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Abstract: Background: As the unique intermediate host of Schistosoma japonicum, the geographical
distribution of Oncomelania hupensis (O. hupensis) is an important index in the schistosomiasis surveil-
lance system. This study comprehensively analyzed the pattern of snail distribution along the Yangtze
River in Jiangsu Province and identified the dynamic determinants of the distribution of O. hupensis.
Methods: Snail data from 2017 to 2021 in three cities (Nanjing, Zhenjiang, and Yangzhou) along
the Yangtze River were obtained from the annual cross-sectional survey produced by the Jiangsu
Institute of Parasitic Diseases. Spatial autocorrelation and hot-spot analysis were implemented to
detect the spatio–temporal dynamics of O. hupensis distribution. Furthermore, 12 factors were used as
independent variables to construct an ordinary least squares (OLS) model, a geographically weighted
regression (GWR) model, and a geographically and temporally weighted regression (GTWR) model to
identify the determinants of the distribution of O. hupensis. The adjusted coefficients of determination
(adjusted R2, AICc, RSS) were used to evaluate the performance of the models. Results: In general, the
distribution of O. hupensis had significant spatial aggregation in the past five years, and the density
of O. hupensis increased eastwards in the Jiangsu section of the lower reaches of the Yangtze River.
Relatively speaking, the distribution of O. hupensis wase spatially clustered from 2017 to 2021, that is,
it was found that the border between Yangzhou and Zhenjiang was the high density agglomeration
area of O. hupensis snails. According to the GTWR model, the density of O. hupensis was related to the
normalized difference vegetation index, wetness, dryness, land surface temperature, elevation, slope,
and distance to nearest river, which had a good explanatory power for the snail data in Yangzhou
City (adjusted R2 = 0.7039, AICc = 29.10, RSS = 6.81). Conclusions: The distribution of O. hupensis
and the environmental factors in the Jiangsu section of the lower reaches of the Yangtze River had
significant spatial aggregation. In different areas, the determinants affecting the distribution of O.
hupensis were different, which could provide a scientific basis for precise prevention and control of
O. hupensis. A GTWR model was prepared and used to identify the dynamic determinants for the
distribution of O. hupensis and contribute to the national programs of control of schistosomiasis and
other snail-borne diseases.

Keywords: Oncomelania hupensis; heterogeneity; spatial autocorrelation; geographical and temporal
weighted regression; Yangtze River

1. Introduction

Schistosomiasis, a water-borne parasitic disease that results from infection by trema-
tode worms of the genus Schistosoma, is prevalent in 78 tropical and sub-tropical countries
worldwide. According to the World Health Organization (WHO), it affects more than
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230 million people, with an estimated 700 million at risk [1]. In 2020, WHO published a new
“road map” targeting the elimination of schistosomiasis by 2030, but continued actions are
required to reach this target [2]. In the People’s Republic of China, Schistosomiasis japonica,
caused by S. japonicum, brought disability and death to millions of people, and had long
been an important public health problem before the implementation of its national control
plan [3]. After more than 70 years of effort, seven out of twelve endemic provinces reached
the criteria of transmission interruption [4]. Jiangsu Province is one of the seven provinces
which had met the criteria of transmission interruption by 2019. In Jiangsu Province, more
than 90% of schistosomiasis endemic areas are located in marshland and lake regions
distributed along the Yangtze River [5]. Nanjing, Zhenjiang, and Yangzhou accounted for
72% of the intermediate host area in Jiangsu Province, and the annual number of monitored
cases in these three cities exceeded 60% of the province in total [6].

It is well known that Oncomelania hupensis (O. hupensis) is the unique intermediate host
of S. japonicum, whose geographical distribution correlates with that of schistosomiasis [7].
In addition, the distribution of O. hupensis is closely related to climate and geographical
factors, especially temperature, humidity, altitude, and vegetation coverage [8–10]. Some
researchers have found that the distribution patterns of O. hupensis could be predicted
by some environmental factors, such as land surface temperature (LST) and normalized
differential vegetation index (NDVI) [11,12]. Regression models have been widely used in
studying the ecology of diseases, such as the spatial–temporal variance of distribution of
O. hupensis and its driving factors [13,14]. Geographically weighted regression (GWR) is
one such regression model, which could be used to predict the results of unknown points
by establishing a local regression equation of each point in the spatial range to explore
the spatial change of the object in a certain scale and the relevant driving factors [15–17].
Taking into account the influence of time dimension on diseases, the geographically and
temporally weighted regression (GTWR) model integrates time and space dimensions, and
has gradually been applied in the study of the spatial and temporal distribution of diseases
and the analysis of relevant influencing factors [18–21].

Due to human mobility, floods, and other factors [22,23], the risk of schistosomiasis
recurrence remains a potential threat and deserves unwavering attention. In recent years,
with the proposal of the Yangtze River protection policy, the ecological environment around
the river has gradually changed, day by day. For instance, because of the rising water
level of the Yangtze River, over time, vegetation gradually grew in the demolished factory
spaces along the river, which promoted snail propagation and diffusion; and restoration
of the wetlands created conditions for snail breeding, and may even create a new snail
source [24,25]. As a consequence, the change of geographical environment brings uncer-
tainty to the recurrence of Oncomelania snails. Under these circumstances, it is urgent to
further explore the spatio–temporal distribution of O. hupensis along the Jiangsu section of
the Yangtze River and monitor the different determinants from recent years.

This study aimed to explore the spatio–temporal patterns of snail distribution and
identify the dynamic determinants of the distribution of O. hupensis by the GTWR model
along the Yangtze River in Jiangsu Province, so as to contribute to the national programs of
control of schistosomiasis and other snail-borne diseases.

2. Materials and Methods
2.1. Study Area

The marshland endemic regions of three cities (Nanjing, Zhenjiang and Yangzhou)
along the Yangtze River were studied, which are all located in the lower reaches of the
Yangtze River, Jiangsu Province (see Figure 1). The regions share similar subtropical
climates, with average annual temperatures of 18.0 ◦C and 16.0 ◦C, where trees, reeds,
and weeds are the primary plants, which provide suitable conditions for the survival and
reproduction of O. hupensis. This area covers approximately 17,000 km2, and all snail
habitats were included.
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Figure 1. A map of the study area and the sites of O. hupensis along the Yangtze River in Jiangsu
Province.

2.2. Data Collection and Preprocessing

Snail data were obtained from the annual cross-sectional survey conducted by the
Jiangsu Institute of Parasitic Diseases. A total of 957 snail study sites were investigated
by random sampling method combined with environmental sampling method in March
and April from 2017 to 2021 using square lead frames with an area of 0.1 m2, placed
approximately 10 m apart [26]. The captured snails were crushed and dissected under
microscope to observe whether they were alive or dead [27]. The density of O. hupensis was
calculated according to the number of live snails by the total number of survey frames. The
location and survey time of the study sites were also recorded.

Normalized difference vegetation index (NDVI), wetness, and dryness data were
extracted from Sentinel-2, which were download from Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/#/home accessed on 19 August 2021). Land surface
temperature (LST) was extracted from Landsat 8 remote sensing (RS) images, which were
download from the Geospatial data cloud (https://www.gscloud.cn/ accessed on 19 July
2022). The digital elevation model (DEM) layer and land-use data along the Yangtze River in
Jiangsu Province were obtained from Jiangsu Province Surveying and Mapping Engineering
Institute, and the slope and aspect of the DEM layer were extracted using ArcGIS10.8
software. The distance to the nearest river (DIS) and population density were extracted
from the WorldPop dataset (https://www.worldpop.org/ accessed on 25 August 2021).
Soil texture and GDP distribution were downloaded from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn/
accessed on 11 September 2021). Remote sensing ecological index (RSEI) was calculated as
an integrated environment indicator by NDVI, dryness, wetness and LST. Table 1 briefly
lists the information of the variables collected in this study, including category, abbreviation,
resolution, and source.

https://scihub.copernicus.eu/dhus/#/home
https://www.gscloud.cn/
https://www.worldpop.org/
http://www.resdc.cn/
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Table 1. Explanatory variables used to construct the model in this study, along with descriptions
and sources.

Category Variable Name (Abbreviation) Resolution Source

RS Normalized difference vegetation index
(NDVI) 10 m Sentinal-2

Wetness (wet) 10 m Sentinal-2
Dryness (dry) 10 m Sentinal-2

Land surface Temperature (LST) 30 m Landsat 8

Elevation (DEM) 2 m Jiangsu Province Surveying and Mapping
Engineering Institute

Aspect (aspect) 2 m Calculate by ArcGIS10.8
Slope (slope) 2 m Calculate by ArcGIS10.8

Distance to nearest river (DIS) 1 km WorldPop
Remote sensing ecological index (RSEI) 10 m Sentinal-2

Soil Soil texture (sand, clay, silt) 1 km RESDC

Land use Water, forest, grass, sand beach (land use) 2 m Jiangsu Province Surveying and Mapping
Engineering Institute

Social
factors

Distribution of GDP (gdp) 1 km RESDC
Density of population (population) 1 km WorldPop

1:250,000 scale electronic basic map was downloaded from the national basic geo-
graphic database of the National Catalogue Service For Geographic Information (https:
//www.webmap.cn/main.do?method=index accessed on 15 August 2021), including the
administrative boundaries of provinces, counties and water systems. The snail data from
2017 to 2021 were processed in Excel (2019), combined with the explanatory variable data
and the longitude and latitude information. These were imported into ArcGIS10.8 and
connected to the vector map. The universal horizontal Mercator method was used for pro-
jection, and the projection system of all data used WGS 1984 UTM Zone51N as projection
coordinates. The Geographical Information System (GIS) database for the snail distribution
in the cities studied along the Yangtze River was thus established.

2.3. Spatial Autocorrelation

Global and local spatial autocorrelation was used to analyze the spatial distribution of
O. hupensis at different scales by Moran’s I and Getis–Ord Gi* indexes. Value of Moran’s
I index varies between −1 and 1, with positive values indicating spatial aggregation of
observations and negative values indicating that observations tend to be scattered [28]. The
greater the absolute value of the index, the greater the correlation of spatial distribution.
Gi* index can recognize the spatial clustering of high (hot spot) and low (cold spot) snail
density [29].

2.4. Models Development and Assessment

In the case of insufficient explanatory variables, the accuracy of the results decreased.
Conversely, the modeled results showed a severe multicollinearity problem if all parameters
were selected as independent variables [30,31]. Thus, a variance inflation factor (VIF) was
introduced to test the collinearity of the independent variables. The diagnostic results
demonstrated that the VIF values of variables Wet, Aspect, Soil Texture, Land Use, GDP,
and Population, were larger than 7.5 (VIF > 7.5) in the GWR and GTWR models for snail
density. We retained the variables NDVI, Dry, LST, RESI, DEM, Slope, and DIS, to calibrate
the final GWR and GTWR models based on the standard that VIF should be less than
7.5 [32].

https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
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The density of O. hupensis was taken as the dependent variable, and the seven environ-
mental factors were elected as the independent variables in the GWR and GTWR models.
GWR is expressed as:

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi i = 1, 2, · · · , n, (1)

where yi is the snail density in unit i, βk(ui, vi) is the kth regression parameter in unit i,
β0(ui, vi) is the intercept, and εi is a random error term.

Compared with the GWR model, which only takes spatial variation into account when
estimating an empirical relationship, GTWR captures spatio–temporal heterogeneity based
on a weighting matrix referencing both spatial and temporal dimensions. In this study, the
Geographical and Temporal Weighted Regression (GTWR) plug-in was installed in ArcGIS,
and the GTWR model was created. The basic expression is as follows:

yi = β0(ui, vi, ti) +
K

∑
k=1

βk(ui, vi, ti)Xik + εi i = 1, 2, · · · , n, (2)

where yi is the snail density in unit i, (ui, vi, ti) represents the space–time coordinates of
observation i, βk(ui, vi, ti) is the k regression parameter in unit i, β0(ui, vi, ti) is the intercept,
and εi is a random error term.

In this study, ordinary least squares (OLS), GWR, and GTWR models were compared
to explain the relationship between O. hupensis and environmental factors, and the optimal
model was selected for spatio–temporal visual representation. The adjusted R2, Akaike
information criterion (AIC), and residual sum of squares (RSS) were determined to evaluate
the performance of the models in explaining the density distribution of the snail. The larger
the value of the adjusted R2 and AIC, the smaller the RSS, the better the model performance.
The study takes advantage of Excel for data preprocessing and statistical analysis, ENVI
for RS data preprocessing, and ArcGIS 10.8 for spatial analysis, modeling, and mapping.

3. Results
3.1. Spatial Distribution of O. hupensis along the Yangtze River in Jiangsu from 2017 to 2021

A total of 957 study sites of O. hupensis were selected from 2017 to 2021, including 293
in Nanjing, 439 in Zhenjiang, and 225 in Yangzhou. General speaking, the snail density
showed a decreasing trend from 2017 to 2021, as shown in Figure 2. The snail density in
Nanjing was relatively low among the three cities, and O. hupensis was mainly distributed
in Yangzhou and Zhenjiang with a higher density. The study sites of O. hupensis at the
junction of Nanjing and Yangzhou were relatively higher (the orange and red point in
Figure 2).

Moran’s I index was used to test the spatial autocorrelation of live snail density.
According to the results, Moran’s I index of live snail density in the survey region from
2017 to 2021 showed a decreasing trend and then an increasing trend, indicating spatial
aggregation (Table 2). During these five years, the P values in the overall study area were all
less than 0.05, showing a spatial agglomeration trend. In Nanjing, Zhenjiang and Yangzhou,
the distribution of O. hupensis have statistical differences in spatial distribution, except
Nanjing in 2017 and 2019, Zhenjiang in 2019, and Yangzhou in 2019 and 2020.
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Table 2. Moran’s I index and the statistical significance of snail density along the Yangtze River in
Nanjing, Zhenjiang, and Yangzhou, 2017–2021.

Year

All Nanjing Zhenjiang Yangzhou

Moran’s
I Z p Moran’s

I Z p Moran’s
I Z p Moran’s

I Z p

2017 0.39 10.32 0.00 0.18 1.82 0.07 0.29 3.57 0.00 0.41 4.34 0.00
2018 0.25 4.42 0.00 0.68 9.76 0.00 0.16 2.14 0.03 0.32 2.15 0.03
2019 0.24 5.45 0.00 0.06 1.14 0.26 0.15 1.89 0.06 0.08 0.83 0.40
2020 0.29 6.65 0.00 0.38 5.31 0.00 0.19 2.34 0.02 0.20 1.63 0.10
2021 0.32 8.66 0.00 0.15 4.20 0.00 0.23 2.84 0.00 0.30 2.29 0.02

3.2. Hot-Spot Map of Snail Distribution along the Yangtze River in Jiangsu from 2017 to 2021

Figure 3 shows the hot-spot map of snail distribution in the study area. The results
showed that the hot spots of live snail density distributed along the Yangtze River were
stable from 2017 to 2021, which were mainly concentrated in the Guangling and Jiangdu
districts of Yangzhou City and the Yangzhong and Jingkou districts of Zhenjiang City, and
the living snail density was high in the surrounding areas. No obvious cold–cold area was
found in 2018. In 2017, the cold–cold spot areas were mainly concentrated in the Luhe,
Hanjiang, and Jingkou districts. From 2019 to 2021, the cold-spot density areas were mainly
located in the Luhe and Pukou districts of Nanjing, and the junction of the Guangling and
Jiangdu districts of Yangzhou. Meanwhile, the number of cold spots had a tendency to
increase over the past 3 years, especially in Nanjing.
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3.3. Identifying the Determinants of the Distribution of O. hupensis

After collinearity test screening (VIF< 7.5), seven influencing factor variables (NDVI,
Dry, LST, RESI, DEM, Slope, and DIS) were used as independent variables to build the
model. Pearson’s correlation coefficient between variables and O. hupensis density was
calculated to explore the strength of association. The results are shown in Table 3, which
shows that the correlation between influencing factors and O. hupensis density was sig-
nificantly different. For the whole area, the correlation coefficient of the factors were
NDVI (r = 0.082), LST (r = 0.078), DEM (r = 0.069), and DIS (r = −0.069). In Nanjing,
NDVI (r = 0.135) and Slope (r = −0.122) were the positive and negative correlation factors,
respectively, affecting the density distribution of O. hupensis. The correlation coefficients
relating to the Zhenjiang area were NDVI (r = 0.161), Dry (r = −0.109), RESI (r = 0.148), and
DIS (r = −0.144). In Yangzhou, the positive correlation factor was LST (r = 0.236), and the
negative correlation factors were NDVI (r = −0.172) and RESI (r= −0.253).

Table 3. Pearson correlation coefficients for potential influencing factors and O. hupensis density.

Affecting
Factors

Correlation Coefficient

All Nanjing Zhenjiang Yangzhou

NDVI 0.082 * 0.135 * 0.161 ** −0.172 **
Dry −0.038 −0.053 −0.109 * 0.065
LST 0.078 * 0.081 0.015 0.236 **
RESI 0.041 0.103 0.148 ** −0.253 **
DEM 0.069 * −0.015 −0.037 −0.045
Slope −0.009 −0.122 * 0.069 −0.079
DIS −0.069 * 0.107 −0.144 ** 0.045

* p < 0.05, ** p < 0.01.

An OLS regression was performed first, and although the adjusted R2 was very low,
it provided the basis for subsequent local models. The results (Table 3) showed that the
maximum adjusted R2 of the OLS model fitting was 0.0229 in the overall group, indicating
that 97.71% of snail density was still caused by unknown variables or spatio–temporal
heterogeneity.

According to Table 4, in terms of model fitting, the Nanjing, Zhenjiang, and total
group snail density GWR models performed best. The GTWR model of O. hupensis in the
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Yangzhou group was significantly better than the OLS and GWR models, and the adjusted
R2 reached 0.7039, indicating that 70.39% of O. hupensis density could be explained.

Table 4. Evaluating the performance of the OLS, GWR, and GTWR models.

Group Model R2 Adjusted R2 AICc RSS

All OLS 0.0300 0.0229 1955.08 424.05
(n = 957) GWR 0.4522 0.4481 1671.36 239.74

GTWR 0.3373 0.3324 1814.36 290.03

Nanjing OLS 0.0459 0.0224 78.18 85.82
(n = 293) GWR 0.5083 0.4962 64.30 11.16

GTWR 0.4597 0.4464 60.93 12.26

Zhenjiang OLS 0.0716 0.0565 1102.40 303.64
(n = 439) GWR 0.4365 0.4273 1017.71 184.72

GTWR 0.3504 0.3398 1046.87 212.94

Yangzhou OLS 0.1352 0.1073 117.75 20.45
(n = 225) GWR 0.6062 0.5935 47.44 9.35

GTWR 0.7132 0.7039 29.10 6.81

Theoretically, on the premise that results of the GTWR model were normal, the stan-
dardized residuals should be in a perfect random distribution. The residual of the GTWR
model results was diagnosed again with global autocorrelation, as shown in Table 5, and
except for the data of the Nanjing group in 2018 (Moran’s I = 0.16, Z = 2.21, p = 0.03),
the residual p values of the GTWR model were all greater than 0.05, showing no sta-
tistical significance, indicating that the model effectively solved the problem of spatial
heterogeneity.

Table 5. Moran’s I index and statistical significance of GTWR residual in Nanjing, Zhenjiang, and
Yangzhou, 2017–2021.

Year

All Nanjing Zhenjiang Yangzhou

Moran’s
I Z p Moran’s

I Z p Moran’s
I Z p Moran’s

I Z p

2017 0.01 0.79 0.43 −0.15 −1.49 0.14 0.10 1.88 0.06 −0.06 −0.50 0.62
2018 −0.06 −1.83 0.07 0.16 2.21 0.03 −0.07 −1.15 0.25 −0.03 −0.13 0.90
2019 −0.04 −1.59 0.11 −0.08 −1.26 0.21 −0.05 −0.63 0.53 −0.02 0.12 0.90
2020 0.02 0.88 0.38 −0.06 −0.81 0.42 −0.01 0.01 0.99 −0.04 −0.29 0.77
2021 −0.01 −0.02 0.97 −0.04 −1.08 0.28 −0.01 0.00 0.99 −0.01 0.31 0.75

3.4. Spatial Variation of the Standard Coefficient in GWR

Firstly, the fitting effect of the GWR model was the best according to snail density, in
the whole study area (adjusted R2 = 0.4481, AICc = 1671.36, RSS = 239.74). The standard
coefficients of each variable in the GWR model were counted to clarify the influence of
variables on the density of O. hupensis (Table 6). The average residual of the model was 0.02,
indicating that its accuracy was acceptable. The absolute value of the average standard
coefficient was compared as follows: LST (0.75) > DIS (0.64) > Dry (−0.58) > DEM (0.22) >
Slope (0.21) > RESI (0.16) > NDVI (0.14). Among them, only Dry had a negative effect on
global snail density, and the other factors were positive correlation factors.
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Table 6. Statistical description of GWR of snails in Nanjing, Zhenjiang, and Yangzhou, 2017–2021.

Variable Mean Std. Dev Minimum Maximum

Intercept −0.06 0.86 −4.21 1.68
NDVI 0.14 0.47 −0.88 1.88
Dry −0.58 1.57 −5.88 3.05
LST 0.75 1.28 −1.62 5.46
RESI 0.16 0.55 −1.42 1.92
DEM 0.22 2.84 −9.48 9.57
Slope 0.21 1.39 −3.21 4.94
DIS 0.64 4.60 −5.78 30.39

Residual −0.02 0.50 −1.47 6.28
R2 0.4522

The changes of the explanatory variables of the GWR model in spatial dimensions
of O. hupensis along the Yangtze River in the three cities during 2017–2021 are mapped in
Figure 4. We set “0” as a survey standard for positive and negative effects. The results
showed that LST was the most influential environmental factor in this model, and it
was positively correlated with snail density in general, especially at the intersection of
Guangling, Jiangdu, and Yangzhong districts, whereas the relationship between LST and
snail density was inversely proportional in the Luhe and Hanjiang districts. DIS had a
positive effect on O. hupensis from the lower reaches of the Luhe River to Hanjiang district,
as well as a branching channel in Zhenjiang. In other areas, however, the relationship was
inversely proportional. Dry was the only factor that had a negative effect on the overall O.
hupensis, except that the coefficient was greater than zero in the upper reaches of Nanjing
and some small parts of Zhenjiang and Yangzhou. Regions with a Slope coefficient greater
than 0 were distributed at both ends and in the middle of the study area, while regions
with a Slope coefficient less than 0 were located in Luhe, the intersection watershed of
the Hanjiang and Jingkou districts. RESI had a negative effect on snail density mainly in
the downstream areas, especially in branching channels in Zhenjiang and Yangzhou. The
positive effect of NDVI on O. hupensis was mainly in the downstream of the study area;
however, the effect of NDVI was small, and the correlation was not strong throughout the
whole area.

Figure 5 illustrates the spatial distributions of local R2 values in the GTWR model for
all study areas. In GTWR, branching channels in Nanjing and Yangzhou had very high local
R2, indicating a decent prediction of the model in these areas. In contrast, the local R2 values
were lower in the lower reaches of Nanjing and all Zhenjiang areas of the Yangtze River,
indicating the poor performance of the model. Considering spatio–temporal heterogeneity,
the GTWR model significantly improved the interpretation ability for the Yangzhou group.
Therefore, Yangzhou was selected as the research object for spatio–temporal analysis.

3.5. Spatial and Temporal Variation of the Standard Coefficient in GTWR

Based on the results of the GTWR model of O. hupensis density in Yangzhou, regression
coefficients were used to represent the influence of explanatory variables on the dependent
variables. The standard coefficients of each variable in the GTWR model were counted
to clarify the influence of variables on the density of O. hupensis (Table 7). Globally, the
average residual of the Yangzhou group model was -0.0039, indicating that the GTWR
model had a high accuracy, and the actual snail density was overestimated. The order of
the absolute value of the average standard coefficient was similar to that of the GWR model:
LST (0.32) > DIS (0.25) > Dry (−0.2) > RESI (−0.17) > DEM (−0.15) > Slope (0.09) > NDVI
(−0.02). Among them, LST, DIS, and Slope had positive effects on O. hupensis in Yangzhou
River beach, and Dry, RESI, DEM, and NDVI were negative factors.
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Table 7. Statistical description of GTWR of snails in Yangzhou City.

Variable Mean Std. Dev Minimum Maximum

Intercept 0.33 1.27 −4.07 2.51
NDVI −0.02 0.25 −0.64 0.33
Dry −0.20 0.91 −1.71 2.72
LST 0.32 0.64 −0.56 2.42
RESI −0.17 1.19 −2.40 4.12
DEM −0.15 0.24 −0.90 0.28
Slope 0.09 0.46 −0.53 1.59
DIS 0.25 1.05 −0.95 3.00

Residual 0.00 0.17 −0.40 0.97
R2 0.7132

The average values of the coefficients between all explanatory variables in Yangzhou
City and the snail density in the time dimension are shown in Figure 6, with the folded line
representing the effect of different years on snail density for each determinant. From 2017
to 2021, the snail density varied significantly according to the explanatory variables, with a
positive correlation of LST, DIS, and Slope. The change trend of the NDVI fit curve was
not obvious, and the absolute value was close to 0, indicating that the correlation between
NDVI and snail density was not strong. The DIS fit curve showed a U-shaped change and
a positive correlation with snail density from 2017 to 2018, and a negative correlation from
2019 to 2021. The fitted curves of Dry, RESI, and DEM showed an inverted V-shape; the
top of the inverted V-shape occurred in 2019, and those three explanatory variables were
positively correlated with snail density. The LST fit curve revealed a U-shaped change
and a positive correlation with O. hupensis density. The correlation increased first and then
decreased. We found that there was a turning point in 2019 because many of the impact
factors fluctuated wildly or even changed sign directions. The LST coefficient increased,
and the Dry coefficient changed from negative to positive, indicating that the original
breeding sites of O. hupensis required a higher surface temperature and dryness.
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The changes of the explanatory variables (e.g., LST and Dry) of the GTWR model in
spatial dimensions of O. hupensis along the Yangtze River in Yangzhou during 2017–2021
are mapped in Figures 7 and 8. We set “0” as the boundary between positive and
negative effects.
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LST was positive correlated with snail density on the whole. The areas with high
LST coefficients were mainly concentrated in the lower part of the branching channel in
Yangzhou, and the absolute value of the LST coefficient decreased over time from 2017 to
2021. In addition, the LST coefficient of the upper reaches of the Yangtze River in Yangzhou
City, mainly along the coast of Yizheng City, was also greater than 0 in 2020–2021. The areas
with an LST coefficient less than 0 were mainly located in the lower part of the branching
channel and Hanjiang district after 2019.

Overall, dryness was negatively correlated with snail density. The Dry coefficients
of Yizheng City and Hanjiang district always showed a positive correlation. The Dry
coefficient was greater than 0 in Guangling district from 2017 to 2018, indicating the drier
the land surface, the higher the snail density. However, after 2019, the Dry coefficient in
Guangling district began to show a negative correlation with snail density. Different from
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Guangling district, the Dry coefficient in Jiangdu district was less than 0 at first, and then
showed a positive correlation with snail density after 2019.
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4. Discussion

This study was designed to explore the spatio–temporal pattern of snail distribution
and identify the dynamic determinants of the distribution of O. hupensis by GTWR models
along the Yangtze River in Jiangsu Province. We firstly analyzed the distribution of snail
density in the whole study area and found that the areas with a high density of O. hupensis
were mainly concentrated at the junction of Zhenjiang and Yangzhou, while there was a
trend of cold spots gathering along the Yangtze River in Nanjing, in recent years. Based
on RS data, seven influencing factor variables (NDVI, Dry, LST, RESI, DEM, Slope, and
DIS) were screened, and a novel O. hupensis dataset along the Yangtze River in Jiangsu
from 2017 to 2021 was developed by using GWR and GTWR models. Above all, the
distribution of the determinants of the whole study area was obtained based on the GWR
model. Further, we took Yangzhou as a test area to analyze the dynamic change of the
average regression coefficients of each influencing factor in the GTWR model. Clearly,
the fluctuation characteristics of environmental factors revealed that the environment had
undergone significant annual changes from 2017 to 2021. Thus, different actions can be
applied for different environments for the precise prevention and control of O. hupensis.

To our knowledge, the reproductive environment of O. hupensis serves as the source
factor that is responsible for the occurrence, prevalence, and transmission of schistoso-
miasis, which determine the probability of a regional schistosomiasis epidemic. Among
previous studies, a popular research direction has been to analyze the spatial distribution
pattern of schistosomiasis to detect the aggregation and aggregation areas of snails and
the change of the distribution pattern over time. The geospatial distribution of O. hupensis
along the Yangtze River in Jiangsu in the current study was similar to those described in
previous studies [33,34]. Our results showed that in the process of ecological protection and
restoration in the Yangtze River Basin, due to the complex environment, suitable conditions
for snail breeding in the beaches along the Yangtze River in Zhenjiang and Yangzhou
tended to rebound, and the conditions allowed the snail life cycle to repeat, which indicates
the difficulty of snail control. The main reasons for this are as follows. Firstly, the long
coastline along the river makes the environment complex, and it is difficult to eliminate the
snail. Secondly, O. hupensis in the upper reaches of the Yangtze River was not effectively
controlled, which led to the snail situations in the lower reaches of the Yangtze River [35]. In
addition, due to the limited development along the river, some breeding environments of O.
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hupensis could not be effectively transformed [36]. It should be noted that while monitoring
large areas of historical snail environments closely, snails should also be prevented from
spreading from the main branch of the Yangtze River to other tributaries. Although the
snail density was not the highest in Nanjing along the Yangtze River, it should be noted
that there exists a risk of O. hupensis diffusion due to flood in 2020 [37], so the surveillance
of snails should be continued.

The influencing factors of the distribution of snails in Jiangsu Province agree with the
results of other works carried out in marshland, including natural factors such as surface
temperature, humidity, soil properties, and vegetation types, as well as human factors
such as economic development, population level, and environmental management [38,39].
NDVI and LST are considered to be the most successful environmental factors for predicting
snail habitat [40,41]. In this study, LST was the biggest determinant of snail density and was
positively correlated with snail density overall. However, the performance of NDVI was not
so satisfactory, ranking last among the seven factors. The influence of the distance to nearest
river and dryness were second only to LST because one of the important characteristics of
O. hupensis is concentration in rivers or streams. The flow of water is determined by the
elevation of the environment. Therefore, using the DEM to simulate the surface stream
network and calculate slope data rapidly and accurately can provide important ecological
indexes of O. hupensis [12]. However, Jiangsu is flat and consists of plains, waters, low
mountains, and hills. Therefore, there is little difference in altitude between the study areas,
which may be the reason why DEM and Slope were not as effective as others.

Based on spatial epidemiological methods, domestic and foreign scholars previously
carried out spatial heterogeneity research on O. hupensis and successfully understood its
distribution law at different scales. Jun et al. [38] used a spatial lag model to establish an
epidemic risk description method based on land-use type, providing relative estimates of
the impact of different land-use types on schistosomiasis prevalence in different regions.
Yang et al. [42] utilized a conditional autoregressive model to explore spatial autocorrelation,
and combined the data with environmental factors such as LST and vegetation index to
construct a Bayesian temporal and spatial model. Yuan et al. [43] used a single-factor
logistic regression model to determine the environmental factors related to the distribution
of O. hupensis in Hubei Province, and then identified the potential high-risk habitats within
the spread area of the snail after the flood. These studies have one thing in common: the
static influence factors of a time cross-section were selected to predict the distribution of
O. hupensis or schistosomiasis. However, the development and change of schistosomiasis
was a long-term, spatio–temporal, and causal process, and the distribution characteristics,
patterns, and trends of O. hupensis varied greatly across different regions, times, and
socio-economic attributes [44,45].

Geographically and temporally weighted regression is one method to deal with spa-
tial non-stationary data, which can estimate local and global parameters and reflect the
spatial effects of factors affecting schistosomiasis. GTWR models have been applied in
the modeling of infectious diseases such as hemorrhagic fever of renal syndrome and
hand–foot–mouth disease [19,46,47], and they have good modeling accuracy in the study
of chronic diseases such as chronic obstructive pulmonary disease [32,48]. After solving
the GTWR model, a series of regression coefficients that vary with space and time can be
obtained, which can construct a geographical heatmap over time and intuitively predict
the spatio–temporal variation amplitude and direction of the determinants on the results.
This study verified the feasibility and applicability of this model by fitting snail density
along the Yangtze River in Jiangsu Province from 2017 to 2021.

For the snail density of the whole study area, the GWR model was better than the OLS
and GTWR models in fitting, indicating that the dataset had significant spatial variation
but no significant temporal non-stationary variation. From the data shown in Figure 4, we
found that the factor coefficients were usually of opposite sign in the main and tributaries
of the Yangtze River, especially the branching channel in Nanjing. In Luhe district, LST
had a positive effect on the upper reaches of O. hupensis but the opposite effect on the
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lower reaches. DIS, Dry, DEM, and other environmental factors were also similar, which
were closely related to the Yangtze River flood season. Previous studies found that snail
diffusion in the Yangtze River Basin was related to river water velocity, discharge, water
level, flooding time, and sediment erosion and deposition [49]. Moreover, during the flood
season, the water storage capacity of the tributaries increased, which greatly promoted the
spread of O. hupensis after the occurrence of flood disaster [50]. The branching channels in
Yangzhou and Zhenjiang also experienced a similar phenomenon, which is noteworthy.

The simulation effect of the global GTWR model was inferior to that of the GWR
model because the influence factors of different regions differed greatly, which may reduce
the estimation ability of the overall data. Figure 5 shows that local R2 was relatively high
in Nanjing and Yangzhou. The results showed that the GTWR model had a strong ability
to explain snail density in Yangzhou. In recent years, the snail area in Yangzhou was at a
historically low level, and no positive snails were found. Nevertheless, the phenomenon
of reoccurrence often occurred [51]. Snail area in the river beach accounted for the largest
proportion, which was where the snails were mainly distributed. Affected by the 2016
Yangtze River flood disaster, the snail situation in Yangzhou rose sharply, and the snail
area increased significantly [51]. Beyond these phenomena, the risk of schistosomiasis
transmission still exists due to the fairly large water-level changes in the Yangtze River.
The snail density in Yangzhou was a turning point in 2019, as many influencing factors
fluctuated sharply and even changed their direction. The biggest possibility is that flooding
increased the water level and width of the rivers; thus, the snail breeding sites near the
river were immersed in water for a longer time, and their density decreased [52]. Although
the environmental variables we chose did not consider water level information, this study
could indirectly prove that the environmental factors had a substantial impact on the snail
distribution from the change trends of Dry and LST.

The Yangtze River Basin is the main area of the schistosomiasis epidemic. It is very
important to balance schistosomiasis control while protecting the ecology of the Yangtze
River [25]. At present, there is a lack of research on the impact of the Yangtze River
restoration project on infectious diseases. By using RS and the GIS, and constructing
a GTWR model of the snail growth and decrease in the Yangtze River, we can identify
the ecological factors closely related to snail distribution. Therefore, early prevention
and control of schistosomiasis in high-risk areas can greatly improve the efficiency of
surveillance. RS image data have been widely used to monitor schistosomiasis and the
habitats of its intermediate host snails [53,54]. Different from Landsat-8 images with
a spatial resolution of 30 m commonly used in previous research, this study extracted
environmental indicators from Sentinel-2 images with a spatial resolution of 15 m. In
addition, as the terrain of Jiangsu Province is flat and the elevation changes are not obvious,
elevation and land use data with a resolution of 2 m were obtained in this study. All
these were selected to improve the resolution of explanatory variables so as to improve the
accuracy of model fitting. The original breeding sites of O. hupensis are often affected by
previous snail conditions and snail eradication, which will mask the intensity of spatial
and temporal heterogeneity during model construction to some extent. The breeding sites
of newly emerging or recurrent O. hupensis are largely affected by environmental factors,
so the variables screened in this study can have a better explanatory ability.

There are some disadvantages in this study that should be improved. First of all, the
spatial resolution of some environmental data in the current study could limit the accuracy
of the GTWR models, such as distance to rivers, GDP, and population density. Therefore,
it is necessary to carry out further research to analyze the extent to which different scale
impact factors can affect the accuracy of prediction results. Another limitation was the
representativeness of variables. More factors should be considered to reflect the spatial and
temporal characteristics of the snail in GTWR model, e.g., detailed water-level information
and the snail-control pesticides used. These factors were not included because the related
datasets were difficult to obtain. Moreover, the sampling of snails and environmental
elements were conducted only in summer, and, as a result, we often analyzed the obtained
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data in a cycle unit of one year. In this study, only 5 years of snail data were selected, with
the time period being too short to reflect temporal heterogeneity in some areas. Therefore,
it is suggested to build a GTWR model on snail data over a longer time axis in the future.

5. Conclusions

In this study, the spatial and temporal pattern of O. hupensis distribution along the
Yangtze River in Jiangsu Province and its dynamic determinants were investigated. The
following conclusions can be stated: First, the distribution of O. hupensis and the envi-
ronmental factors in the Jiangsu section of the lower reaches of the Yangtze River had
significant spatial aggregation. Second, the determinants affecting the distribution of O.
hupensis were different in different areas, and, on this basis, environmental transformation
for different geographical environmental factors could be used for controlling the snails.
Third, the ecological protection and restoration process of the Yangtze River will lead to
significant environmental changes, which will affect the distribution of O. hupensis. Last,
but not least, there is no single scenario that can guarantee the elimination of schistoso-
miasis in different areas because infection with S. japonicum is epidemiologically distinct
throughout its geographical distribution. However, a GTWR model has been prepared and
used to identify the dynamic determinants for the distribution of O. hupensis and contribute
to the national programs of control of schistosomiasis and other snail-borne diseases.
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