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A recent paper published in PLOS Computational Biology [1] provided a comprehensive evalu-

ation of various circular RNA (circRNA)-detection tools. The authors compared 11 different

circRNA-detection tools using four different datasets, including three simulated datasets

(positive, background, and mixed datasets) and one real dataset. Since the advent of high-

throughput next-generation sequencing technology, dozens of computational tools have been

developed and used to successfully detect thousands of circRNAs in a diverse range of species.

However, there are great discrepancies in the results obtained using different tools [2–7], and

systematic evaluations of their performance have not been available. Indeed, the cited work

has provided a useful guideline for researchers engaged in circRNA studies. Nevertheless, it

seems inappropriate to use all CircBase-deposited circRNA candidates (14,689 events) identi-

fied in silico from RNA-seq data of HeLa cells [8] as the positive dataset. The qualification of

the 14,689 candidates requires further evaluation. We suggest that three main confounding

factors, which may affect the fairness of the evaluation of circRNA-detection tools, should be

considered.

First, it has been shown that non-co-linear (NCL) junctions (including circRNA and trans-
spliced RNA junctions) that do not match annotated exon boundaries tend to be unreliable

and are more likely to stem from mis-splicing [9–12], although we cannot eliminate the possi-

bility that a few true backspliced junctions indeed originate from unannotated gene loci. Since

circRNA candidates are regarded to be less or more reliable if their normalized read counts are

depleted or enriched after RNase R treatment, respectively [13], we reexamined the circRNA

candidates detected on the HeLa RNase R-treated and untreated samples (the circRNA candi-

dates and the corresponding read counts were downloaded from the cited study). Of the cir-

cRNA candidates with unannotated exon boundaries, we can find that 50%~100% of them

were “completely” depleted (not detected) after RNase R treatment, whereas only <8% of

them were “significantly” enriched (i.e., 5-fold increase in normalized read count) after RNase

R treatment (Fig 1). This result revealed that the candidates with unannotated exon boundaries

are more likely to be false calls. Thus, we suggest that the CircBase circRNA candidates with

unannotated exon boundaries (1,046 events; Table 1) should be excluded from the positive

dataset. At least, since circRNA junctions were observed to be predominantly located at canon-

ical splice sites [14–16], the candidates with junctions that have not canonical splice site

sequences (GT-AG, GC-AG, or AT-AC) should be removed (778 events; Table 1).

Second, ambiguous alignments originating from repetitive sequences or paralogous genes

often result in false positive circRNA detection. In CircBase, most circRNA candidates were

identified by find_circ [8]. It has been reported that some of find_circ-identified candidates

were mis-predicted from paralogous genes [17]. Therefore, the factor of alignment ambiguity

should be considered when using CircBase circRNAs as true positives. To this end, we

concatenated the exonic sequence flanking the circRNA junction (within -100 nucleotides
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to +100 nucleotides of each CircBase-identified junction; see Fig 2A). We then aligned the

200 bp concatenated sequence (the concatenated sequence may be shorter than 200 bp if the

exonic circRNA sequence is shorter than 200 bp) against the reference genome and NCBI

RefSeq-/GENCODE-identified mRNAs using BLAT [18]. It is worth noting that 2,316

concatenated sequences exhibited ambiguous alignments (Table 1), of which 514 events con-

tained alternative co-linear explanations (an example was illustrated in Fig 2B) and 1,802

events mapped to multiple positions with similar BLAT mapping scores (difference of map-

ping scores< 5) (an example was illustrated in Fig 2C). These 2,316 CircBase circRNAs are

not appropriate for inclusion in the positive dataset. We further examined the 2,316 potentially

Fig 1. Analysis of the circRNA candidates that have unannotated exon boundaries and were not detected or significantly enriched (�5 folds of enrichment in

normalized read counts) after RNase R treatment on the HeLa samples. Only the circRNAs with�2 supporting NCL junction reads without RNase R treatment

were considered. Of note, no circRNAs with unannotated exon boundaries were detected by UROBORUS, KNIFE, and NCLscan on the HeLa samples without RNase

R treatment.

https://doi.org/10.1371/journal.pcbi.1006158.g001
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false calls and found that they contributed to 4%~14% of the identifications among the 11

tools (Fig 2D). Although these false calls can be considerably eliminated by merging two cir-

cRNA predicting tools, the filtering performance is dependent on tools used (Fig 2E). These

results also suggested that these false calls were not the find_circ specific issue in CircBase.

Third, of the CircBase circRNAs, 3,580 events were identified by all 11 tools. We observed

that the number of identified backspliced junction reads varied remarkably between tools

depending on the level of strictness of the filtering steps used (Fig 3A and a similar result

shown in Fig. 4C of the cited study [1]). With relatively strict filtering criteria, UROBORUS,

NCLscan, circRNA_finder, and CIRCexplorer provided a higher percentage of identified cir-

cRNAs with one supporting junction read than did the other tools (Fig 3B). These four tools

and DCC provided a relatively low percentage (<10%) of identified circRNAs with>10 sup-

porting junction read, whereas such percentages were more than 60% for CIRI and MapSplice

(Fig 3B). For example, for the CircBase circRNA candidate of COQ4 (Fig 3C, top), CIRI identi-

fied five supporting junction reads, whereas UROBORUS and NCLscan identified one sup-

porting junction read only (the information of supporting junction reads were extracted from

the github website generated by the cited study at https://github.com/linatbeishan/circRNA_

detection [1]). However, four of the five CIRI-provided junction reads were unqualified reads

with ambiguous alignments of an alternative co-linear explanation (Fig 3C, middle and bot-

tom), if realigned against the reference genome and annotated mRNAs. Such unqualified

reads were not included in the UROBORUS and NCLscan results. To evaluate the impact of

the unqualified reads on circRNA predictions, we took the result of CIRI identification as an

example (because only CIRI provided the IDs of supporting backspliced junction reads). We

found that as high as 50% (57,288 reads) of the CIRI-provided backspliced junction reads were

unqualified (Fig 3D, left). After removing these unqualified reads, the number of the detected

circRNA candidates (Fig 3D, left) and the median number of supporting backspliced junction

reads per candidate (Fig 3D, middle) remarkably decreased; meanwhile, the percentage of the

CIRI-identified circRNAs with one supporting junction read significantly increased (from 0%

to 5%; Fig 3D, right). These results revealed that the unqualified reads would considerably

affect the accuracy of circRNA predictions and should be carefully controlled. In addition, as

also noted in the cited study [1], different tools use different counting methods to deal with

a read pair spanning the same backspliced junction. Thus, it would be unfair to evaluate sensi-

tivity among tools while directly considering candidates with� 2 supporting junction reads

Table 1. Uncertain circRNA candidates in CircBase (see also S1 Dataset).

Confounding factors Number of circRNAs

Junctions not matching annotated exon boundaries (A) 1,046

Non-canonical splice site1 778

Ambiguous alignment (B)2 2,316

Alternative co-linear explanation 514

Multiple hits 1,802

Total uncertain circRNA candidates((A)[(B)) 3,110

1The backspliced junctions have not canonical splice site sequences (GT-AG, GC-AG, or AT-AC).
2The extracted concatenated sequences were aligned against the reference/annotated transcripts using BLAT with

two parameter sets: (-titleSize = 9, -stepSize = 9, -repMatch = 32768; default parameters of the Windows version) and

(-titleSize = 11, -stepSize = 11, -repMatch = 1024; default parameters of the stand-alone version). A concatenated

sequence is regarded as an “alternative co-linear explanation” if its BLAT-alignment results contain at least one co-

linear explanation.

https://doi.org/10.1371/journal.pcbi.1006158.t001
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Fig 2. Detection of CircBase circRNAs with ambiguous alignments. (A) Schematic illustration of a concatenated

sequence derived from a CircBase circRNA. (B and C) Examples of CircBase circRNAs with an alternative co-linear

explanation (B) and multiple hits (C). For (B), the concatenated sequence of the CircBase circRNA (E12-E7) had an

alternative co-linear explanation (E12-E15). For (C), the concatenated sequence of the CircBase circRNA (E6-E2)

mapped to multiple positions (Hits 1–4). E, exon. (D) Distribution of the ambiguous CircBase circRNAs (2,316 events)
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(i.e., Table 1 of the cited study [1]). By the same reason, it is improper to assess sensitivity

among tools at the read level without accounting for read qualification (i.e., Fig. 4 of the cited

study [1]).

Identification of NCL RNAs is often hampered by false positives arising from sequencing/

alignment errors (particularly alignment ambiguity as stated above) and experimental artifacts

(particularly in vitro artifacts arising from template switching during reverse transcription

(RT)) [11, 12, 19–22]. Selection of positive/negative datasets (positive datasets particularly) for

evaluating accuracy of circRNA-detection tools should be careful. Generally, positive datasets

are generated or selected from: (1) simulation, (2) real RNA-seq datasets from samples with

different treatments, and (3) wet-laboratory validated datasets. For simulated datasets, the co-

linear (false positive or background) and circRNA (true positive) reads are generated from

well-annotated co-linear mRNAs. Alternatively, in the cited study, the true positive reads were

generated from in silico identified circRNA candidates (i.e., CircBase circRNAs) [1]. Several

read simulators such as Mason [23], flux [24], ART [25], and CIRI-simulator [17] (used in

this cited study) have been developed and successfully applied to generating reads. Since the

authenticity of the synthetic datasets is totally unknown, the ambiguity/uncertainty of the sim-

ulated positive datasets should be minimized. We suggest that the simulated circRNA reads

should not be generated from gene families, pseudogenes, mitochondrial/ribosomal genes, or

unannotated exon boundaries (or junctions not having canonical splice site sequences). In

addition, it would be better to evaluate accuracy of tools based on simulated data with a variety

of data conditions of different read depths and of different read lengths, because accuracy of

circRNA detection is often susceptible to these two factors [2, 7]. The main flaw of these simu-

lation-based approaches is that they are harmful to assess the effect of experimental artifacts

on tools. For real RNA-seq datasets, although comparisons of NCL events detected with and

without RNase R-treatment [13] (or oligo-dT selection [26]) have been used to demarcate cir-

cRNAs versus non-circRNA NCL events, such approaches cannot distinguish between in vivo
circRNAs and RT-based artifacts (e.g., template switching events). To control for experimental

artifacts, an approach based on Drosophila hybrid mRNAs (D. melanogaster females vs. D.

sechellia males) and a mixed mRNA-negative control sample was developed and successfully

detected a considerable number of experimental artifacts [22]. However, it would be impossi-

ble to apply this approach to human studies. Recently, on the basis of the concept that RTase-

dependent RNA products are likely to be RT artifacts [2, 11, 12, 27, 28] and comparisons of

different RTase products could act as effectively as RTase-free validation when detecting RT-

based artifacts [11, 12], we recently described an alternative pipeline to systematically extract

potentially true positive circRNAs with controlling for experimental artifacts [29]. The RNA-

seq reads were generated from Avian Myeloblastosis Virus (AMV)- and Moloney Murine

Leukemia Virus (MMLV)-derived samples, respectively. Only the non-poly(A)-selected RNA

products, in which their NCL junctions were supported by both AMV- and MMLV-based

reads, were regarded as true positive circRNAs [29]. Finally, wet-laboratory validated cir-

cRNAs often serve as true positives and are employed for evaluating the sensitivity of tools.

However, the collected circRNAs tested in various tissues or cell lines. It has been shown that

most circRNAs were expressed in only a few tissues/cell types [17, 29–33]. As stated in the

cited study [1], many of the collected circRNAs may not be expressed in the examined samples.

In addition, we especially emphasize that the collected circRNAs should not include circRNAs

in the results of the 11 tools (see also S2 Dataset). (E) Percentage of the ambiguous CircBase circRNA candidates of a

tool when considering another circRNA predicting tool. The numbers in parentheses were ambiguous CircBase

circRNA candidates detected by each tool.

https://doi.org/10.1371/journal.pcbi.1006158.g002
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Fig 3. Variations in (A) number of identified junction reads among the 11 tools and (B) distribution of supporting junction

reads for each tool. The 3,580 CircBase circRNAs identified by all 11 tools were considered. (C) Example of unqualified RNA-

seq reads (i.e., ambiguous alignments with an alternative co-linear explanation or multiple hits). In this case (CircBase circRNA

of COQ4, top), CIRI identified five supporting circRNA junction reads, four of which were unqualified reads with an

alternative co-linear explanation. The BLAT-alignment result with an alternative co-linear explanation for Read
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validated by RT-PCR experiments with only one type of RTase because they may be RT-

dependent RNA products and derived from in vitro artifacts [12]. To minimize potential RT-

artifacts, the selected circRNAs should be confirmed by both RT- and non-RT-based experi-

ments (e.g., Northern blot or RNase protection assay [34]) or at least, by different two types of

RTase-based experiments [11, 12, 29].

With more and more circRNAs are detected, the reliability and function of most identified

circRNAs remains an open question worthy of further investigation. To reduce the cost of fur-

ther validation and functional analysis, it is necessary to carefully evaluate the reliability of the

used circRNA-detecting tools. The abovementioned factors may considerably affect the evalu-

ation results and partially explain the discrepancy observed in the sensitivity of the examined

tools using synthetic (52–92%; Table 1 of the cited study [1]) and real (46–63% on HeLa cells;

Fig. 5 of the cited study [1]) datasets. Therefore, we suggest that the accuracy of the 11 tools

should be reevaluated (e.g., Table 1 and Fig. 4 of the cited study [1]), taking into account the

factors discussed above when using the positive datasets.

Data access

The publicly available toolkit for downstream filtering of circRNA predictions with ambiguous

alignment is downloadable at https://github.com/TreesLab/NCLtk.

Supporting information

S1 Dataset. The 3,150 uncertain CircBase circRNAs (summarized in Table 1) and the 3,580

CircBase circRNAs identified by all the 11 tools examined (used in Fig 3A).

(XLSX)

S2 Dataset. Summary of the 2,316 ambiguous CircBase circRNAs in the results of the 11

tools.

(XLSX)
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(simulate:514081) was shown (bottom). E, exon. (D) Comparison of CIRI-identified circRNA candidates before and after

removing the unqualified reads. For the left panel, the numbers of CIRI-identified circRNA candidates were provided in

parentheses. For the middle and right panels, the P values were evaluated using the two-tailed Wilcoxon rank-sum and Chi-
square (for given probabilities) tests, respectively.

https://doi.org/10.1371/journal.pcbi.1006158.g003
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