics
have also anti-inflammatory properties [15]. The effect is largely strain-dependent. Pro-
biotics are introduced to the body along with food through fermented products such as
yogurt, kefir, pickles, and kimchi, but also they are widely used in food and pharmaceu-
tical supplements [14,16]. Probiotics may be beneficial in managing the side effects of
chemotherapy and radiation therapy in acute leukemia, particularly in reducing the risk of
infections and promoting gut recovery after iatrogenic damage and proper functioning.
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1.3. Postbiotics

In 2021, a new definition of postbiotic was introduced by the International Scientific
Association of Probiotics and Prebiotics (ISAPP). According to this definition, postbiotics
are “a preparation of inanimate microorganisms and/or their components that confers a
health benefit on the host” [17]. However, not all researchers agree with this definition,
the metabolites and signaling molecules of probiotics are also commonly included as
postbiotics. The properties and functions of postbiotics are determined by their chemical
structure. Postbiotics are sometimes called metabiotics. The metabiotics can optimize host-
specific physiological functions, and modulate metabolism, and/or behavior reactions [18].
Postbiotics are widespread in all naturally fermented foods. Numerous postbiotics can
be found in kefir and yogurt, kimchi and sauerkraut, tempeh, and pickles. Postbiotics
included vitamins, organic acids, short-chain fatty acids (SCFAs), and amino acids, such as
tryptophan (Trp). Postbiotic acts directly or indirectly on the host [19]. The direct action is
based on the interaction of the postbiotic with host cells. Indirect benefits include alterations
in the environment of the gastrointestinal tract, such as acidification [20,21].

1.4. Basic Mechanisms of Anticancer Properties of Prebiotics, Probiotics, and Postbiotics

The range of health benefits of using pre-, pro-, and postbiotics is very wide. In
this article, it was decided to focus on those most useful in the treatment and prevention
of ALL. Some of these properties are described in more detail below. When analyzing
the potential benefits of using pre-, pro-, and postbiotics, it should be remembered that
they are a group of factors with very high variability. This is especially true of the flora
that colonizes the digestive tract. There are a lot of products with variable composition
and documented effectiveness in use. Nevertheless, based on observations and scientific
research, common mechanisms of action of pre-, pro-, and postbiotics can be found. The
anti-cancer effect of prebiotics is based on (1) the stimulation of beneficial indigenous
gut bacteria, (2) supporting the production of postbiotics, (3) modulation of xenobiotic
metabolizing enzymes, and (4) modulation of the immune response. The general anticancer
properties of probiotics include (1) mutagen binding and degradation, (2) lowering of
intestinal pH, and (3) secretion of anti-inflammatory molecules [22,23]. Positive effects
of using postbiotics include (1) the modulation of gut microbia, (2) immunomodulatory
effects, (3) the regulation of gut microbiota–host interaction [24]. These properties are
shown in Figure 1.
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Figure 1. Basic anticancer properties of prebiotics, probiotics, and postbiotics.

This paper is a summary of previous research on the impact of prebiotics, probiotics,
and postbiotics on the treatment and pathogenesis of leukemia. This review focuses mainly
on acute lymphoblastic leukemia since it is the most common cancer in the pediatric
population in the world, and this topic has been researched primarily by scientists.
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2. Prebiotics in ALL

The role of prebiotics in the treatment and development of leukemia is not well
understood. Most research was studied in vitro or animal models. The prebiotic with
potential use in the treatment of leukemia is inulin, which belongs to fructans [10]. Inulin
is naturally found in bananas, onions, garlic, asparagus, artichokes, wheat, chicory, and
mushrooms [25]. Schoener et al. showed that inulin in combination with doxorubicin
increases the cytotoxic properties, which potentially allows for the reduction in the dose
of cytostatics necessary to obtain the same therapeutic effect [26]. Bindels et al. reported
that inulin supplementation in mice with leukemia increased the gut level of propionate
and butyrate and reduced cancer metastases to the liver [27]. Moreover, it has been shown
that inulin supplementation improves the consistency of stools in patients after radiation
therapy [28].

Pectin is a water-soluble fiber fraction and one of the best-known plant cell wall
polysaccharides [29]. Pectins have gel formation properties [30]. In food, it is found in fruits
such as citrus, plums, apples, and pears, as well as in vegetables and legumes [31]. Mao
et al. showed that in rats administered methotrexate, pectin supplementation significantly
reduced intestinal damage, improved its integrity, reduced bacterial translocation, and
reduced body weight loss [32]. A study by Bindels et al. has shown that supplementation
of pectic oligosaccharides (POS) in mice with leukemia reduced anorexia associated with
tumor progression, increased acetate in the cecal content, and reduced adipose tissue
loss [27].

B-glucans are another type of water-soluble fiber. In food, it is found primarily in oats
and barley. Cell walls of algae, bacteria, fungi, and yeast can also be their source [33]. In
a study by Mao et al., it was shown that in rats administered methotrexate and oat base,
the level of plasma endotoxin was reduced, body weight loss and intestinal permeability
decreased, and bowel mucosal mass increased [32].

Lactulose is a synthetic disaccharide soluble in water, made of galactose and fructose
molecules [34]. Colonic bacteria metabolize lactulose to volatile fatty acids, hydrogen,
and methane, also increasing osmolarity and diminishing pH [35]. In children with ALL
administration of lactulose is common in case of constipation, which is one of the most
common gastrointestinal problems in this group [34].

3. Probiotics in ALL

According to research studies, ALL therapy changes the gut microbiota composition
which gives rise to chronic conditions diagnosed in ALL survivals [36]. The microbiota
of the gastrointestinal tract can be altered by many factors (e.g., drugs, infections, envi-
ronment) leading to several conditions such as obesity, metabolic syndrome, diabetes,
and cardiovascular or neurological impairments. According to Bhuta et al. (summing up
available studies), there is evidence of long-term change in the microbiota of ALL survivors
in comparison to the siblings’ cohort [6]. Chua et al. showed that ALL survivors (5 years
after the end of therapy) had reduced microbiota diversity when compared to a healthy
control group. There was also a correlation between the increase in T-cell activation and
chronic inflammation which can be linked to immune dysregulation [37].

3.1. Supplementation of Probiotics in ALL

Ekert et al. conducted a study in pediatric patients with leukemia, treated with
antibiotics such as framycetin, colymycin, nystatin, and metronidazole in comparison to
ALL patients treated with cotrimoxazole and supplemented with Lactobacilli. Both group
neither presents any significant differences in infection rate nor recovery time. In the
group using Lactobacilli side effects in the form of vomiting, and nausea was diminished
and resulted in better acceptance of the used medication [38]. Wada et al. evaluated the
effects of Bifidobacterium breve strain Yakult administration in ALL patients to prevent
infections. The patients presented fewer fever episodes and decreased need for antibiotic
use. They also had decreased levels of Enterobacteriaceae in fecal samples [39]. Reyna-
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Figueroa et al. studied pediatric patients with ALL after 30 days of chemotherapy. Patients
were randomly divided into two groups and half of them received Lactobacillus rhamnosus
GG probiotic during the chemotherapy. Only 30% of patients had GI symptoms in the
group who received probiotics during chemotherapy and 63% of patients from the group
without probiotics presented several adverse GI effects of chemotherapy—diarrhea, nausea,
vomiting, and abdominal distention. The authors noted also almost two times more cases of
need for antibiotics use, hospitalization need, and septicemia in patients without probiotic
supplementation as compared to the group with such a supplementation [40].

Besides the beneficial effects of probiotic use in oncological patients, there are also
data about the adverse effect of probiotic treatment, especially in immunocompromised
patients. Ambesh et al. showed that oral treatment with Lactobacillus species in people with
an altered immune system can lead to bacteremia [39,41,42].

3.2. Anticancer Activity of Probiotics

Up to now, there has been a lack of data about the preventive action of probiotics
against ALL, but many human, animal, and epidemiological studies have shown the
prevention of colon, bladder, liver, breast, and gastric cancers with lactic acid bacteria
(LAB) supplementation [43,44]. Additionally, probiotic bacteria show anticancer activity
in in vitro studies using cancer cell lines. Nami et al. reported the anticancer effects of
the vaginal Lactobacillus plantarum species on human cervical, gastric, and colon cancer
cell lines. At the same time, no significant cytotoxic effects on HUVEC normal cells were
observed [45]. Tarrah et al. studied eight Streptococcus thermophilus strains isolated from
dairy environments and found that two of these strains showed anticancer activity and
stimulation of folate production [46]. Similar results were found in a research study by
Mangrolia et al. on Staphylococcus strains [47]. Bifidobacterium species, by a consequence of
the inhibition of growth factor signaling and mitochondrial-mediated apoptosis, decrease
the proliferation of cancer cells [48].

3.3. The Effect of Anti-ALL Therapies on Microbiota

Aggressive therapies, as used in ALL, affect host microbiota phenotypes, mostly
affecting their diversity and leading to a rise in the number of unwanted microorgan-
isms [49,50]. During the treatment, as protocols proceeded in ALL patients, a decrease in
the number and diversity of intestinal microbiota was observed. The changes were most
intense in the induction phase of chemotherapy [51]. What is more, chemotherapy used
in ALL treatments leads to the destruction of epithelial barrier integrity, which together
with immunosuppression can cause bacteria translocation into the blood. Patients with an
increased amount of Enterococcaceae in their gastrointestinal system who were undergoing
chemotherapy showed an increased risk of intestinal infections [52]. Such a risk requires
antimicrobial therapy, which intensifies changes in the patient’s microbiota.

During the last years, several clinical studies have been performed that focused on di-
versity in the microbiota of the GI tract in pediatric patients with leukemia who underwent
chemotherapy. Researchers used different types of analysis (e.g., 16S rRNA sequencing,
PCR, FISH) of microbiota taken from rectal swabs or samples of feces. Studies showed a rel-
atively large difference between the amount of microbiota in patients treated for leukemia
and control groups. In a clinical study performed by Huang et al., the authors found a
significant decrease in probiotic Lactobacillus and Bifidobacteria, as well as E. coli strains,
in the intestines of children with leukemia [51]. Thomas et al. analyzed stool samples
by 16S ribosomal RNA gene sequencing of patients at least 1 year after the ALL therapy
with healthy siblings as a control group. They found significant differences between ALL
survivors’ microbiota and their healthy siblings who served as a control group, with a
huge depletion of probiotic Faecalibacterium [52]. Additionally, Rajagopala et al. noted
the difference in microbiota in pediatric patients with leukemia in comparison with their
healthy siblings. The differences were already present at the time of diagnosis. In both
groups, they recognized Bacteroides, Prevotella, and Faecalibacterium in the stool samples,



Microorganisms 2023, 11, 1775 6 of 13

but a group of ALL patients had a severe decrease in microbiota diversity in comparison
to the control group at the time of diagnosis and during chemotherapy. After one year of
chemotherapy, they found a tendency to stabilization in microbiota diversity, most visible in
mucolytic gram-positive bacteria (Ruminococcus gnavus, Ruminococcus torques, described as
next-generation probiotics) [53]. There are also studies showing changes in certain families
of gut bacteria during ALL, some of which species are harmful but others are potential pro-
biotics. Hakim et al. recently diagnosed ALL patients’ fecal samples using V1–V3 16S rRNA
gene sequencing and found an increase in Clostridiaceae and Streptococcaceae along with
a decrease in the level of Bacteroidetes. They also discovered that for patients undergoing
chemotherapy, a dominance of Enterococcaceae in their stool predicted febrile neutropenia,
but when Streptococcaceae are dominant, it predicted diarrhea [50]. Nearing et al. used
V4–V5 16S rRNA gene sequencing and metagenomic shotgun sequencing, and the results
showed an increase in the number of Proteobacteria along with a decrease in Bacteroidetes
and F. prausnitzii in the gut of ALL patients with infectious complications [54]. Chua et al.
studied gut microbiota in ALL children before, during, and after chemotherapy. In children
with ALL before chemotherapy, they found variability of the Bacteroidetes phylum and
Bacteroides genus, which during the time of chemotherapy were decreased. However, after
chemotherapy patients’ gut microbiota rebuilt their diversity, the composition was very
similar to the healthy condition [55].

The adverse effect of chemotherapy on the gut microbiota is augmented by antibiotics.
Due to a higher risk of infections, antibiotics play an important role in oncological patients;
they are used as a prophylaxis (e.g., use of fluoroquinolones) but also have a therapeutic
role in patients with neutropenia and fever (e.g., fourth-generation cephalosporins). Neu-
tropenic patients for whom there was a need to use ciprofloxacin showed a high rate of
E. coli and K. pneumoniae resistant to this antibiotic [56,57].

Besides good cure rates in ALL patients who undergo chemotherapy, there is still a
group of patients who may need hematopoietic stem cell transplantation (HSCT). These
procedures have a visible effect on gut microbiota diversity. There is a decrease in the
number of taxa such as Faecalibacterium and Ruminococcus contrary to the rise in the
number of Enterococcus, Staphylococcus, and Enterobacter [58]. Some data linked compli-
cations such as graft-versus-host disease (GVHD) with gut microbiota. Simms-Waldrip et al.
described a rise in the number of Enterobacteriaceae, along with a decrease in Clostridia,
revealing changes in the pediatric patients who developed GVHD [59].

The classification and effects of probiotics are summarized in Table 1.

Table 1. Probiotics and their possible positive effects.

Study Probiotic Effect Therapy Study Group

Study on human

Ekert et al. [38] Lactobacilli spp. Diminished vomiting
and nausea

No information about
dose and time

68 children with leukemia
and solid tumors

Wada et al. [39] Bifidobacterium breve Prevent infections 109 freeze-dried, living
BBG-01, 8 weeks

42 patients with
malignancies

Reyna-Figueroa et al. [40] Lactobacillus rhamnosus GG Reducing side effects of
chemotherapy

5 × 109 CFU twice daily,
one week

60 children with
acute leukemia

Study on cell line

Nami et al. [45] Lactobacillus plantarum Anticancer activity—
cytotoxic effect

No data about CFU, 12,
24/48 h incubation

5 human cell line MCF-7,
AGS, HeLa, HT-29,

and HUVEC

Tarrah et al. [46] Streptococcus thermophilus Stimulate of folate
productions

107 cells/mL, 24/48 h
incubation

HT-29 cell line

Mangrolia et al. [47] Staphylococcus xylosus Antibacterial and
anticancer activity

No data about CFU,
24/48 h incubation MCF-7 cell line
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4. Postbiotic in ALL

Studies of postbiotics linked straightly to leukemia are limited. Ki-Bum et al. tested
kimchi extract containing postbiotics from L. plantarum fermentation on the human leukemia
cell line HL-60, and found significant inhibition of proliferation. In the researchers’ opinion,
this may be connected to a high level of ornithine in the extract [43]. Similar results were
published by Hur et al.—the kimchi suppressed the growth of human leukemia cells K-562
and had no toxicity effect on normal cells [60].

Bacterial metabolites such as SCFA, exopolysaccharides, and bacteriocins have promis-
ing anticancer potential. Their anticancer activity was confirmed both in vitro and in animal
studies against cancer cells from various non-ALL malignancies. LAB may inhibit tumor
growth through different mechanisms, including antiproliferative activity, the induction
of apoptosis, cell cycle arrest, and antimutagenic, antiangiogenic, and anti-inflammatory
effects [61]. One of the beneficial effects of postbiotics produced by LAB is immunomodu-
latory, preventing certain types of cancer [62,63]. The effects of postbiotics include various
mechanisms, such as the impact on gastrointestinal microflora by acidification of the en-
vironment, modulation of host–microbiota immune response by tryptophan metabolism,
antioxidant properties of folic acid, antiproliferative action, and induction of apoptosis by
SCFAs [64]. Chuah et al. tested six strains of Lactobacillus plantarum in different human cell
lines, such as leukemia and breast cancer [65]. In their study, the microbial metabolites
produced by L. plantarum exerted selective, time- and dose-dependent cytotoxic effects on
cancer cells, without causing a toxic effect on healthy cells.

4.1. Short-Chain Fatty Acids

Short-chain fatty acids are one of the most important postbiotics. SCFAs are produced
by the fermentation of polysaccharides such as dietary fiber, non-starch polysaccharides
(NSP), and resistant starch in the human intestine. Acetic acid (AA), butyric acid (BA), and
propionic acid (PA) are the three main SCFAs. They are produced by different bacteria
in almost all parts of the gastrointestinal tract, mainly in the proximal part of the large
intestine. The proportions of SCFAs depended on the part of the GI tract, diet, and
microbiota. Nakkarach et al. incubated human leukemia cells THP-1 with individual SCFA
and E. coli KUB-36 metabolites for 24, 48, and 72 h. In all assays, the cytotoxicity of cancer
cells was comparable [66]. The action of SCFA in ALL was also confirmed in an animal
model. In a study by Song et al., the level of all SCAFs in urine samples from ALL mice
were significantly lower than in the control group (for AA (p = 0.02), FA (p = 0.01), PA
(p = 0.03), and BA (p = 0.05)). The author suggests that the reduced levels of SCFA in
urine result from diminished production of these compounds in the small intestine of ALL
mice and, in consequence, lower levels in the blood [67]. Among SCFAs, butyrate has a
well-documented anti-cancer activity. It acts as a histone deacetylase inhibitor (HDAI).
HDAI can normalize epigenetic disbalance by affecting gene expression. This promising
strategy of new treatment based on the increase in HDAI activity has been used at the II and
III stage of clinical trials. Currently, such trials are being conducted for drugs supporting
the treatment of acute myeloid leukemia (AML) or T-cell leukemia [68,69]. Pulliam et al.
describes the impact of a high concentration of BA (>1.5 mM) on apoptosis in various
human acute leukemia cells. In U937 leukemia cells, butyrate induced a twofold activation
of caspase-3 and reduced cell viability by 60%. Furthermore, within 24 h, BA significantly
decreased the concentration of chemokines CCL2 and CCL5 in HL-60 and U937 cells.
Additionally, concentration of CCL5 in THP-1 leukemia cells was decreased. These data
promote BA as a viable therapy to induce apoptosis in leukemia cells, reduce metastasis,
and regulate cytokine production in cancer [70].

4.2. Tryptophan

Tryptophan (Trp) and its metabolites are involved in interactions between the mi-
crobiota and the host. In the intestine, Trp can be metabolized in three ways: (1) direct
metabolism by the intestinal microbiota, (2) by the host cells in kynurenine pathway,
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and (3) enzymatic transformation to serotonin (5-HT). Many products of Trp intestinal
metabolism are ligands for the aryl hydrocarbon receptor (AhR). The most important AhR
ligands are indole-3-acetic acid, tryptamine, indole-3-aldehyde (I3A), indole-3-propionic
acid (IPA), indole-3-acid-acetic (IAA), indole-3-acetaldehyde (IAAl), and indoleacrylic acid.
AhR is a very important transcription factor involved in the metabolism of drugs, dioxins,
and other xenobiotics in the cytochrome P450 complex [71–73]. Tryptophan catabolism in
the kynurenine pathway is directly catalyzed by the rate-limiting enzymes indoleamine 2,3-
dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase [74,75]. Sun et al. investigated the
expression and function of IDO1 in AML and ALL cells in mice. In the animals treated with
1-methyl tryptophan (1-MT), significantly higher IDO expression was observed in neoplasm
cells compared to normal cells, the average survival time in the experimental group was
also higher (p < 0.05). This suggests that the pathway of tryptophan metabolism is of great
importance in leukemia development [76]. In another study, Chen et al. confirmed a higher
expression of IDO mRNA expression in subjects with AML and ALL compared to healthy
subjects (p < 0.001). Higher expression of IDO leads to a low-tryptophan environment near
the tissue, which reduces the ability of cells to produce certain proteins [77].

4.3. Folic Acid (FA)

Folates (vitamin B9) are essential micronutrients that function as cofactors in one-
carbon transfer reactions involved in the synthesis of nucleotides and amino acids. Folates
can be delivered to the body in three ways: supplied with food, mainly vegetables; pro-
duced by the microbiota; or provided as a drug or dietary supplement. Endogenous
production of FA is possible, but insufficient. For this reason, supplementation is very
important. Folic acid is a vitamin produced by several intestinal microflorae. One of the
sources of synthesis in the intestines is the previously described LAB; however, most LAB
species are auxotrophic for FA and other vitamins and only certain species have the ability
to FA synthesis. These species can be used for food preservation and enrichment in vita-
mins, and the modification of a host microbiota. In this way, the need for supplementation
may be reduced [78].

Folic acid is widely supplemented in pregnant women, women planning pregnancies,
and postpartum women who are breastfeeding. FA is also an essential component of
various types of food substitutes, such as modified milk for neonatal use [79]. Many
researchers claim that childhood cancers have their origins in fetal development [80]. There
are several papers confirming the protective effect of the folic acid supplementation in
pregnant women on postnatal childhood cancers [81]. Shaw et al. analyzed the Canadian
population and found that maternal higher levels of folic acid during and before pregnancy
reduce the risk of ALL, odds ratio (OR) 0.9 (CI: 0.7–1.1) [82]. A similar analysis with a similar
conclusion was performed on the German population by Schüz et al. Higher levels of FA
during pregnancy have a stronger protective effect against ALL in children > 5 years of age
than in younger children, with an OR 0.67 (CI: 0.5–0.9) compared to 0.98 (CI: 0.76–1.25),
respectively [83]. Additionally, Amigou et al. found that high maternal FA levels before
and during pregnancy can reduce the risk of ALL in childhood OR 0.4 (CI: 0.3–0.6) [84].
Singer et al. examined the association between maternal intake of multivitamins complex
containing FA, B12, and B6 vitamins, riboflavin, and methionine before pregnancy. Higher
maternal intake of these supplements reduced the risk of ALL in their children, OR 0.91
(CI: 0.84–0.99) [85]. In 2010 Milne et al. summarized some ALL studies and concluded
that folate supplementation may have a positive effect on ALL in children, but there
is no strong evidence for this. The summary OR for folate supplementation was 1.06
(CI: 0.77–1.48] compared to no folate supplementation OR 1.02 (CI: 0.86–1.20). In the case
of vitamins including folate, the OR was 0.83 (CI: 0.73–0.94) [86]. Additionally, a study
by Ajrouche et al. showed a minimal positive effect of FA supplementation in pregnancy
on ALL in children in the future. Their study examined 646 cases of ALL in children and
FA supplementation by their mothers before and during pregnancy. There are observed
relationships for FA supplementation initiated in the 3 months preceding pregnancy and
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the risk of childhood ALL, OR 0.7 (CI: 0.5–1.0) [87]. Linabery et al. in 2010 concluded that
there were no associations between FA supplementation in pregnant and childhood ALL,
OR 0.63 (CI: 0.34–1.18) [88]. The effects of FA are summarized in Table 2.

Table 2. Effects of FA intake on childhood ALL.

Study Description Results

Shaw et al. [82] FA supplementation before
and during pregnancy

Reduced the risk of ALL in children.
OR 0.9 (CI: 0.7–1.1)

Schüz et al. [83] FA supplementation
during pregnancy

Reduced risk of ALL in children
> 5 years. 0.67 (CI: 0.5–0.9)

Amigou et al. [84] FA supplementation before
and during pregnancy

Reduced the risk of ALL in childhood.
OR 0.4 (CI: 0.3–0.6)

Singer et al. [85] Maternal intake of
multivitamin complex

Reduced the risk of ALL in their
children. OR 0.91 (CI: 0.84–0.99)

Milne et al. [86] Summarized some FA
supplementation studies

No strong evidence for positive
effects. OR 1.06 (CI: 0.77–1.48)

Ajrouche et al. [87] FA supplementation before
and during pregnancy

Minimal positive effect of FA
supplementation. OR 0.7 (CI: 0.5–1.0)

Linabery et al. [88] FA supplementation
during pregnancy

No associations between FA
supplementation and ALL.

OR 0.63 (CI: 0.34–1.18)

5. Conclusions

Results of the latest research studies showed that prebiotics, probiotics, and postbiotics
have multiple positive effects on the microbiota of patients with ALL. Some of the studies
we cite are experimental and refer to a broader group of diseases. Others have been carried
out synergistically with basic therapy. Immunosuppression, antibiotics, or diet play an
important role in microbiota changes. Bacteria, such as Lactobacillus or Bifidobacterium,
present some anti-cancer features. This could be due to their cooperation in the apoptosis
of cancer cells, protective function in the mechanism of oxidative stress, and reduced
colonization of Fusobacterium, which is a microorganism with pro-cancer properties.
Probiotics can diminish the side effects of the treatment used in malignancy, e.g., mucositis,
radiation-induced diarrhea, and toxicity connected with immunotherapy. Postbiotics also
have a positive effect on children with ALL. High levels of FA before and during pregnancy
can reduce the risk of developing ALL in childhood. Despite the undoubtedly positive
effects of using prebiotics, probiotics, and postbiotics, it should be remembered that they
are only complementary treatments. Biotics must not be considered the only treatment
or means of prevention of ALL. Biotics, like any other drugs or medical preparations, can
cause side effects and pose a danger when used incorrectly.
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