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It is considered that chronic hepatitis B patients have obtained functional cure if they get
hepatitis B surface antigen (HBsAg) seroclearance after treatment. Serum HBsAg is
produced by cccDNA that is extremely difficult to clear and dslDNA that is integrated with
host chromosome. High HBsAg serum level leads to failure of host immune system, which
makes it unable to produce effective antiviral response required for HBsAg seroclerance.
Therefore, it is very difficult to achieve functional cure, and fewer than 1% of chronic
hepatitis B patients are cured with antiviral treatment annually. Some chronic hepatitis B
patients are coinfected with other chronic viral infections, such as HIV, HCV and HDV,
which makes more difficult to cure. However, it is found that the probability of obtaining
HBsAg seroclearance in patients with coinfection is higher than that in patients with HBV
monoinfection, especially in patients with HBV/HIV coinfection who have an up to 36% of
HBsAg 5-year-seroclerance rate. The mechanism of this interesting phenomenon is
related to the functional reconstruction of immune system after antiretroviral therapy
(ART). The quantity increase and function recovery of HBV specific T cells and B cells, and
the higher level of cytokines and chemokines such as IP-10, GM-CSF, promote HBsAg
seroclearance. This review summarizes recent studies on the immune factors that have
influence on HBsAg seroconversion in the chronic hepatitis B patients with viral
coinfection, which might provide new insights for the development of therapeutic
approaches to partially restore the specific immune response to HBV and other viruses.

Keywords: hepatitis B virus, hepatitis B surface antigen, functional cure, coinfection, immune
INTRODUCTION

There are more than 250 million hepatitis B virus (HBV) carriers in the world, and about 600 000
patients die of HBV-related liver diseases every year (1, 2). The pathogenesis of hepatitis B is
considered to be related to the host immune response, but the underlying mechanism is not
completely clear at present. In the immune tolerance state, the virus replicates a lot, and the levels of
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serum hepatitis B surface antigen (HBsAg) and hepatitis B e
antigen (HBeAg) are very high. After entering the stage of
immune clearance, the virus replication decreases, and the
levels of HBsAg and HBeAg decrease as well. HBV DNA can
be inhibited by effective antiviral treatment, but it is hard to clear
covalently closed circular DNA (cccDNA) and double stranded
linear DNA (dslDNA) which integrated with the host
chromosome. As a result, it is quite difficult to completely
clear serum HBsAg. Clearance of serum HBsAg with or
without anti-HBs is defined as hepatitis B functional cure (3,
4). In order to improve the rate of functional cure, some new
drugs have been developed and entered the stage of clinical trials.
In the long process of chronic hepatitis B virus infection, the
human body may also be coinfected with other hepatophilic or
non-hepatophilic viruses. These viruses inhibit or activate
human immunity, making the immune clearance mechanism
of HBsAg more complex.
THREE FORMS OF HBSAG DERIVED
FROM TWO SOURCES

The total length of HBV genome is about 3.2 kb, containing four
partially or completely overlapping open reading frames (ORF)
C, S, P and X. HBsAg is encoded by the S ORF, which contains
PreS1, PreS2 and S. The production of HBsAg comes mainly
from cccDNA. The 2.4 kb and 2.1 kb S mRNA of cccDNA
transcripts, that is PreS1/S and PreS2/S respectively, then
translates into three sizes of proteins: L-HBs (PreS1+PreS2+S),
M-HBs (PreS2+S), and S-HBs (S). The three S proteins differ in
their N- terminus but share a common S domain with 4 putative
transmembrane (TM) domains on their C-terminus. PreS1 has
108-109 amino acid residues, PreS2 has 55 amino acid residues
and S has 226 amino acid residues (see Figure 1).
Frontiers in Immunology | www.frontiersin.org 2
Another source of HBsAg is dslDNA integrated with host
genes. The cccDNA transcript pregenomic RNA (pgRNA) is
reverse transcribed into negative strand DNA, of which about
90% is synthesized relaxed circular DNA (rcDNA) and about
10% is synthesized dslDNA. After shelling, dslDNA enters the
hepatocyte nucleus and integrates in the host gene chromosome.
This integration can occur in the early stage of HBV infection,
but the integration level in HBeAg positive stage is low, and the
integration in HBeAg negative stage is frequent (5). HBsAg
production pathways are shown in Figure 2.

The integrated DNA is no longer involved in the formation of
virus particles, but can translate into HBsAg. Due to the deletion
of some PreS in dslDNA, the proportion of M-HBs and L-HBs in
HBsAg from integrated HBV DNA is low. HBsAg translated
through the above two pathways accumulates in the endoplasmic
reticulum (ER) and forms agglomerates with different cysteines
in the S region through covalent disulfide bonds. Intact HBV
particles contain a large amount of S-HBs and the same amount
of M-HBs and L-HBs, with a composition ratio of about 4:1:1 (6).
HBsAg in virus particles accounts for about 1/3 of the total
amount of HBsAg, other HBsAg exists in small spherical
subvirus particles and filamentous particles.

A recent study found that the proportion of M-HBs in HBeAg
positive patients is the best predictor of early HBsAg clearance
before nucleoside analogue (NA) treatment. The median level of
M-HBs in patients with HBsAg clearance before treatment is
significantly lower than that in patients without HBsAg clearance.
The proportion of M-HBs and L-HBs decreases rapidly during
treatment, and M-HBs cannot be detected after half a year of
treatment. In patients with HBsAg clearance treated with
pegylated interferon (PEG-IFN), the proportion of M-HBs and
L-HBs also shows similar dynamic changes (7). The mechanisms
underlying the change in HBsAg composition prior to HBsAg loss
is unknown. It is assumed that the structural arrangement of the
integrated dslDNA form does not necessarily affect the expression
of S-HBs, but parts of PreS may be missing. HBsAg derived from
integrated dslDNA contains a low proportion of M-HBs and L-
HBs. M-HBs and L-HBs mainly derived from cccDNA.
Consequently, the decrease in M-HBs and L-HBs before HBsAg
loss might reflect a progressive shutdown of cccDNA activity, but
more research is needed to verify this hypothesis.
HBSAG IS RELATED TO HBV SPECIFIC
IMMUNE DYSFUNCTION

After human body is infected by HBV, the virus is jointly cleared by
innate and specific immune responses. However, the simultaneous
nonspecific immune response will cause liver inflammation and
necrosis, and even occurrence of liver cirrhosis and liver cancer (8).
The immune function of patients with chronic hepatitis B (CHB) is
impaired. On the one hand, the immune function of HBV specific
T cells is low. such as the increase of immune negative regulatory
components [regulatory T cells (Treg), myeloid derived suppressor
cells (MDSC), programmed death receptor 1 (PD1), transforming
growth factor (TGF-b), interleukin (IL)-10, etc], depressed effector
A

B

FIGURE 1 | (A) The three S proteins (L-HBs, M-HBs and S-HBs) differ in
their N- terminus but share a common S domain with 4 putative TM domains
on their C-terminus. (B) Intact HBV particles contain a large amount of S-HBs
and the same amount of M-HBs and L-HBs, with a composition ratio of
about 4:1:1.
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function and proliferation ability, imbalance of cytokine network.
As a result, the body is unable to eliminate effectively the virus,
leading to continuous replication of HBV in the human body.

On the other hand, the immune response of non-HBV
specific CD8+ T cells, natural killer (NK) cells and T helper
(Th) 17 cells is enhanced, which can cause liver damage. A large
number of non-HBV specific CD8+T cells infiltrate in the liver of
patients with CHB, and their ability to proliferate and produce
IL-2 is significantly reduced, but the function of other
proinflammatory factors is not damaged, such as interferon
(IFN)-g and tumor necrosis factor (TNF)- a, resulting in
nonspecific inflammatory injury (9, 10).

For those HBeAg positive patients in immune activation
stage, there is a significant increase in NK cell activity because
of increased expression of IL-12, IL-15 and IL-18 in liver and
decreased expression of IL-10, NK cells enhance the killing
ability, but the ability of secreting IFN-g is not enhanced,
causing liver damage but not clearance of virus. In addition,
NK cells can also mediate hepatocyte apoptosis through the
upregulation expression of TNF related apoptosis inducing
ligand (TRAIL). A large number of Th17 cells infiltrate in the
liver of patients with CHB, and is positively correlated with viral
load (HBV DNA), alanine aminotransferase (ALT) level and
histological activity. IL-17 secreted by Th17 cells mainly
promotes the secretion of IL-1b, IL-6, TNF-a and IL-23
Frontiers in Immunology | www.frontiersin.org 3
inflammatory factors by myeloid dendritic cells (MDC) and
monocytes to mediate liver injury (11, 12).

What role does HBsAg play in immune disorder in patients with
chronic hepatitis B? It is found that a large amount of HBsAg is the
main factor associated with low anti HBV specific immune function.
Although there is no strong evidence to support that HBsAg can
directly inhibit HBV specific immune response, some studies suggest
that HBsAg is related to HBV specific immune dysfunction (13, 14).
High level of HBsAg is associated with the impairment of anti-HBV
specific T and B cell immune function. Reducing the HBsAg level
should promote the recovery of specific immune function, and in
turn promote the clearance of HBsAg. When HBsAg clearance or
HBsAg seroconversion is realized, the anti-HBV immune response
function of the body nearly returns to normal. The incidence of
HBsAg variation increases when there is an excessive immune
response, such as slow plus acute liver failure (15). HBsAg can
inhibit monocyte activity by binding to specific receptors on
monocytes, and HBsAg can cause dysfunction of MDC and plasma
cell like dendritic cells (PDC). HBsAg can also increase the response
of IL-23/IL-17 axis and mediate liver immune injury (16).

HBsAg and Innate Immunity
Innate immunity is the first defense line against microbial
infection, which relies on different pattern recognition
receptors (PRRS) to recognize nucleic acids. Hepatitis B virus
FIGURE 2 | HBsAg is derived from two sources (A) cccDNA and (B) dslDNA. cccDNA is the main source of HBsAg production.
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infection can activate inflammatory factors through two main
types of PRR i.e., Toll like receptor (TLR) signal pathway (17–
19), and retinoic acid induced gene 1 (RIG-1) signaling pathway
(19–21). The expression levels of TLR3, RIG-1 and melanoma
differentiation associated gene 5 (MDA5) in peripheral blood of
patients with chronic hepatitis B are significantly decreased,
which may account for the chronic state of HBV infection.
HBsAg can inhibit innate immunity by inhibiting TLR-
mediated signaling pathway and inducing IL-10 in Kupffer
cells (KCS) and sinusoidal endothelial cells (LSEC) (17). In the
presence of HBsAg, the function of myeloid dendritic cells
(MDC) is also impaired, which stimulates T cell response (16).
In another study, DC isolated from CHB patients is functional,
and DC stimulates autologous HBV specific T cell expansion
through the cross presentation of circulating HBsAg (22). Most
experiments of HBsAg mediated innate immunity are carried out
in vitro, which is related to the difference of these results. A
recent study shows that HBsAg suppressed the activation of the
nuclear factor kappa B (NF-кB) pathway via interaction with the
TAK1-TAB2 complex, leading to downregulation of innate
immune responses (23).

HBsAg and Cellular Immunity
Dysfunction and failure of HBV specific CD8+ T cell response are
markers of chronic HBV infection (24, 25). High levels of HBsAg
in circulation and liver may lead to impaired HBsAg specific
CD8+ T cell response through continuous antigen stimulation. In
addition, HBsAg can inhibit T cell response and enhance
regulatory T cell response by promoting the differentiation of
monocytes into MDSC (26). In the woodchuck hepatitis virus
(WHV) transgenic mouse model, high levels of viral replication
and protein expression in male mice induces the expansion of
regulatory T cells in the liver, resulting in impaired WHV specific
CD8+ T cell response and gender related differences in virus
infection results (27). Compared with healthy persons, the
proportion of myeloid dendritic cells (MDC) and plasma like
dendritic cells (PDC) in patients with chronic hepatitis B is by and
large normal, but MDC has the decreased ability of providing
costimulatory signals to T cells and secreting cytokines such as
TNF-a. The main function of these cytokines is to promote the
maturation of DC and proliferation of DC induced T cells (28). In
this process, the HBsAg and HBVDNA levels are high, suggesting
that the presence of these two viral components may damage the
function of MDC. Other studies have shown that in transgenic
mouse models, circulating HBsAg clearance does not improve
HBV specific CD8+ T cell response in vivo (29).

HBsAg and Humoral Immunity
B cell response may play an important role in controlling HBV
infection. For example, the clinical application of rituximab,
which consumes B cells, can lead to the reactivation of HBV in
controlled patients. This suggests that the response of B cells to
HBV is essential for maintaining effective host immune control
of HBV (30–32). In chronic hepatitis B patients, the antigen
presenting function of HBsAg and the dysfunction of CD4+ T
cells due to the high level of DC can affect the secretion of anti-
HBs by HBV specific B cells. This may also lead to insufficient
Frontiers in Immunology | www.frontiersin.org 4
affinity or no function of anti-HBs, so it can’t play the role of
neutralizing antibody.

HBs-ELISPOT and flow cytometry fluorescence sorting
(FACS) technology were used to detect HBsAg specific
memory B cells (CD19 cells) in HBV vaccine inoculation staff
and CHB patients. These two methods detected a small number
of HBsAg specific B cells in HBV vaccine inoculation staff, but
none was detected in CHB patients (33–35). Other studies have
shown that the frequency of HBsAg specific B cells in blood is
similar in patients with acute, chronic and cured HBV infection,
and has no relationship with the serum levels of HBsAg, HBV
DNA or ALT (36, 37).

HBsAg specific B cells from patients with chronic hepatitis B are
atypical B cells, characterized by low expression of CD21 and CD27,
but high expression of inhibitory markers such as PD-1 and T-bet.
In addition, HBsAg specific B cells from patients with chronic
hepatitis B are not able to mature into anti-HBs secreting cells in
vitro. However, their function can be partially restored by specific
culture conditions, such as PD-1 blocking or adding IL-2, IL-21 and
CD40L (38). Le Bert (39) et al. found that in CHB patients, HBcAg
specific B cells were more frequent than HBsAg specific B cells. The
phenotypic and functional differences between HBsAg and hepatitis
B core antigen (HBcAg) specific B cells in a same patient suggest
that high levels of HBsAg may lead to programming obstacles of
HBsAg specific B cells through continuous stimulation. Follicular
helper T cell can improving HBsAg-specific B cell response in
chronic hepatitis B patients targeting by TLR8 signaling (40).

In some CHB patients, the presence of anti-HBs and HBsAg
coexists. Only the presence of anti-HBs may eliminate HBsAg in
peripheral blood, but it will not terminate chronic HBV infection
in the liver. Therefore, HBsAg specific B cell response contributes
to HBV pathogenesis, clearance and protective immunity, but it
is not enough to control HBV infection alone (41).
IMMUNE MECHANISMS OF
CURRENT DRUGS AND EMERGING
THERAPIES TARGETING FUNCTIONAL
CURE OF HEPATITIS B

Persistent HBsAg seroclearance after treatment, and with or
without anti-HBs serologic conversion, is the ideal end point
of antiviral therapy for chronic hepatitis B, which represents
sustained virological inhibition and immunological control.
Current hepatitis B antiviral treatments include two main
classes of drugs, one is the oral NAs and the other is injected
IFN/PEG-IFN.

It is difficult to achieve the goal of HBsAg seroclearance with
standard antiviral treatments. Functional cure occurs at an average
annual rate of 0.22% in CHB patients during first-line oral NAs
antiviral treatment (42). PEG-IFN treatment can acquire an average
HBsAg clearance annual rate of 3% (43–45), 5-year cumulative rate
of 14% and 10-year cumulative rate of 32% (46) in CHB patients.
But in inactive HBsAg carriers, the HBsAg clearance rate can reach
to 47% after 48 weeks of PEG-IFN treatment (47). New treatment
strategies such as combination therapy (initial combination therapy
May 2022 | Volume 13 | Article 893512
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of NAs and IFN/PEG-IFN, continuous combination therapy of
NAs and IFN/PEG-IFN) and new therapeutic drugs may help
patients improve the negative conversion rate of HBsAg and even
the seroconversion rate of HBsAg.

NAs and IFN/PEG-IFN play different roles in host immune
response. IFN mainly regulates innate immune response,
especially NK cell activity. Micco et al. (48) found that PEG-IFN
can induce the production of IL-15 and promote the activation
and expansion of CD56bright NK cells, so as to enhance its antiviral
activity and promote IFN-g expression of apoptosis inducing
ligand related to soluble TNF. PEG-IFN may lead to the
continuous consumption of effector CD8+ T cells, and has
limited repair effect on the function of HBV specific CD8+ T
cells. NAs cannot resume the antiviral ability of NK cells, but
temporarily repair the function of damaged T lymphocytes. In
patients with virological inhibition after long-term NAs treatment,
the damaged function of HBV specific T lymphocytes is partially
restored in vitro (49–55). These studies showed that NAs might
promote the recovery of T cell function mainly through inhibiting
HBV replication. Besides, increased NK cell function is associated
with active hepatitis and HBsAg seroclearance following
structured NAs cessation (56). Host immune function repair is a
key step to achieve chronic hepatitis B functional cure. The
rationality of the combined treatment strategy of NAs and IFN/
PEG-IFN lies in that the two kinds of antiviral mechanisms play
different roles in innate immunity and adaptive immunity. The
inhibition of HBV replication by NAs can enhance the activation
of IFN on innate immunity (57, 58).

New drugs targeting at the functional cure of hepatitis B
mainly include two main categories: direct antiviral drugs and
indirect antiviral drugs. The former directly targets viral diseases
and interfere with the replication process of HBV DNA, and the
latter targets the host immune system to attack HBV. Direct
antiviral drugs include siRNA (ARC-520 and JNJ-3989) (59, 60),
HBV entry inhibitor (Bulevirtide, formerly known as Myrcludex
B) (61), core protein allosteric regulator (NVR 3-778, JNJ-
56136379, RO7049389 and ABI-H0731) (62–65), antisense
RNA (IONIS-HBVRx and IONIS-HBVLRx) (66), cccDNA
inhibitor (not yet in clinical trial), HBsAg release inhibitor
(REP 2139) (67), HBsAg neutralizer (lenvervimab) (68), etc.

Indirect antiviral drugs include Toll like receptor (TLR)
agonists (vesatolimod, selgantolimod) (69), immune
checkpoint inhibitors (anti-PD-L1) (70), therapeutic vaccines
(GS-4774) (71), engineering T cells, etc. Among them, the effect
of therapeutic vaccine is disappointing (72). The combination of
existing and new antiHBV drugs may improve HBsAg
seroclearance rate (73), and the elimination of HBV requires a
treatment scheme based on a combination of multiple drugs.
IMMUNE MECHANISMS AND HBSAG
SERUM LEVEL CHANGES IN HBV
COINFECTION PATIENTS

HBV infection here only refers to chronic HBV infection, that is,
HBsAg positive lasts for more than half a year. HBV coinfection
Frontiers in Immunology | www.frontiersin.org 5
only includes HBV and other viruses, excluding bacteria, fungi,
parasites, protozoa and other infections. According to the
tropism of coinfected viruses, they can be divided into
coinfected hepatophilic viruses such as hepatitis C virus
(HCV), hepatitis D virus (HDV), hepatitis E virus (HEV),
hepatitis A virus (HAV), and non-hepatophilic viruses such as
human immunodeficiency virus (HIV).

HBV/HAV Coinfection
HAV is often transmitted through fecal-oral route andmostly leads
to acute and self-limiting infection. In a few of cases, it can cause
severe liver function damage or even liver failure (74). Acute HAV
infection used to occur in adolescents who were not vaccinated
against hepatitis A. Due to the emergence of hepatitis A vaccine,
hepatitis A has become increasingly a disease of adults in many
parts of the world. The pathogenesis of acute hepatitis A tends to be
dominated by host immune response, and HAV causes a weak
interferon response in the liver of infected chimpanzees (75).
Compared with CD8+ T cell response, immune control of HAV
may be more directly related with CD4+ T cells (76). The frequency
of HAV specific CD8+ T cells in blood and liver of patients with
jaundice may decrease with the clearance of infection (77).

In Ifnar1-/- transgenic mice, HAV induced hepatocyte
apoptosis and inflammatory response are activated by innate
immunity (78). Innate cytotoxic cells and Treg cells are
transformed into inflammatory phenotypes in symptomatic
infected individuals (79, 80). In HBV-infected PXB cells
superinfected with HAV, HBV replication was reduced as
compared to that in PXB cells infected with HBV alone, which
means to a certain extent, HAV infection inhibits HBV
replication (81). Earlier study also found that infection with
HBV downregulated the expression of the two HBV proteins
(HBsAg and PreS2) in PLC/PRF/5 cells (82). The sharp rise in
IFN-g production mediated by the acute HAV infection may be
pivotal in the suppression of HBV replication in chronic hepatitis
B (83). Fu et al. (84) retrospectively analyzed 211 HBV
coinfection patients in a tertiary teaching hospital in China
from 2005 to 2014, and 35 patients were coinfected with HAV.
Patients with HAV coinfection generally had better outcomes
than those with other viruses coinfection. Sagnelli et al. (85)
reported that 3 of 9 patients with HBV/HAV coinfection became
negative for HBsAg after 6-month follow-up. Beisel et al. (86)
reported a 47-year-old patient with HBV-related compensated
cirrhosis who had an acute HAV superinfection. The
spontaneous HBsAg seroconversion occurred and the non-
specific immunity of HAV led to functional cure of hepatitis B.
Acute HAV superinfection may trigger sustained clearance of
HBsAg in patients with chronic HBV infection.

HBV/HEV Coinfection
HEV is transmitted usually through fecal-oral pathway and
occasionally through blood transfusion pathway (87). HEV is
also a zoonotic virus in some genotypes. Acute HEV infection
generally occurs in adults. Wong et al. (88) found that the
seropositive rate of antiHEV-IgG was 19.86% among HBV
infected patients by using the data of the National Health and
Nutrition Examination Survey from 2011 to 2018. In a cross-
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sectional study in Vietnam from 2012 to 2013, the seropositive rate
of antiHEV-IgM was 11.6% among HBV infected patients (89).

In acute hepatitis E infection patients, the percentage of NK
and NKT cells in peripheral blood monocytes decreased
significantly, while the ratio of activated NK and NKT cells was
higher than that in the uninfected group (90). The expression of
activated NK cell markers Granzyme B and CD69 also increased
significantly (91). The severe condition of pregnant women
infected with HEV is related to the decrease of NK cell activity
(92). In pregnant women with HEV infection, the inflammatory
cytokine TNF-a, IL-6 and IFN-g level increased significantly (93).

A large amount of evidence shows that TNF-a and NF-kB
signaling pathways play an important role in stimulating
inflammatory response in HEV. In cell culture, TNF-a has
been shown to moderately inhibit HEV replication.
Interestingly, it can cooperate with IFN-a anti HEV effect
through NF-kB cascade inducing a subset of IFN-stimulated
gene (ISG) (94).

HEV coinfection can accelerate the disease progression of
patients with chronic HBV infection and increase the mortality
of patients with liver cirrhosis. Acute HEV superinfection was
associated with a 1-year mortality rate of 2.4% in non-cirrhotic
patients with chronic HBV infection. The 1-year mortality rate
increased to 35.7% in patients with compensated liver cirrhosis
after HEV superinfection. HEV superinfection increased the
long-term risk of cirrhosis, hepatocarcinoma, and liver-related
death in patients with chronic HBV infection (95).

Compared with HBV monoinfection, the expression of
cytokines related to hepatocyte necrosis such as IL-6, IL-10
and TNF-a increased in HBV/HEV coinfection patients (96).
There are scarce and conflicting data regarding the replication of
viruses in coinfection patients. The median level of HBV DNA in
HBV/HEV coinfection patients is lower than that in HBV
monoinfected patients. However, due to the small number of
samples, it is not clear whether this difference is statistically
significant. In addition, baseline HBV DNA are not available to
compare with HBV DNA levels after HEV superinfection (97).
The higher HBV DNA level in patients with HBVmonoinfection
may be explained by that HEV is an RNA virus, which may play
a role of ribozyme in HBV DNA replication (96). There is no
significant difference in HBV DNA levels between CHB/HAV
coinfection patients and CHB/HEV coinfection patients (98).
Yeh et al. (99) reported the disappearance of HBsAg in a renal
transplant patient with chronic HBV/HEV coinfection.
However, we cannot draw a conclusion about the effect of
HEV on HBsAg from a single case, and further studies are
required to evaluate this hypothesis.

HBV/HCV Coinfection
HCV is a single stranded RNA virus, which mainly leads chronic
infection. Innate immune response is very important for HCV
infection. It limits virus transmission by inducing apoptosis of
infected hepatocytes and stimulates antigen specific adaptive
immune response. NK cells destroy infected hepatocytes and
cytokine release through cytolysis, which plays a vital role in the
innate immune response to acute HCV infection.
Frontiers in Immunology | www.frontiersin.org 6
IFN produced by NK cells can directly inhibit HCV
replication. IFN-g and TNF-a lead to maturation of dendritic
cells, release of IL-12 and differentiation of CD4 and CD8+ T
cells. Specific CD8+ T cells destroys HCV infected hepatocytes
through human leukocyte antigen (HLA) class I antigen
presenting cells and induces cytokines (TNF-a and IFN-g)
secretion. Helper CD4+ T cells support this function through
IL-2 to stimulate activation of CD8+ T cells and NK cells (100).

During chronic HCV infection, the production of IL-2 by
HCV specific CD4+ T cells decreases, resulting in impaired
activation of CD8+ T cells. HCV core protein and PD-1 are
also associated with T cell inhibition (101). The strong CD4+ T
cell response during acute HCV infection is associated with virus
clearance. The lack of strong CD4+ T cell response during acute
infection and the decline of CD4+ T cell response after acute
infection are related to chronic progression (102). Regulatory T
cells such as CD25+ T cells can inhibit CD8+ cells and cytokines
(such as IL-10 and transforming growth factor TGF-b) release to
inhibit immune response during chronic HCV infection
(103, 104).

HBV and HCV share the same transmission mechanism, thus
coinfection of HBV and HCV is common, particularly in high
endemic areas where individuals have a high risk of parenteral
infection. The prevalence of HBV/HCV coinfection is
approximately 5%-20% in HBsAg positive patients and 2%-
10% in HCV-positive patients (105). A prevalence of overt
HBV coinfection in HCV positive patients was reported at
1.4% in the United States (106).

Both HBV and HCV complete their life cycle in hepatocytes,
and HCV core protein strongly inhibits HBV replication during
HBV/HCV coinfection (107). A recent study found that HCV
core protein inhibits HBV replication by downregulating HBx
levels via Siah-1-mediated proteasomal degradation during
coinfection (108). HCV core gene also inhibits the induction of
an immune response to HBsAg. The observed interference effect
of the HCV core occurs in the priming stage and is limited to the
DNA form of the HBsAg antigen, but not to the protein form
(109). HCV plays a dominant role, so high HCV RNA and low
HBV DNA levels are observed in most cases with HBV/HCV
coinfection. The cure of HCV infection may lead to HBV
reactivation, and a meta-analysis showed that the pooled
proportion of patients who had HBV reactivation was 24% in
patients with chronic HBV infection and 1.4% in those with
resolved HBV infection (110). HBV reactivation is the result
of the weakening of hepatocyte IFN response after HCV
clearance. Higher serum TNF-a at baseline and lower IFN-g
at week 4 were associated with mild clinical reactivation of HBV
in HBV/HCV-coinfected patients receiving direct-acting
antiviral agents (DAAs) (111). Chemokine ligand CXCL-10
(another name is interferon induced protein-10, IP-10), CCL5
and ALT have predictive value for HBV reactivation after HCV
clearance (112). On the other hand, exogenous HBsAg
stimulated NKG2D expression on NK cells from CHB patients,
which inhibits HCV replication, suggesting that HBsAg may
facilitate the clearance of HCV in HBV/HCV-coinfected
patients (113).
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In HBV/HCV coinfection patients, the HBsAg level is usually
lower than that in HBVmonoinfection patients, and the decrease
of HBsAg production is also related to the increase of CXCL-10
level (114). A 5-year follow-up study in HBV/HCV coinfection
patients showed that the cumulative HBsAg seroclearance rate
was 30.0%, with 33.1% in the 48-week PEG-IFN plus ribavirin
combination therapy group, and 24.3% in the 24-week therapy
group (115). DAAs-treated HBV/HCV-coinfected patients had
significantly higher rate of HBV seroclearance, particularly
among those with low pre-treatment HBsAg titer; on the
contrary, those with higher pre-treatment HBsAg titer were at
greater risk of HBV reactivation (116).

HBV/HDV Coinfection
HDV is a defective virus, which relies on HBV for packaging,
release and transmission. The global total prevalence of hepatitis
D varies greatly in various literatures. The rate of HBsAg positive
patients complicated with HDV infection ranges from 4.5% to
13.02% (117–121). This difference may be related with the
inconsistent diagnostic criteria of hepatitis D. HBV/HDV
coinfection can cause the most severe viral hepatitis.

Due to severe inflammation and necrosis of hepatic lobules,
liver biopsy showed that the degree of liver injury during
coinfection was almost twice that of HBV or HCV
monoinfection (122). Due to HDV-induced interferon
response (123), pronounced induction of innate immune
responses (such as elevated cytokine levels of ISGs, TGF-b,
IFN-g, IP-10, etc.) may lead to a higher degree of liver
inflammation compared with HBV monoinfection, resulting in
a more severe infection process (124).

In Huh7 and HEK293 cells, large hepatitis D antigen (L-
HDAg) can interfere with TNF-a-NF-kB signal transduction
axis (125). L-HDAg can enhance TGF-b-c-Jun induced signal
cascade, while TGF-b is the main regulator of liver fibrosis and
cirrhosis (126). L-HDAg can also induce oxidative stress and
activate NF-kB and signal transducer and activator of
transcription-3 (STAT-3), leading to liver cirrhosis and cancer
(127). HBsAg may increase the translocation of L-HDAg from
nucleus to ER, and the translocation is accompanied by an
increase in NF-kB activity (128). Compared with HBV
monoinfection, the upregulation of antigen processing
mechanism leads to higher efficiency of HBV epitope
presentation in HBV/HDV coinfected cells, which can promote
the recognition of infected cells by T cells (129).

Although HDV has been shown to inhibit HBV replication in
many studies, serum HBsAg levels in patients with HBV/HDV
coinfection are higher or equal than those in patients with HBV
monoinfection (130, 131). HBV/HDV coinfected sequences
exhibited certain unique mutations in HBsAg genes. Some of
these mutations affected the generation of proteasomal sites,
binding of HBsAg epitopes to MHC-I and -II ligands, and
subsequent generation of T- cell epitopes. Selective
amplification of these mutations at certain strategic locations
might not only enable HBV to counteract the inhibitory effects of
HDV on HBV replication, but also facilitate its survival by
escaping the immune response (132). The percentage of
Frontiers in Immunology | www.frontiersin.org 7
conserved HBsAg-positions was significantly higher in HBV/
HDV coinfection than HBV monoinfection. HDV can constrain
HBsAg genetic evolution to preserve its fitness (133).

HBV/HIV Coinfection
HIV is a non-hepatophilic virus that mainly invades
lymphocytes. The human immune function gradually loses and
eventually leads to acquired immune deficiency syndrome
(AIDS) by HIV infection. Host and virus jointly determine the
disease progression after HIV infection, in which the activation
level of innate immunity plays an important role (134).

Evolution during primary HIV infection does not require
adaptive immune selection (135). It is found that DC, NK cells,
macrophages and NKT cells play an important and irreplaceable
role in innate immunity in long-term nonprogressors and elite
controllers (that means with HIV-1 infection for many years,
long-term asymptomatic, normal CD4+ T cell count and no
antiretroviral therapy) of HIV infection. Other innate immune
cells are inefficient or even ineffective.

The progression of HIV infection may be related to the
number and phenotypic function of DC. In patients with
typical progression of HIV-1 infection, the number and
phenotype of DC change with the progression of the disease
(136), while DC in elite controllers can enhance and expand the
ability to stimulate HIV specific CD8+ T cell response by
improving the internal immune recognition of HIV infected
cells. Type I IFN secreted by DC plays an important role in
inducing effective HIV specific CD8+ T cell immunity (137).

The dysfunction of DC after HIV infection contributes to the
persistence of the virus (138). NK cell activity is in the normal
range in long-term nonprogressors, but decreased in patients
with disease progression, indicating that NK cell activity is an
important factor in controlling the progression of HIV infection
(139). The levels of macrophage inflammatory protein (MIP), IP-
10, monocyte chemoattractant protein-1 (MCP-1) and TGF
decrease in elite controllers of HIV infection (140). Increased
expression of CD224 on NKT cells is associated with HIV disease
progression (141), and NKT cells in non-progression patients
secrete more IFN-g, IL-2 and TNF-a than those in progressive
patients. These cytokines can significantly reduce HIV viral load
and maintain a high number of CD4+ T cells (142).

In addition to the difference of innate immunity, adaptive
immunity, such as CD8+ T cell function, has also been enhanced
in HIV elite controllers. HIV-1 specific CD8+ T cells of elite
controllers can reduce HIV-1 replication in infected CD4+ T cells
by 60%-80%, and can also recognize resting infected CD4+ T
cells and kill these cells without virus activation (143–146). There
are a small amount of HIV-1 specific CD57+ CD4+ T cells in elite
controllers, which may play a direct role in killing virus infected
cells and supplement the cytotoxic activity of HIV-1 specific
CD8+ T cells (147). Elite controls can produce effective anti-
HIV-1 antibodies, and the frequency of preserved memory B
cells is higher (148, 149).

A meta-analysis showed that the global rate of combined
HBV infection in HIV patients was 7.6% (150). HIV coinfection
has a negative impact on the progress of HBV infection, which
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can lead to rapid progression to liver fibrosis and cirrhosis (151).
Enhanced production of CXCL10 following coinfection of
hepatocytes with both HIV and HBV may contribute to
accelerated liver disease in the setting of HIV/HBV coinfection
(152). It is known that HBV Pre-S deletion is closely related to
HBV-associated terminal liver disease in HBV monoinfection.
High-frequency Pre-S quasispecies deletions are predominant in
HIV/HBV coinfection patients, providing a reference for the
pathogenesis of the accelerated progression of liver disease in
HIV/HBV coinfection (153). Even after effective antiretroviral
therapy, the chronic immune activation of patients with HIV/
HBV coinfection is higher than that of patients with HIV
momoinfection. Chronic immune activation may lead to
hepatic steatosis and cirrhosis, increase the risk of liver cancer
(154). At the same time, the presence of active HBV infection will
affect the viral immunological status of patients with HIV/HBV
coinfection, which is characterized by the low number of CD4+ T
Frontiers in Immunology | www.frontiersin.org 8
cells at the onset and the slow recovery of CD4+ T cell count after
antiretroviral treatment (155, 156).

HBsAg levels and HBsAg production were significantly higher
in untreated HIV/HBV coinfection patients compared to HBV
monoinfection patients. The highest HBsAg concentrations were
observed in patients with more advanced HIV disease (157).
Compared with patients with HBV monoinfection, successful
long-term tenofovir dipivoxil (TDF) inclusive ART can increase
the HBsAg seroclearance rate in HIV/HBV coinfection patients,
reaching 3.2%-36% (158–173) (see Table 1). The longer the
follow-up time, the higher the HBsAg seroclearance rate. Higher
HBsAg seroclearance rate is associated with increased CD4+ T
cells. The sudden recovery of adaptive immunity causes immune
reconstitution inflammatory syndrome, and then accelerates the
production of protective antibodies. Therefore, immune
reconstitution under antiretroviral therapy may affect the
HBsAg serum conversion rate.
TABLE 1 | HBsAg seroclearance rate in HBV/HIV coinfection patients with TDF inclusive ART.

Publication year Country or region
of patients

Number of patients
included

Main ART
drugs

Mean follow-up time
or therapy duration time

Number or rate
of HBsAg seroclearance

2005 (158) Germany 31 TDF 48 weeks 1/31 (3.2%)
2007 (159) France 92 LAM ART: 65 (1-155) months

HARRT: 43 (1-93) months
LAM: 36 (1-83) months

5/92 (5.4%)

2010 (160) Dutch 102 TDF
LAM
ETV

5 years 10/102 (9.8%)

2012 (161) Dutch 104 TDF 57 (34-72) months 8/104 (7.7%)
2012 (162) Austria 110 LAM

TDF
FTC

5 years HBeAg+:
LAM: 8%
TDF: 25%
TDF+FTC: 27%
HBeAg-:
LAM: 11%
TDF: 27%
TDF+FTC: 36%

2013 (163) Zambia
South Africa

92 TDF
LAM

12 months LAM: 4/20 (20%)*
TDF:3/17 (17.6%)*

2013 (164) Thailand 47 LAM
FTC
TDF

168 weeks 6/47 (12.7%)

2014 (165) France 111 TDF
LAM
FTC

74.7 (33.7-94.7) months No detail data

2015 (166) USA 99 TDF 5 years 18/99 (18.1%)
2015 (167) Austria 111 TDF 74.2 (33.1-94.7) months 4/111 (3.6%)
2019 (168) Taiwan, China 366 TDF

LAM
5 years 15/366 (4.1%)

2020 (169) Zambia 284 TDF 2 years 29/284 (10.2%)
2020 (170) Australia

Thailand
92 TDF 5 years 11/92 (12.0%)

11/72 (15.3%)#

2020 (171) Germany 359 TDF
TAF

11 years 66/359 (18.3%)

2021 (172) France 165 TDF 15 years 13/165 (7.8%)
2022 (173) USA 88 TDF

FTC
LAM

144 weeks TDF+FTC: 30%
FTC or LAM: 10%
May 2022 | V
TDF, tenofovir dipivoxil; FTC, emtricitabine; LAM, lamivudine; ETV, entecavir; TAF, tenofovir alafenamide; ART, antiretroviral therapy; HARRT, highly active antiretroviral therapy
*Because stored samples were unsuitable or not available, they only calculated documented data.
#The data of 72 patients was available to year 5.
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CONCLUSIONS

The pathogenesis of chronic hepatitis B is mainly related with
immune mechanisms. The functional cure of hepatitis B with
HBsAg seroclearance as the therapeutic target mainly depends
on the immune response. When coinfected with HBV and other
viruses, the body immune state becomes more complicated. In
some cases, coinfection can improve the seroclearance rate of
HBsAg. The specific mechanism needs to be further elaborated
for better guiding the clinical application.
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