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Abstract 

The global prevalence of the XBB lineage presents a formidable challenge posed by the recombinant SARS-CoV-2 virus. The understand-
ing of SARS-CoV-2’s recombination preference assumes utmost significance in predicting future recombinant variants and adequately 
preparing for subsequent pandemics. Thus, an urgent need arises to establish a comprehensive landscape concerning SARS-CoV-2 
recombinants worldwide and elucidate their evolutionary mechanisms. However, the initial step, involving the detection of potential 
recombinants from a vast pool of over 10 million sequences, presents a significant obstacle. In this study, we present CovRecomb, a 
lightweight methodology specifically designed to effectively identify and dissect interlineage SARS-CoV-2 recombinants. Leveraging 
CovRecomb, we successfully detected 135,567 putative recombinants across the entirety of 14.5 million accessed SARS-CoV-2 genomes. 
These putative recombinants could be classified into 1451 distinct recombination events, of which 206 demonstrated transmission span-
ning multiple countries, continents, or globally. Hotspot regions were identified in six specific areas, with prominence observed in the 
latter halves of the N-terminal domain and receptor-binding domain within the spike (S) gene. Epidemiological investigations revealed 
extensive recombination events occurring among different SARS-CoV-2 (sub)lineages, independent of lineage prevalence frequencies.
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Introduction

Viral recombination, along with segment insertion or deletion and 
site mutation, is a major cause of viral genetic diversity (Makino 
et al. 1986, Su et al. 2016, Bentley and Evans 2018). Previous stud-
ies have demonstrated pervasive recombination in coronaviruses 
(CoVs) and showed its important roles in viral adaptability (Xiao 
et al. 2016), cross-species transmission (Graham and Baric 2010, 
Jackwood et al. 2010), and resistance to antivirals (Nora et al. 
2007). For the global pandemic severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2), lineage cocirculation provides 
a background for recombination generation, and recombination 
has become a key contributor to SARS-CoV-2 genetic evolution 
(Yue et al. 2023). As of 5 April 2023, over 70 recombinant lineages 
starting with “X” have been assigned online (Roemer et al. 2022). 
Among them, the SARS-CoV-2 Omicron recombinant subvariant 

XBB and its sublineages have expanded rapidly and become pre-
dominant worldwide. Therefore, three critical questions await to 
be answered. The first is whether there were any other recombi-
nants and transmission events that have not been reported. The 
second is whether there are any established mechanisms during 
virus recombination. The last is whether it is possible to provide 
early warning of the highly transmitted recombinant lineages that 
may emerge in the future.

In theory, the dense sampling and genomic sequencing efforts 
targeting SARS-CoV-2 worldwide present an ideal opportunity to 
detect and monitor recombination events during the COVID-19 
pandemic. Nevertheless, due to the high similarity between var-
ious SARS-CoV-2 lineages and the vast volume of accumulated 
data, accurately identifying SARS-CoV-2 recombination events 
poses a formidable challenge. Robust evidence of SARS-CoV-2 
recombinants only surfaced in late 2020 (Gutierrez et al. 2022, 
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Jackson et al. 2021, Junior et al. 2021, Turakhia et al. 2022), when 
tens of single nucleotide polymorphisms (SNPs) accumulated, pro-
viding a potential anchor for identifying feature mutations of 
different lineages in one genome. Traditional detection methods 
relied on sequence alignment for inferring recombination and 
identify breakpoints (Lole et al. 1999, Etherington et al. 2005, Jack-
wood et al. 2010, Lam et al. 2018). However, the classical approach 
faltered under the weighty computational burden imposed by the 
expansive datasets characterizing SARS-CoV-2. Recently, novel 
approaches have been proposed, including Bolotie (Varabyou et al. 
2021), RIPPLES (Turakhia et al. 2022) [which has now integrated 
into the rivet platform (Smith et al. 2023)], VirusRecom (Zhou 
et al. 2023), recombinhunt (Alfonsi et al. 2024), and the Sc2rf 
method (which has now evolved into the rebar method) for con-
sensus genome, or the method used by Pipek et al. for raw read 
datasets (Pipek et al. 2024). However, the utility of these meth-
ods was constrained by two objective limitations. First, during 
the development of these techniques, the absence of a bench-
mark dataset impeded precise evaluation of the reliability of the 
identified recombinants. Second, few methods were capable of 
distinguishing between detected recombinants as independent 
recombination events or descendants thereof. Consequently, most 
of these approaches have not been applied to the comprehensive 
global datasets required to portray a comprehensive landscape 
of SARS-CoV-2 recombination since the onset of the pandemic. 
Even to this day, no appropriate methodology has been devised 
to simultaneously address the above limitations.

To surmount these challenges, we propose a method termed 
CovRecomb for detecting SARS-CoV-2 recombination. The fun-
damental principle underlying CovRecomb resides in the notion 
that recombinant strains inherit the genome features from their 
parental lineages (Fig. 1a). Accordingly, leveraging viral lineage-
specific feature mutations as the indicators, we employed the 
hypergeometric distribution algorithm to assess the nonrandom-
ness of the origin of these feature mutations arising from genomic 
recombination. Using CovRecomb to scrutinize 14,555,061 consen-
sus sequences from the Global Initiative on Sharing All Influenza 
Data (GISAID) database (Elbe and Buckland-Merrett 2017), we suc-
cessfully identified 135,567 putative recombinants, which were 
subsequently clustered into 1451 independent events. CovRecomb 
systematically detected half of the manually curated recom-
binants, which have been reported with variability in criteria 
and methodology across different sources (https://github.com/
cov-lineages/pango-designation/issues, accessed date: Mar 10, 
2023). The comprehensive identification of recombination pro-
vided a promising opportunity to investigate the following three 
prospects of recombination patterns: tracing the transmission of 
recombinants, inferring recombination breakpoint hotspots, and 
determining lineage preference in recombination (Fig. 1a), thereby 
enhancing our understanding of SARS-CoV-2 evolution.

Results
Overview of the CovRecomb method for detecting 
interlineage recombinants
To mitigate the computational burden associated with conven-
tional recombination detection methods, we used sequential fea-
ture mutations as a simplified representation of the viral genome, 
condensing it into a limited number of positions. Consequently, 
the task of identifying recombinants shifted from genomic com-
parisons to the assignment of feature mutations (see Methods 
for more details). The CovRecomb method encompassed five 
steps within its workflow (Fig. 1b and Supplementary S1): (i) 

transforming the complete genome into the mutational sites; (ii) 
constructing a lineage-defining library to capture the genomic 
characteristics of viral (sub)lineages; (iii) predefining a lineage-
paired score matrix (LPSM) to encompass diverse combinations 
of lineage-paired feature mutations; (iv) mapping the mutation 
vector of the sample against the predefined LPSM; and (v) deter-
mining whether a genome qualifies as a recombinant based on the 
optimal lineage-paired combination.

To evaluate the performance of CovRecomb, we compared it 
to other recombination detection methods on both real and simu-
lated datasets. On the one hand, across the randomly sampled real 
sequences from 72 recombination lineages, which were sequences 
denoted with “X” from manually designated SARS-CoV-2 recombi-
nant lineages, different methods exhibited varying computational 
costs, from <30 s for CovRecomb to nearly 2 h for VirusRecom 
(Fig. 1c). The remaining three methods, 3SEQ, rebar, RIPPLES, 
and recombinhunt required ∼4 min, 11 min, 42 min, and 58 min, 
respectively (Fig. 1c). Besides, while CovRecomb, rebar, RIPPLES, 
and recombinhunt exhibited a gradual increase in computational 
time as the sample size expanded, 3SEQ and VirusRecom demon-
strated considerably steeper growth trends (Fig. 1d). Notably, 
CovRecomb demonstrated the highest performance in terms of 
accuracy of parental lineages but yielded the lowest coverage 
rate (Fig. 1e–f). Since the RIPPLES methodology does not provide 
the direct parental lineages of the identified recombinant, it was 
not incorporated in the comparison of the accuracy of parental 
lineages. On the other hand, by employing a forward-evolution 
simulator, simulated virus datasets were generated and used for 
the comparison between CovRecomb and a representative general 
method, 3SEQ (Supplementary Fig. S2 and Table S1, see Meth-
ods). The compared results were similar to that from real datasets. 
As the number of genomes increased, particularly when more 
than 1000 genomes, the elapsed time required for CovRecomb was 
significantly less than that of 3SEQ (Fig. 1g). Additionally, the Cov-
Recomb exhibited superior accuracy compared to 3SEQ while its 
true positive rates (TPRs) were 30% lower than 3SEQ. Moreover, the 
false positive rate (FPR) and the false discovery rate (FDR) for the 
CovRecomb method were nearly negligible (Supplementary Table 
S1). All these indicated that although the recall of CovRecomb 
did not match that of 3SEQ, it still achieved an acceptable recall 
rate of approximately 60% in simulation datasets. Most impor-
tantly, CovRecomb obtained a low false positive performance for 
recombinant identification and exhibited high precision in assign-
ing parental lineage, which is important for the evaluation of 
recombination mechanism.

By varying the number of consecutive feature mutations from 
one to four, we found that, when the number increased to four, the 
actual parameter used in real detection process, the FDR and the 
FPR of CovRecomb were nearly to be zero (Supplementary Fig. S3a-
b). Besides, apart from the random mutations (Supplementary Fig. 
S3c), we added homologous mutations into simulated datasets 
and found that the FDR, FPR, and TPR of CovRecomb were not sub-
stantially influenced by the number of homologous mutations in 
sequences (Supplementary Fig. S3d-f) but were related to the pro-
portion of sequences with homologous mutations (Supplementary 
Fig. S3g-i). Lastly, when applied to the Middle East Respiratory Syn-
drome (MERS) dataset, CovRecomb successfully identified all the 
45 recombination sequences along with the 98% (44 out of 45) 
accuracy of the parental lineages’ assignment. In total, the preci-
sion of CovRecomb in MERS dataset is 0.88 (Supplementary Table 
S2).

Employing CovRecomb in all SARS-CoV-2 datasets, 49% of 
the acknowledged SARS-CoV-2 recombinant lineages, which were 
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Figure 1. The framework and performance of the CovRecomb method. (a) Graphical illustration of the application of the CovRecomb method. (b) 
Schematic diagram of the framework of the CovRecomb method. (c) Comparison of the elapsed time of five recombination detection methods in 
identifying 72 sequences from 72 kinds of recombination lineages. The time was averaged from five independent trials, and the bars represent the 
standard deviation. (d) Comparison of the elapsed time of the CovRecomb, 3SEQ, rebar, RIPPLES, recombinhunt, and VirusRecom methods for different 
sample sizes. (e) Comparison of the accuracy of parental lineages for identified recombinants among the CovRecomb, 3SEQ, rebar, recombinhunt, and 
VirusRecom methods. The value is averaged from five independent trials and the bars represent the standard deviation. The reason for not comparing 
the accuracy of the RIPPLES method is that RIPPLES identifies recombinant parental nodes rather than lineages, making a direct comparison with 
other methods in the study unfair. (f) Comparison of the coverage rate for a given number of recombinants among the CovRecomb, 3SEQ, rebar, 
RIPPLES, recombinhunt, and VirusRecom methods. The value is averaged from five independent trials and the bars represent the standard deviation. 
(g) Comparison of the elapsed time of the CovRecomb (blue) and 3SEQ (orange) methods. The time is averaged from five independent trials and 
measured using the log10 transformed millisecond. (h) Evaluation of CovRecomb in manually curated SARS-CoV-2 recombinant lineages. There were 
72 kinds of recombinant lineages that started with “X” and were enrolled in the analysis; 35 kinds could be mostly (≥77% genome) identified, and 11 
kinds could be preliminarily (0–22% genome) identified. The x-axis of the right bar chart is the 35 most identified recombinant lineages, the y-axis 
represents the identified proportion, and the text on each bar shows the number of genomes identified by CovRecomb. ***: Preliminary identified.

denoted lineages starting with “X” (Roemer et al.) were predom-
inantly detected (at least 77%) at one instance, while 15% of 
lineages were preliminarily identified (less than 22%) (Fig. 1h, 
Supplementary Table S3). Furthermore, we compared the man-
ually curated parental lineages online and the parental lineages 
reported by CovRecomb. The results demonstrated a consistent 
alignment for 33 out of 35 (94%) lineages, with only two recom-
binant lineages (XBC and XBC.2) displaying variations (Supple-
mentary Table S3). Overall, the remarkable precision in identi-
fying recombinant entities assumes critical import in the deduc-
tion of recombination mechanisms within the vast SARS-CoV-2 

data landscape. CovRecomb showcased a salutary equilibrium 
between recall and precision, affording superior performance 
outcomes upon the application to extensive datasets.

Identification of putative SARS-CoV-2 
recombinants and independent recombination 
events
In total, 14,555,061 SARS-CoV-2 consensus genomic sequences 
released from 24 December 2019 to 29 January 2023 were 
enrolled for recombination analysis with CovRecomb (Fig. 2a). 
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Figure 2. Application of CovRecomb in the detection of SARS-CoV-2 recombinants in a large-scale dataset. (a) Workflow of applying CovRecomb to 
detect and dissect SARS-CoV-2 recombinants. (b) The temporal distribution of the 939 independent recombination events with higher confidence. Each 
bar represents the number of identified events in each month. (c) The spatial distribution of the 939 ancient-like recombinants. The y-axis represents 
the proportion of recombinants among different regions during the same month.

The analysis process was executed on a normal personal com-
puter equipped with an AMD Ryzen 9 5900X 12-Core Processor 
and 128 GB memory, accomplishing completion within a span of 
120 h employing 20 threads. In total, 135,567 putative recombinant 
sequences were identified (https://github.com/wuaipinglab/Cov
Recomb/blob/main/CovRecomb-Global-Version/putative_recom
binants/putative%20recombinants.csv). The spatiotemporal dis-
tribution showed that most recombinants were identified from 
North America and Europe after June 2022 (Supplementary Fig. 
S4). To ascertain the independence of these recombination events, 
they were subjected to the scrutiny of three predefined rules (see 
Methods), ultimately culminating in the identification of 1451 
independent recombination events (Fig. 2a, Supplementary Table 
S4). Intriguingly, a subset of 106 events was designated as belong-
ing to the “X” series events (Supplementary Table S4). According 
to the confidence values (Supplementary Fig. S5a), the prob-
ability density distribution curves of the confidence value for 
recombination events were like a bimodal curve shape, and the 
distribution of the other putative recombinant events was sim-
ilar to that of the “X” series recombinant events, although the 
former had more dispersed values (Supplementary Fig. S5b-e). 
Since the lower quartile for “X” series recombinant events was 
0.681 (Supplementary Fig. S5b), we took it as the cut-off and 
divided the 1451 events into the higher confidence group with 939 
events and the lower confidence group with 512 events, with 104 
and 102 transmission events, respectively (Fig. 2a, Supplementary
Table S4).

Among the 939 events exhibiting higher confidence, the first 
recombination event occurred in the USA during June 2020, 
although it did not cause detected endemic (Supplementary Table 

S4). Subsequently, the number of recombination events demon-
strated a consistent annual increase from 2020 through 2022 
(Fig. 2b). An examination of the spatiotemporal distribution show-
cased the ubiquitous occurrence of SARS-CoV-2 recombination 
across six continents, with North America, Europe, and Asia 
encompassing the highest number of identified putative recom-
bination events (Fig. 2c). As these recombination events exhibited 
clustering based on their similar mutations and spatiotemporal 
distribution, we surmised the existence of a plausible transmis-
sion relationship within each putative recombinant event.

To demonstrate the sustained analytical capability of the Cov-
Recomb method, we performed an updated analysis using SARS-
CoV-2 sequences collected from the GISAID database between 30 
January 2023 and 23 June 2024 (Supplementary Fig. S6a). After 
applying our established filtering criteria, we retained 1,053,388 
high-quality sequences out of 1,252,950 initial samples. Using 
the CovRecomb method on this new dataset, we identified 3844 
recombinant sequences (Supplementary Fig. S6b-c, Table S5) aris-
ing from 123 independent recombination events, leading to at 
least 35 new transmission events (Supplementary Fig. S6d-e, Table 
S6). The analysis of the updated data reveals that the number 
of independent recombination events exhibits temporal fluctu-
ations. Specifically, in 2023, recombinant events were predomi-
nantly concentrated between June and December. Compared to 
the same period in 2022, the number of recombinant events in 
2023 was lower. The overall recombination rate in this updated 
dataset is 0.36%, which is in line with the co-infection rates 
reported by Pipek et al. (0.35%) and Zhou et al. (0.3%–0.5%) but 
shows a decrease from the 0.93% rate observed in our earlier 
dataset (Zhou et al. 2022, Pipek et al. 2024). This reduction is likely 
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due to decreased sampling density in 2023. Geographically, recom-
binant sequences continue to be distributed across six continents, 
with Europe and North America remaining the primary regions of 
detection. Both continents have alternated as the leading sources 
of independent recombinant events, while Asia remains the third-
largest source. Notably, among the recombinant events, the XDD 
lineage was the most frequently observed, accounting for 10.6% 
of independent events. CovRecomb identified its parental lineages 
as HK.3 (XBB.1.9.2.5.1.1.3) and JN.1, featuring two breakpoints. This 
finding aligns with the pango-designated EG.5.1.1 (XBB.1.9.2.5.1.1) 
and JN.1. Additionally, the recombination event between GJ.1.1 and 
XBB.2.3, exhibiting two breakpoints within the spike region, was 
first detected in India and later also collected in the USA, Italy, 
Australia, and Japan, marking it as a previously unreported event.

Evidence for transmission of SARS-CoV-2 
recombinants
In total, a comprehensive examination of the dataset yielded a 
remarkable count of 206 putative recombinants displaying evi-
dence of onward transmission (see Methods). Upon sorting these 
recombinants based on the number of transmitted genomes, it 
was revealed that the two most prominent pandemic recombina-
tion events encompassed the recombination of lineage BJ.1 with 
lineage BM.1.1.1, which had already been classified into the XBB.1 
and XBB.2 series recombinant events, with 35,250 and 15,191 
genomes, respectively (Supplementary Table S4). Among the 104 
transmission events exhibiting higher confidence, 31 belonged to 
the “X” series, including lineage XA transmitted in the UK (Gutier-
rez et al. 2022), lineage XB in the USA and Mexico (Gutierrez et al. 
2022), lineage XC in Japan (Sekizuka et al. 2022), and others (XD, 
XE, XH, XJ, XK, XM, XY, XAF, XAJ, XAW, XBB.1, XBB.1.5, XBB.3, XBD, 
XBE, and XBJ) (Supplementary Table S4). Among the remaining 73 
transmission events, it was observed that 11 events were confined 
within a single country, while the other 62 events experienced 
varying degrees of intercontinental or global transmission.

Therefore, as an illustrative example, we selected a recom-
binant event characterized by high confidence to illustrate the 
transmission pattern of a novel recombinant lineage. To the best of 
our knowledge, it is an interlineage recombination event that has 
never been reported before, involving a dataset of 162 sequenced 
genomes (Supplementary Table S4). Firstly, through a comparative 
analysis between the earliest recombinant genome (hCoV-19/Bel-
gium/rega-18 342/2021) and the feature mutations of its parental 
lineages, it was ascertained that its 5′-terminus (at least 897-17 
790 nt) potentially inherited from the lineage AY.123.1, while the 
3′-terminus (at least 21 846-24 410 nt) was inherited from the lin-
eage AY.4.2. This analysis can be visualized through nucleotide 
variation with respect to the reference sequence (EPI_ISL_402125, 
gray genome, far bottom) for the first sampled recombinant 
sequence (hCoV-19/Belgium/rega-18 342/2021) and its parental 
AY.123.1 (top colored genome) and AY.4.2 (bottom colored genome) 
lineages composed of their respective feature mutations (Fig. 3a). 
Secondly, a spatiotemporal examination of the 162 sequenced 
genomes unveiled the initial observation in Belgium on 13 October 
2021, followed by subsequent dissemination to 10 other European 
countries (Fig. 3b). Notably, based on the ancestral state recon-
struction analysis, it was evident that Belgium, Denmark, France, 
the Netherlands, and the UK exhibited both imports and exports 
of the recombinant lineage, while Germany, Luxembourg, Spain, 
Poland, and Sweden solely reported case imports (Fig. 3b). Fur-
thermore, similar to the temporal distribution of the XA lineage 
transmitted in England (Gutierrez et al. 2022), the transmission 
of this event persisted at a low frequency for 3 weeks before a 

small-scale expansion emerged in the sixth week and then subside 
again in the eighth week. After that, the epidemic gradually waned 
and concluded in the 13th week (Fig. 3c). Finally, the phylogenetic 
tree effectively illustrated the molecular distance between the 
162 recombinants during transmission, emphasizing the occur-
rence of a relatively independent process of virus evolution when 
a recombinant genome infiltrates a new geographic location, as 
observed in the UK (Fig. 3d).

Inference of breakpoint hotspots for SARS-CoV-2 
recombination
From a qualitative standpoint, the genome mosaic structure for 
the 104 independently transmitted recombinants suggests that 
the recombination breakpoints were distributed throughout the 
entirety of the SARS-CoV-2 genome (Fig. 4a). To delve into a quan-
titative examination, we meticulously calculated the likelihood of 
each site to become a potential breakpoint for the 939 events dis-
playing higher confidence (Fig. 4b-c), as well as the 512 events with 
comparatively lower confidence (Supplementary Fig. S7). By plot-
ting density curves, meticulously generated according to our pre-
scribed methods, a discernible trend emerged, indicating a distinct 
preference for breakpoint hotspots in the 3′ region of the SARS-
CoV-2 genome (Fig. 4b). Notably, these hotspots were concentrated 
within almost contiguous regions spanning from 19 023 to 26 732 
nt, which encompassed genes such as ORF1b, spike, ORF3 (NS3) and 
envelope (E) genes (Fig. 4b). Intriguingly, substantial fluctuations in 
breakpoint density were observed within the spike genome itself 
(Fig. 4b, Supplementary Fig. S7a). Delving deeper into the analy-
sis, specific attention was directed toward the spike protein, where 
breakpoint density plots clearly illustrated distinct characteris-
tics. It was apparent that the first halves of the N-terminal domain 
(NTD) region (21 563-22 031 nt) and the receptor-binding domain 
(RBD) region (22 601-22 987 nt) were the cold regions, while the sec-
ond halves of the NTD and RBD (22 093-22 061 nt, 22 987-23 188 nt) 
seem to be the hotspots (Fig. 4c, Supplementary Fig. S7b).

Preference characteristics of the epidemiology 
and lineages associated with SARS-CoV-2 
recombination
A common phenomenon was that a widely circulating lineage pro-
vided more opportunities for viral recombination (Su et al. 2016). 
To shed light on the intricate relationship between epidemiology 
and recombination dynamics, we plotted the epidemiological fre-
quencies of two parental lineages associated with each indepen-
dent recombination event (see Methods). Among the 939 events 
exhibiting high confidence, only 472 of them had simultaneously 
sampling of both parental lineages, unearthing a dispersed dis-
tribution of epidemiological frequencies for the paired parental 
lineages (Fig. 5a). While certain instances displayed a dominant 
parental lineage in terms of epidemiological frequency, a substan-
tial number of recombinants originated from two nondominant 
parental lineages (Fig. 5a). It is worth noting that the epidemio-
logical frequencies of the parental lineages encompassed a wide 
range of values (Fig. 5b). Approximately 16% of the recombinants 
(83/520) exhibited cumulative frequencies exceeding 50% for their 
parental lineages, while nearly 51% of recombinants (283/520) 
demonstrated cumulative frequencies below 10% (Fig. 5b, Supple-
mentary Table S7).

Moreover, in our pursuit to investigate potential preferences 
for recombination between specific lineage pairs, we constructed 
informative heatmaps showcasing the lineage-paired recombina-
tion events (Fig. 5c and Supplementary S8). Intriguingly, lineages 
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Figure 3. A novel interlineage recombinant transmitted across 10 European countries. (a) The mosaic plot of a representative recombinant event. (b) 
The spatiotemporal dispersal pattern of the interlineage recombination event. The dissemination and source−sink dynamics aggregated in 10 
European countries for the recombination event determined from ancestral state reconstruction analysis. The arrows denote the direction of virus 
movement, and the curves linking any two locations are colored according to the mean dates of all viral movements inferred along this route. The 
absolute numbers of importation and exportation events for each country are shown in a horizontal bar chart. The five countries with bright colors on 
the map represent the countries with simultaneous virus imports and exports, while the other five countries colored gray on the map represent only 
virus imports. (c) The temporal distribution of the 162 transmitted recombinant sequences. The brown and green bars represent those recombinants 
sampled in the growth or reduction state of transmission, respectively. (d) Phylogenetic tree constructed based on the 162 recombinant sequences 
originating from recombination events between lineage AY.123.1 and lineage AY.4.2. Branches with bootstrap values of more than 90% are labeled by 
their absolute value.

associated with the Omicron variant or the Delta variant show-
cased a heightened inclination for participating in recombina-
tion events, regardless of whether the recombination occurred 
within the same variant or between different variants (Fig. 5c). 
In addition, by comparing the preserved genomic fragments of 

each variant within the recombinants, we discovered different
tendencies. Specifically, the Delta, Epsilon, Iota, and Mu
variants exhibited a predilection for retaining the 5′ region of the 
SARS-CoV-2 genomes, while the Alpha, Eta, Lambda, and Omicron 
variants displayed a tendency to retain the 3′ region (Fig. 5c).
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Figure 4. Mosaic genome structures and recombination hotspots for SARS-CoV-2 recombinants. (a) The mosaic genome structures of 104 independent 
recombination events with high confidence and transmission display inferred parental lineage mutations, blue segments near the 5’ terminus, orange 
segments elsewhere, ambiguous gaps for potential recombination breakpoints, and genomic compositions noted at the top. (b and c) Identification of 
the recombination hotspots for 939 independent recombinant events with higher confidence. The density curve of breakpoint probability among the 
whole genome (b) or the spike gene (c) of SARS-CoV-2. The y-axis represents the probability for each site to be a breakpoint among the 939 
recombinants. Areas of breakpoint hotspots are colored red, and coldspots are colored blue. At the bottom, hotspots of the whole genome (left) or the 
spike gene (right) are shown and annotated against the encoded proteins.

Discussion
The hypergeometric distribution, commonly utilized as a dis-
crete probability distribution, finds application in assessing the 
likelihood of annotating a Gene Ontology (GO) term on a set 
of genes with a frequency exceeding chance expectations (Boyle 
et al. 2004, Rivals et al. 2007). In this study, we introduced this 
statistical methodology to aid in the identification of candidate 
recombinants in virus genomes. Within the CovRecomb method, 
we compare the feature mutations of a lineage pair to a GO term, 
treating the sample’s mutation as a gene set awaiting annotation. 
The mapping process involved sampling mutations from an LPSM 
library without replacement. Consequently, the enrichment score 

for the sample’s mutations derived from the feature mutations 
of a lineage pair can be quantitatively assessed by the hyperge-
ometric distribution. If the calculated probability (P value) for a 
recombinant lineage pair fell sufficiently below that of all lin-
eage pairs, and the Bonferroni-corrected P value was significant, 
it could be inferred that the sample’s mutations likely originated 
from the given lineage pair. Compared to sequence alignment, 
the hypergeometric test provides an efficient means to prelimi-
narily screen candidate recombinants from a statistical aspect; 
however, for a complex biological process like recombination, 
additional biological rules are necessary to ensure the accuracy 
of the identified results from a biological aspect.
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Figure 5. The epidemiological and lineage preference characteristics of SARS-CoV-2 recombination. (a) Scatter diagram of the epidemic frequency for 
parental lineage X and lineage Y among 520 independent SARS-CoV-2 recombinants derived from the 939 events with high confidence. (b) Cumulative 
frequency of lineages in geographic regions of each recombinant. The tracts near the 5′-terminus of the SARS-CoV-2 genome from lineage X are shown 
in blue, while the tracts from lineage Y are shown in orange. All 520 recombinants are sorted from left to right according to the cumulative frequencies 
of lineages X and Y. (c) Simplified diagram for lineage preference in recombination among VOC and VOI variants. The number of independent 
recombinants with the same parental lineages is represented by the color and size of intersections.

In the context of virus genome recombination, the off-
spring strain inherits genome’s segments from its parental lin-
eages. Hence, we regarded feature mutation combinations across 
genomes as “anchors” for capturing recombination events. We 
hypothesized that the synergistic occurrence of multiple muta-
tions associated with a specific lineage was not accidental, par-
ticularly for mutations within a contiguous region. Thus, in Cov-
Recomb, we incorporated genome positions and assessed recom-
binants based on the combinations of feature mutations rather 
than a single mutation, requiring the inclusion of at least four 
continuous feature mutations within each recombined segment. 
Moreover, to mitigate statistical bias stemming from the statisti-
cal advantage of lineages with fewer mutations, we stipulated that 
the feature mutation combination from parental lineages should 
be distinct and not completely present in the feature mutation list 
of the most likely nonrecombinant lineage. These additional mea-
sures not only address the limitations of statistical analysis but 
also aid in distinguishing recombination signals from nonrecom-
binant homoplasy, where the latter refers to mutation(s) resulting 
from convergent evolution or spontaneous substitutions (Crispell 
et al. 2019).

CovRecomb shares similarities with existing tools in terms of 
the principle underlying recombination identification, i.e. rely-
ing on feature mutations and considering fragments with simi-
lar mutation patterns from different lineages as the recombina-
tion regions. However, CovRecomb exhibits several irreplaceable 
advantages. Firstly, the incorporation of the hypergeometric dis-
tribution test streamlines the screening of the candidate recom-
binants and parental lineages assignment in a rapid and batch-
wise manner, addressing the challenge of identifying millions 
of sequences. Secondly, the implementation of biological rules 
allows for the differentiation of ancient-like recombinant from 

transmitted genomes, such as considering the accumulation rate 
of de novo mutations, thus facilitating the dissection of the molecu-
lar mechanisms underlying recombination events while minimiz-
ing the impact of redundant transmitted sequences. Finally, dur-
ing the development of CovRecomb, over 70 recombinant lineages 
were reported in a scattered or small-scale manner and manu-
ally confirmed, providing a benchmark dataset for CovRecomb, 
enabling quantitative evaluation of its performance.

In comparison to other recombination detection methods, the 
CovRecomb method exhibited unique advantages. Its computa-
tional efficiency makes it well-suited for working with the vast 
amount of viral genome data (Fig. 1c, d, h). Furthermore, the high 
precision achieved in assigning parental lineages to the identified 
recombinants serves as evidence for the robustness of our method 
(Fig. 1e and Supplementary Tables S3). Additionally, the consistent 
performance of CovRecomb in simulated datasets and in MERS 
dataset suggests its potential applicability to viruses other than 
SARS-CoV-2 (Supplementary Table S2). However, CovRecomb does 
not perform as well in terms of recall, as it has a lower cov-
erage rate compared to other recombination detection methods 
(Fig. 1f and Supplementary Table S1). Overall, CovRecomb sac-
rificed recall rate in favor of a low FPR for recombination and 
achieves high precision in parental lineage assignment. It pro-
vides a reliable and efficient strategy for detecting interlineage 
recombinants from a comprehensive perspective, aiding in the 
construction of a global SARS-CoV-2 recombination landscape.

Our analysis of SARS-CoV-2 recombination events across con-
tinents revealed a significant positive correlation (P < .05) between 
sampling density and identified recombinants (Supplementary 
Fig. S9a, b, d, e), highlighting the importance of comprehen-
sive sampling for accurate detection. We observed variations in 
recombination rates among continents (Supplementary Fig. S9b, 
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c, e), potentially influenced by factors, such as detection capa-
bilities, viral prevalence, population dynamics, and public health 
measures. The steady increase in recombination rates over time 
suggests the growing significance of this mechanism in viral evo-
lution. Additionally, we found a significant correlation between co-
infection and recombination rates (P < .05) (Supplementary Figure 
S9f), emphasizing the need for co-infection monitoring. These 
findings provide valuable insights into SARS-CoV-2 recombina-
tion dynamics and inform future surveillance strategies. Further 
research is needed to understand the factors driving geographical 
variations in recombination rates and their impact on viral evolu-
tion and epidemic progression. For the detailed analysis process 
and results, see Supplementary Text 4.

To date, the most prevalent interlineage recombination for 
SARS-CoV-2 is the XBB strain and its sublineages, which have 
infected hundreds of thousands of people worldwide (WHO 2023). 
Some other recombinant lineages have also led to community 
transmissions at the population level (Gutierrez et al. 2022, Lindh 
et al. 2022, Roemer et al. 2022, Sekizuka et al. 2022). However, 
most of these instances were sporadic reports manually screened 
by researchers and/or proposed in online issues (https://github.
com/cov-lineages/pango-designation/issues, accessed date: Mar 
10, 2023). Here, CovRecomb enables automatic and comprehen-
sive recombinant detection and transmission tracking. The iden-
tification of the detected 135,567 recombinants can be deemed 
reliable to a certain extent, as 45% of them were already con-
firmed. However, we maintain a cautious approach when clas-
sifying independent recombination events. This caution arises 
from the principle we employed to distinguish the ancient-like 
genomes from their offspring, which relies on a priori aver-
age evolutionary rate of SARS-CoV-2. If recombinants accumu-
late mutations at an exceptionally rapid evolutionary rate or 
involve events with widespread global transmission, CovRecomb 
may partition them into two or more independent events, as 
observed for multiple events associated with XBB and its sub-
lineages (Supplementary Table S4). Nevertheless, more than half 
of the recombinant lineages cluster into only one or two events, 
indicating the high accuracy of our results. Additionally, we pro-
vide a detailed demonstration of the regional transmission history 
and genomic evolutionary process for a previously unreported 
recombinant transmission event between the lineages AY.123.1 
and AY.4.2. Thus, the CovRecomb method can facilitate the mon-
itoring recombinant transmission by constructing a systematic 
virus recombinant map for the global pandemic. Furthermore, 
we assign a confidence score to each recombination event and 
selected those with higher confidence to dissect the following dis-
sected recombination patterns, enhancing the credibility of our
results.

Breakpoints constitute a significant characteristic of recombi-
nation and have been implicated in positive or negative selection 
of recombination events, varying across genomes in response to 
adaptation (Focosi and Maggi 2022). In this study, we observed 
recombination hotspots near the 5′ region of the spike gene, con-
sistent with a large-scale bioinformatic study on SARS-CoV-2 
recombinant detection (Turakhia et al. 2022), as well as multi-
ple independent studies on coronavirus genomes (Bobay et al. 
2020, Goldstein et al. 2022, Lytras et al. 2022, Nikolaidis et al. 
2022). Moreover, we noted a reduced probability of breakpoints 
occurring in the first half of the NTD and RBD regions (Fig. 4c). 
Intriguingly, the less-break pattern for the two regions has also 
been identified as coldspots in sarbecovirus-related recombinant 
strains (Lytras et al. 2022). We postulate that the preservation of 
these two regions might be correlated with their critical role in 

driving antigenic shift and interfacing with viral receptors (Gra-
ham and Baric 2010, MacLean et al. 2021). However, different 
patterns emerge for the latter half of these two genes, and one 
possible explanation is the presence of XBB-related recombinant 
lineages. Since the single breakpoint occurs in the middle of the 
RBD region (Scarpa et al. 2023), the XBB genome inherits the 
RBD mutations from both parental lineages, suggesting a poten-
tial advantage in the RBD protein, which partially explains the 
relatively high antibody escape capacity and enhanced transmis-
sibility observed in the XBB recombinant lineage (Roemer et al. 
2022, Cao et al. 2023, Wang et al. 2023, Yue et al. 2023). Besides 
the spike gene, we also identified a concentration of breakpoints 
in the ORF1b ( NSP15 and NSP16 region), ORF3, and E genes, as 
observed in the breakpoint distribution map of Omicron-related 
recombinants (Shiraz and Tripathi 2023). Additionally, we detected 
NSP14 as a hotspot, which has received less attention previously. 
Considering the crucial roles of the NSP14 exonuclease in native 
coronavirus recombination (Gribble et al. 2021), it is intriguing to 
investigate the impact of breakpoint on its functionality.

The occurrence of recombination depends on the cocirculation 
of at least two viral (sub)lineages in the same geographic region 
(Gutierrez et al. 2022). It is assumed that viral lineages more preva-
lent in a region are more likely to engage in recombination. As 
expected, our findings confirm that dominant lineages contribute 
to SARS-CoV-2 recombination. However, we also observed that 
lineages associated with fewer epidemics can serve as parental 
lineages, constituting a significant proportion (Fig. 5a-b). This 
unexpected discovery implies that there is no strong correlation 
between lineage prevalence and recombination events. In other 
words, surveillance of SARS-CoV-2 recombinants should not only 
focus on dominant lineages but also consider nondominant lin-
eages, thereby preventing the “late discovery” of recombinants, 
as occurred in the case of lineages XB and XBB, associated with 
the nondominant parental lineage pairs B.1.631-B.1.634 (Gutier-
rez et al. 2022) and BJ.1-BM.1.1.1 (Scarpa et al. 2023), respectively. 
Another important issue is to analysis of preserved proteins for 
each lineage, which reflects their competitive nature (Focosi and 
Maggi 2022). Similar to previously reported transmitted recombi-
nants with higher transmissibility associated with the spike gene 
(Gutierrez et al. 2022), we also identified a preference for pre-
serving the 3′-terminus of the alpha variant genome. In addition, 
we provide information on the preferentially preserved genome 
for other variants of concern (VOCs)/variants of interest (VOIs) 
through lineage-pair mapping.

Our analysis of 154 pairs of parental lineages revealed no signif-
icant correlation between sequence similarity and recombination 
frequency (Supplementary Fig. S10), challenging the theoretical 
assumption that higher sequence similarity facilitates recombi-
nation. However, this finding must be interpreted cautiously due 
to the inherent limitations of current recombination detection 
methods. Most recombination search algorithms, including Cov-
Recomb, rely heavily on identifying mutations to detect recombi-
nation events. This mutation-dependent approach may create a 
bias, potentially causing an overlap between mutation hotspots 
and frequently detected recombination regions. Consequently, it 
remains unclear whether the currently identified recombination 
hotspots represent genuine biological phenomena or are artifacts 
of the detection method’s limitations. This uncertainty highlights 
a critical gap in our understanding: we cannot conclusively deter-
mine if the observed recombination patterns reflect true biological 
processes or are byproducts of our detection methodologies. To 
address this issue, it is imperative to develop novel approaches 
for recombination detection that are less dependent on specific 

https://github.com/cov-lineages/pango-designation/issues
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mutations or that adopt a more holistic, genome-wide perspective. 
Such advancements would enable a more accurate assessment of 
recombination events in SARS-CoV-2 and provide deeper insights 
into the virus’s evolutionary dynamics.

This study has certain limitations. Firstly, it could miss some 
recombinants due to the conservative criteria employed by Cov-
Recomb, which here prioritizes precision over recall. While Cov-
Recomb demonstrates high precision in identifying SARS-CoV-2 
recombinants, we acknowledge its current limitation in recall, 
with approximately 60% detection rate compared to manually 
curated recombinants. This trade-off between precision and recall 
reflects our prioritization of robust identifications in the face of 
challenges such as convergent evolution. The stringent parame-
ters we employed, including the requirement for four consecutive 
characteristic mutations and strict spatiotemporal sampling of 
parental lineages, contribute to this high precision but inevitably 
impact recall. However, it is important to note that CovRecomb’s 
utility as an early warning tool is predicated on the flexibility of 
these parameters. By relaxing certain criteria, such as the break-
point threshold or the number of required consecutive mutations, 
the method’s recall can be significantly improved. This adaptabil-
ity allows researchers to adjust the balance between precision and 
recall based on specific research objectives or surveillance needs. 
For instance, in early warning scenarios where rapid detection is 
crucial, parameters can be relaxed to enhance sensitivity, albeit 
with a potential increase in false positives. Future work will focus 
on optimizing this balance, particularly for applications requiring 
higher recall rates, while maintaining the method’s computational 
efficiency and biological relevance. Secondly, the identification of 
breakpoints is subject to some degree of uncertainty. Inferring 
the breakpoint regions from the gaps between the unique fea-
ture mutations of the parental lineages allows for the coverage 
of all possible breakpoints but compromises accuracy. Thirdly, 
CovRecomb relies on defined lineages rather than individual sam-
ples for recombinant detection, which may reduce sensitivity. 
Fourthly, contamination exclusion is challenging. Given the rel-
ative abundance of putative recombinants identified in this study, 
further verification from raw deep sequencing data or monitoring 
unusually high mutation rate to distinguish between recombi-
nants resulting from natural coinfection and mixed samples from 
laboratory contamination was not provided. Lastly, although our 
analysis of the updated dataset provides a more comprehensive 
view of SARS-CoV-2 recombination dynamics, the current explo-
ration of the updated data is not exhaustive. Future research 
should aim to delve deeper into the new data to fully capture 
emerging trends and refine the understanding of SARS-CoV-2 
recombination patterns. Nevertheless, none of the shortcomings 
substantially impact the ability of CovRecomb method to con-
struct a global SARS-CoV-2 recombination landscape or generate 
insights into recombination patterns.

Materials and methods
Detection of the interlineage recombinants
Recombination occurred between different (sub)lineages in a host 
cell, and the recombinant offspring had most of the same muta-
tions inherited from their parental genomes. In other words, a 
recombinant descendant exhibits a sequential pattern of feature 
mutations inherited from its ancestral lineages. Our fundamen-
tal hypothesis underlying the CovRecomb method posits that a 
genome that simultaneously has sequential feature mutations 
from two lineages is a candidate recombinant sequence. There-
fore, we employed the hypergeometric distribution probability 

test to statistically assess the most plausible parental lineages 
from a statistical perspective, which is a method usually used to 
solve genetic enrichment issues in biological contexts (Boyle et al. 
2004, Rivals et al. 2007). Notably, CovRecomb substantially alle-
viates the computational burden compared to previous studies, 
which involved genomic alignment and comparison of thousands 
of polymorphic sites (Lole et al. 1999, Lam et al. 2018, Martin et al. 
2021).

The CovRecomb pipeline consists of five key steps:
transformation, construction, predefinition, mapping, and 
determination (Supplementary Fig. S1a). Firstly, utilizing the
Nextclade tool (https://docs.nextstrain.org/projects/nextclade/
en/stable/), we aligned all eligible SARS-CoV-2 genomes (up to 29 
January 2023) to the reference sequence (Wuhan-Hu-1, GISAID 
accession: EPI_ISL_402125), transforming the full genome into a 
set of mutations, including SNPs and deletions. High sequenc-
ing coverage (ATCG ≥ 27,000) and complete metadata information 
(collection date, region, and country) were needed. Secondly, for 
each SARS-CoV-2 lineage, we extracted the mutations shared by 
over 75% of the lineage members and employed a clustering 
approach with a cut-off value (78.38% of feature mutations) deter-
mined by the minimum mutual similarity among viral genomes 
in the alpha lineage (Supplementary Fig. S1b). This procedure 
yielded a lineage-defining library comprising representative lin-
eages and their feature mutations. Thirdly, for each target sample, 
we predefined a LPSM, wherein each pair represents a potential 
combination of parental lineages. The matrix’s row and column 
contained lineages that appeared prior to the target sample in 
terms of emergence time. Fourth, we mapped the mutation vec-
tor of the target sample against the predefined LPSM to calculate 
the hypergeometric distribution score (raw P value) for each lin-
eage pair. Subsequently, we corrected the scores using Bonferroni’s 
method (corrected P value) to reduce false positive results. Finally, 
we identified the lineage pair with the minimum corrected P
value (<.05) as the optimal candidate and further determined its 
status as a putative recombinant based on four criteria from a 
biological restriction perspective: (I) with the limited breakpoint 
number in the alphabet assemblage of feature mutation com-
binations (one to two); (II) with at least four sequential feature 
mutations for both parental lineages (XXXX and YYYY); (III) the 
feature mutations from both parental lineages were not coexist-
ing in the feature mutation list of the most likely nonrecombinant 
lineage; and (IV) not the single genome in a recombinant event. All 
the framework details for the CovRecomb method are presented 
in Supplementary Fig. S1 and Supplementary Text S2.

For each putative recombinant sequence, CovRecomb provides 
the following information: the raw and corrected P values, respec-
tively calculated by the hypergeometric distribution algorithm 
and adjusted by Bonferroni’s method, the inferred parental lin-
eages, the corresponding feature mutations from each parent, 
and a feature mutation pattern represented by a sequential string 
composed of “X” and “Y” letters (https://github.com/wuaipinglab/
CovRecomb/blob/main/CovRecomb-Global-Version/putative_
recombinants/putative%20recombinants.csv).

Evaluation of the performance of CovRecomb
To evaluate the performance of CovRecomb, we conducted a com-
parative analysis with other recombination detection methods, 
namely RIPPLES, rebar, recombinhunt, VirusRecom, and 3SEQ. 
We excluded the Bolotie due to unresolved technical issues and 
insufficient output for a meaningful comparison with other meth-
ods. Since the RIPPLES, rebar, and recombinhunt were specifically 
developed for SARS-CoV-2 virus, we generated datasets consisting 

https://docs.nextstrain.org/projects/nextclade/en/stable/
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of real SARS-CoV-2 recombinants, obtained by randomly sam-
pling sequences from 72 recombination lineages out of a pool of 
14,555,061 genomes. Subsequently, we applied all six methods to 
detect these recombinants. The random sampling process was 
repeated five times and three key metrics were compared: elapsed 
time, coverage rate of recombinants, and accuracy of parental lin-
eages. The coverage rate represents the percentage of identified 
recombinants by each method among all the included sequences, 
while the “accuracy of parental lineages” indicates the percentage 
of correctly assigned parental lineages by the respective method. 
The comparison test was completed on a server equipped with 36 
processors (Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30 GHz), each with 
18 CPU cores.

To investigate the generalizability of CovRecomb in detecting 
recombinants in other virus datasets, we conducted a simula-
tion test and compared its performance with a universal detection 
method, 3SEQ. Initially, we used a forward-simulation approach 
(Saymon Akther et al. 2021) to generate simulation datasets by 
incorporating viral transmission, mutation, and recombination 
dynamics (Supplementary Fig. S2 and Supplementary Text S3). 
Subsequently, using the generated “.fasta” files, we conducted 
a fair and comprehensive comparison between 3SEQ and Cov-
Recomb, evaluating their respective TPR, FPR, FDR, “accuracy of 
parental lineages”, and elapsed time in identifying a given num-
ber of interlineage recombinants. For 3SEQ, the running com-
mand line was ‘./3seq -f simulated_dataset.fasta -id output’ (Lam 
et al. 2018). For CovRecomb, the process involved sample muta-
tion transformation, LPSM construction, mutation mapping, and 
determination. The clock started when each method read the 
“.fasta” file and ceased when the corresponding resulting files 
were generated. The TPR signifies the proportion of the iden-
tified interlineage recombinants among all the simulated inter-
lineage recombinants, while the “accuracy of parental lineages” 
represents the probability of correctly recognized parental lin-
eages among all the identified true recombinants (Supplementary 
Table S1). Scripts used to compute these metrics are available 
online (https://github.com/wuaipinglab/CovRecomb_Simulation_
Test/tree/main/CovRecomb_compare_3SEQ). Classical recombi-
nant detection methods, such as RDP5 (Martin et al. 2021), Simplot 
(Lole et al. 1999), and Recombination Analysis Tool (RAT) (Ether-
ington et al. 2005), were neglected for their necessity to input 
sequences and set parameters manually. RIPPLES, rebar, recom-
binhunt, and VirusRecom were also omitted from the simulation 
test as they were either not applicable to virtual virus datasets or 
required prior knowledge of recombinants classification, thereby 
hindering a fair comparison. Details of the generation process of 
the simulation dataset are shown in Supplementary Text S3.

In addition, to provide statistical support for the essential 
parameter used in CovRecomb, we calculated the FDR values and 
drew the ROC curves for the method when using different num-
bers of sequential feature mutations (Supplementary Fig. S3a-b). 
To evaluate whether and how convergent evolution affects Cov-
Recomb, we tested the method for its FDR, FPR, and TPR values 
in different homologous mutation numbers (Supplementary Fig. 
S3d-f) or proportions (Supplementary Fig. S3g-i). Moreover, we 
introduced a MERS dataset with 136 sequences in total and these 
sequences have been classified into five lineages provided by a pre-
vious study (Sabir et al. 2016) (Supplementary Table S2). Among 
them, 45 sequences from lineage 5 were considered as the recom-
binants from the lineage 3 and the lineage 4. Thus, we applied the 
CovRecomb to the dataset to test its potential generalizability to 
other viruses.

Furthermore, to test the extent to which CovRecomb can auto-
matically identify recombinant lineages of SARS-CoV-2 starting 
with “X,” we calculate the proportions of the identified recombi-
nation lineages among all the recombination lineages included in 
the analysis. Additionally, to conduct a preliminarily assessment 
of the reliability of parental lineages identified by CovRecomb, we 
compared the specific parental lineage composition recognized 
by CovRecomb with the manually confirmed parental lineages 
available online (Roemer et al. 2022).

Identification of independent recombination 
events and recombinant clustering
To distinguish between ancient-like recombinants and their off-
spring in viral transmission during each recombination event, 
we established three filtering rules based on the evolutionary 
patterns of SARS-CoV-2. Subsequently, we clustered the spread-
ing sequences into their respective lineages of origin. Initially, 
we classified recombinants based on their parental lineages and 
sorted all genomes sharing the same parental lineages (e.g. 
B.1.177.18 + B.1.1.7*) according to their sampling time. The first 
sampled recombinant was designated as the ancient-like recom-
binant and treated as an independent recombination event. For 
subsequent sequences, if they satisfied either of the follow-
ing two rules, they were recognized as independent recombina-
tion events as well: (I) sequences with significantly longer sam-
pling intervals. If the time interval between the collection of a 
genome and the closest previously sampled sequence exceeded 
30 days, it was considered an independent recombination event. 
(ii) Sequences exhibiting distinct feature mutations. Based on 
the mutation accumulation rate of SARS-CoV-2 reported by 
Nextstrain, genomes tend to acquire an average of two new muta-
tions within a month. Thus, if a putative recombinant genome 
possessed at least four distinct feature mutations compared to 
the previous recombinant within a month, it was likely to have 
originated from a novel recombination event rather than being 
transmitted from a pre-existing recombinant(s). Consequently, all 
potential independent events for a given parental lineage com-
bination were identified. Although these putative events may 
not represent the actual recombinant genomes resulting from 
recombination in coinfected host cells, they can be considered 
ancient-like recombinants directly.

Next, the remaining sequences that were not identified as 
independent events were considered putative spreading genomes. 
For each of these sequences, we determined their ancestral lin-
eage by comparing their mutations to all the previously identi-
fied independent ancient-like recombinants that were sampled 
prior to the transmitted genome. Specifically, the ancient-like 
recombinant exhibiting the highest-level consistent mutations 
was deemed the most plausible source. In cases where multi-
ple ancient-like recombinants had an equal number of consistent 
mutations, we selected the one with the closest spatiotemporal 
distribution to the spreading genome. Consequently, each inde-
pendent ancient-like recombinant and its corresponding trans-
mitted genomes were grouped together. Drawing on previous 
research (Turakhia et al. 2022), we excluded groups consisting 
of only one sequenced genome and renewed the identified puta-
tive recombinants. Finally, if a group comprised more than 20 
sequences, it was defined as a putative transmission event.

To screen out the accurate “X” series events, we designated 
those events that had already been assigned as a recombinant 
lineage or had at least half of their offspring assigned as a 
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recombinant lineage as candidate events. Subsequently, if the 
identified parental lineages of the candidate events aligned with 
the acknowledged parental lineages, the candidate events were 
categorized as “X” series events (Supplementary Table S4).

Confidence classification of recombination events
For each recombination event, we generated an alphabet assem-
blage of “X” and “Y” letters (Supplementary Text S2.5, Supplemen-
tary Fig. S5a). Each X and Y represented a specific feature mutation 
inherited from the parental lineages. However, due to the utiliza-
tion of a fixed threshold of 75% when determining lineage-specific 
feature mutations, there was a potential for false positive bias 
arising from mutations that were close but did not meet the cut-
off value. To address this, we established a confidence evaluation 
system to evaluate the credibility of each recombination event. 
Initially, we recalculated the mutation frequency of each muta-
tion within the parental lineages. For instance, “fx1” denoted the 
frequency of the first mutation (M1) among all 14,555,061 genomes 
assigned by lineage X (Supplementary Fig. S5a). Subsequently, we 
determined the confidence coefficient for the recombinant event 
by computing the mean frequency difference between lineage 
X and lineage Y (Supplementary Fig. S5a). Essentially, a larger 
frequency difference between the parental lineages indicated a 
higher likelihood that the mutation originated from the identified 
parental lineage. Next, we took the lower quartile confidence value 
of those events classified as “X” series events to determine whether 
the identified recombination event has higher confidence.

In the subsequent analysis, we focused our attention on the 
recombination events classified within the high confidence group. 
These events were subjected to further investigation to unravel 
recombination patterns, including the tracing of recombinant 
transmission, identification of breakpoint hotspots, and the com-
putation of epidemiological and lineage preference associated 
with recombination.

Tracing recombinant transmission
We provided a detailed description of the recombination events 
with a relatively high confidence level and possessing a substan-
tial number of offspring. First, the nucleotide variations between 
the ancient-like recombinant and the identified parental lineages 
was visually examined using the snipit software (https://github.
com/aineniamh/snipit) to validate the mosaic structure of the 
recombinant. Second, to retrospect the spatiotemporal dispersal 
patterns of the recombination event, we generated a time-scaled 
tree topology and performed discrete ancestral state reconstruc-
tion, following the methodology employed in a previous stud 
(Scarpa et al. 2023, Tegally et al. 2023). This involved utilizing 
the FastTree v.2.1.11 (Price et al. 2010) and TreeTime (Sagulenko 
et al. 2018) tools. Third, we performed phylogenetic analysis of 
recombinants belonging to the same recombination event to elu-
cidate their geographical distribution in relation to genome evolu-
tion. The phylogenetic relationship was reconstructed by IQTREE 
v2.1.4 (Nguyen et al. 2015) with 1000 ultrafast bootstrap replicates. 
The maximum likelihood trees were rooted on the SARS-CoV-
2 reference genome (Wuhan-Hu-1), and the nucleotide substi-
tution model Hasegawa-Kithe shino-Yano (HKY) was employed. 
The resulting phylogenetic tree files were visualized using the R 
package ggtree v.3.0.4 (https://bioconductor.org/packages/release/
bioc/html/ggtree.html). Fourth, we drew a plot illustrating the 
distribution of collection dates for all recombinants, showcas-
ing the temporal trends associated with the rise and fall of the 
recombination event.

Identification of breakpoint hotspots for 
SARS-CoV-2 recombination
Examination of the genome mosaic structures revealed that each 
position within the intervals separating the parental fragments 
held the potential to serve as a candidate breakpoint (Fig. 4a). In 
order to identify the breakpoint hotspots for SARS-CoV-2 recom-
bination, for each site, we assessed the frequency of each site to 
act as a breakpoint within the intervals among putative recombi-
nants classified within the higher confidence group. Subsequently, 
a density curve comprising all genome site frequencies was plot-
ted. To enhance clarity, the density curve was smoothed using 
the python “runavg” package, which computed the average prob-
ability over a sliding window of 200 nucleotides for the genomic 
sites. Based on the frequencies for 29,903 sites in the SARS-
CoV-2 genome measured above, we ranked all sites and divided 
them into the upper quartile and the lower quartile. Then, we 
distinguished hotspots and coldspots via the top quartile and bot-
tom quartile as previously described (Patiño-Galindo et al. 2021). 
Specifically, sites with probabilities surpassing the upper quartile 
were recognized as hotspots, while those falling below the lower 
quartile were deemed coldspots, signifying their unlikelihood to 
serve as breakpoints. Consequently, genomic regions enriched 
in hotspots were designated as recombination hot regions, 
whereas regions enriched in coldspots were labeled as cold
regions.

Calculation of the epidemiological and lineage 
preference characteristics of recombination
To determine the epidemiological frequencies of two parental lin-
eages involved in each independent recombination event with 
higher confidence, we employed a geographical and temporal 
approach. Specifically, based on the sampling country and time of 
the ancient-like recombinant, we gathered all sequenced genomes 
obtained from the same geographic regions and within a 30-day 
window preceding the event. Subsequently, we computed the pro-
portion of genomes assigned to the parental lineage (e.g. lineage X) 
or its associated member lineage(s) for the two parental lineages. 
These calculations allowed us to construct a scatter diagram, 
where the x- and y-axis values represented the frequencies of the 
respective parental lineages (Fig. 5a). To vividly portray the preva-
lence of parental lineages in the location of recombination, we 
generated a histogram by sorting the cumulative frequencies of 
parental lineages for each event in descending order (Fig. 5b).

An important aspect to explore in a lineage involved in SARS-
CoV-2 recombination is its preference for recombination part-
ners. Therefore, for lineage pairs associated with recombination 
events exhibiting higher confidence, we visualized the lineage pair 
enrichment or, in other words, the lineage preference using a 
heatmap (Supplementary Fig. S8). Furthermore, we constructed 
a concise heatmap by merging lineages belonging to the same VOI 
or VOC designated by the WHO (https://www.who.int/activities/
tracking-SARS-CoV-2-variants) to investigate the recombination 
relationships between SARS-CoV-2 variants (Fig. 5c).

In addition, we explored the correlation between lineage sim-
ilarity and the number of recombinations. To calculate the sim-
ilarity between two lineages, we use the feature mutations lists 
identified for each lineage and compute the symmetric difference 
of their feature mutations. We then iterate through the symmet-
ric difference set to calculate the number of sites, ldiff, contained 
in this set. If a feature mutation is a point mutation, it contributes 
1 to the site count; if it is a deletion, its contribution is equal to 

https://github.com/aineniamh/snipit
https://github.com/aineniamh/snipit
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://www.who.int/activities/tracking-SARS-CoV-2-variants
https://www.who.int/activities/tracking-SARS-CoV-2-variants
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its length. By comparing ldiff with the genome length Lgene, we can 
obtain the similarity between the two lineages. 

s = 1 − ldiff /Lgene
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