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CORAZON: a web server for data 
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Abstract 

Objective:  Data normalization and clustering are mandatory steps in gene expression and downstream analyses, 
respectively. However, user-friendly implementations of these methodologies are available exclusively under expen‑
sive licensing agreements, or in stand-alone scripts developed, reflecting on a great obstacle for users with less 
computational skills.

Results:  We developed an online tool called CORAZON (Correlations Analyses Zipper Online), which implements 
three unsupervised learning methods to cluster gene expression datasets in a friendly environment. It allows the 
usage of eight gene expression normalization/transformation methodologies and the attribute’s influence. The nor‑
malizations requiring the gene length only could be performed to RNA-seq, meanwhile the others can be used with 
microarray and/or NanoString data. Clustering methodologies performances were evaluated through five models 
with accuracies between 92 and 100%. We applied our tool to obtain functional insights of non-coding RNAs (ncR‑
NAs) based on Gene Ontology enrichment of clusters in a dataset generated by the ENCODE project. The clusters 
where the majority of transcripts are coding genes were enriched in Cellular, Metabolic, Transports, and Systems 
Development categories. Meanwhile, the ncRNAs were enriched in the Detection of Stimulus, Sensory Perception, 
Immunological System, and Digestion categories. CORAZON source-code is freely available at https​://gitla​b.com/
integ​rativ​ebioi​nform​atics​/coraz​on and the web-server can be accessed at http://coraz​on.integ​rativ​ebioi​nform​atics​
.me.
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Introduction
Gene expression is the process by which information 
encoded in a particular genomic region is transcribed in 
a functional gene product. These products can be coding 

or non-coding RNAs, i.e. transcripts that do not encode a 
protein but are functional important players in the cellu-
lar regulation in organisms from all domains of life [1–6]. 
Microarrays and RNA sequencing (RNA-seq) are large-
scale technologies commonly used to measure transcript 
expression levels [7–12]. Both technologies generate a 
final expression matrix, containing the raw values for all 
biological samples in a study, which will be subsequently 
used in order to obtain the set of differentially expressed 
transcripts in studied samples and conditions.

The values of gene expression can be influenced by 
different variables (i.e. biological conditions, expression 
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technology, sequencing library length, RNA quality), 
disproportionating the number of reads/hybridizations 
associated with particular samples, affecting the real 
expression values of studied samples. For a proper and 
reliable interpretation of quantitative gene expression 
measurements, a normalization is necessary to correct 
expression bias generated by these variables. Different 
data normalization approaches have been described so 
far. For instance, in many studies, a single housekeeping 
gene is used for normalization. However, no unequivocal 
single reference gene or non-coding RNA (with a proven 
invariable expression between cells and conditions) has 
been described yet [13]. As an alternative, the mean 
expression of multiple genes can be used for normali-
zation [13, 14]. In RNA-seq, gene expression values are 
normally normalized by the size of the library.

The large quantity of biological data generated in large-
scale genomics and transcriptomics projects thrived an 
intense demand to use computational techniques pro-
vided by artificial intelligence [15–18]. Unsupervised 
learning is the machine learning task of inferring a func-
tion to describe the hidden structure from unlabeled 
data. The inference of the function is performed with 
the analysis of gene expression, in which commonly, 
genes with the same expression patterns at the same time 
points and conditions can be participating on the same 
biological processes. Unsupervised methods transform 
the gene expression data on coordinates of a point in a 
given space and cluster them according to their similari-
ties. The method uses the examples provided and tries to 
determine if some of them can be grouped in any way, 
forming clusters. Gene expression clustering has the goal 
to subdivide sets of expressed transcripts in such a way 
that those with similar expression patterns fall into the 
same cluster, while those with different expression pat-
terns fall into different clusters [19]. It allows a deeper 
exploration of the data. For instance, transcripts co-
expressed in a set of different experiments or conditions 
tend to be part of the same biological pathways and may 
possess similar gene ontology categories [20–25]. It is 
helpful in the functional assignation of transcripts with-
out any functional annotation, as well as on the identifi-
cation of co-regulated transcripts.

Packages available in R, Perl or Python libraries pro-
vide normalization and clustering methods that can 
be used for gene expression analysis. However, to use 
these tools it is necessary prior knowledge in these pro-
gramming languages, reflecting in a great obstacle for 
users with less computational or bioinformatics back-
grounds. Here, we introduce a tool called CORAZON 
(Correlation Analyses Zipper Online), a user-friendly 
web server, developed to facilitate expression data 
normalization and clustering in a streamlined way, 

and applied it to obtain functional insights of ncRNAs 
based on their expression patterns and gene ontology 
enrichment.

Main text
Materials and methods
CORAZON implementation and clustering methods 
validation using simulated data sets
CORAZON web server was developed with eight nor-
malization/transformation methodologies (https​://
coraz​on.integ​rativ​ebioi​nform​atics​.me/docum​entat​
ion.html): Trimmed Mean of M-values (TMM) [26], 
Median Ratio Normalization (MRN) [27], Fragments 
Per Kilobase Million (FPKM), Transcripts Per Million 
(TPM), Counts Per Million (CPM), base-2 log, instance 
normalization and normalization by the highest attrib-
ute value for each instance. The normalizations which 
demand the transcript size (e.g. FPKM and TPM), we 
assumed that the 2nd column will have this value. More-
over, three unsupervised machine learning algorithms 
(Mean Shift, K-Means and Hierarchical) adopting 
Euclidean distance a measure of similarity, and a strat-
egy to observe the attributes influence in the results 
were incorporated.

Normalizations, the clustering algorithms K-Means 
and Mean Shift and the web server application were 
implemented using Python. Hierarchical clustering was 
implemented using R. MySQL language was used to 
store and query the job results, as well as to perform the 
communication and interaction with the web page. The 
interface was developed using HTML, CSS, Bootstrap, 
and Javascript. CORAZON source code with a Docker 
platform is freely available at https​://gitla​b.com/integ​
rativ​ebioi​nform​atics​/coraz​on and the web server can be 
accessed at http://coraz​on.integ​rativ​ebioi​nform​atics​.me.

Implemented algorithms had their performances evalu-
ated through five models commonly used to validate clus-
tering methodologies. Simulated models were built based 
on the work of [28, 29]. For each model, we generated 50 
datasets and applied the three algorithms implemented.

Application using expression data of human coding 
and non‑coding transcripts
We used our tool to study an RNA-seq dataset of 13 dif-
ferent tissues extracted from ENCODE [30]. Our goal 
was to obtain functional insights for ncRNAs, through 
the exploration of gene ontology functional categories 
of protein-coding genes co-expressed with ncRNAs. The 
expression matrix for all 13 tissues was extracted from 
[30]. Data were normalized using TPM and log2, and 
clustered using the three available algorithms.

https://corazon.integrativebioinformatics.me/documentation.html
https://corazon.integrativebioinformatics.me/documentation.html
https://corazon.integrativebioinformatics.me/documentation.html
https://gitlab.com/integrativebioinformatics/corazon
https://gitlab.com/integrativebioinformatics/corazon
http://corazon.integrativebioinformatics.me
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Results
CORAZON web server overview and usage
CORAZON is a streamlined web server that facilitates 
data normalization and uses machine learning to clus-
ter transcripts according to their expression patterns. It 
receives as input an expression matrix, which can be used 
for different tasks, according to user preference. Briefly, 
the user can use the tool for only normalize their expres-
sion data, clustering the transcripts according to their 
expression patterns or both. Figure 1 shows the workflow 
of CORAZON tool.

Algorithms performance evaluation using simulated data
The implemented clustering algorithms had their perfor-
mances evaluated through five models commonly used 
to validate clustering methodologies [28, 29]. The first 
model was the creation of 200 points in 10 dimensions; 
in the second we created 3 clusters in 2 dimensions; the 
third consists of generating 4 clusters in 3 dimensions; in 

the fourth we produced 4 clusters in 10 dimensions; and 
in the last model we had 2 elongated clusters in 3 dimen-
sions. Thus, we generated 50 datasets and applied the 
three algorithms implemented in CORAZON web server. 
The algorithms presented accuracies ranging between 92 
and 100%.

Functional insights of non‑coding RNAs based on their 
expression patterns and gene ontology enrichment
We applied CORAZON to obtain functional information 
of ncRNAs based on the Gene Ontology enrichment of 
protein coding genes clustered together with ncRNAs, 
using a dataset composed of 13 RNA-seq assays from 
different human tissues generated by the ENCODE pro-
ject. To select the best number of clusters for K-means 
and hierarchical algorithms, we used the Bayesian infor-
mation criterion (BIC) [31], followed by the derivative of 
the discrete function and Silhouette [32]. In the hierar-
chical method, we tested 8 linkage criteria and adopted 

Fig. 1  CORAZON whole workflow. Input and output files are shown in gray blocks; white circles represent the normalization methods, clustering 
algorithms and parameters selection
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Ward’s method [33]. In total, we analyzed 41,283 tran-
scripts (19,912 coding; 21,371 non-coding), which were 
clustered in 10 (K-means and hierarchical) and 13 (mean 
shift) clusters (Additional file  1: Table  S1). The analysis 
using the three implemented algorithms identified sets of 
clusters represented mostly (more than 70%) by non-cod-
ing RNAs. Thus, GO enrichment analysis of the clusters 
composed in its majority by coding genes were usually 
enriched in cellular, metabolites, detection of stimulus, 
sensory perception, and systems development categories. 
The clusters composed in its majority by ncRNAs were 
enriched in coding genes associated with reproduction, 
development, immunological system, neurological sys-
tem, localization, and digestion categories. An example 
of these results for hierarchical clustering can be found in 
Fig. 2. Results for K-means and mean shift can be found 
in Additional file 1: Figures S1 and S2, respectively.

To gain further insights on the putative biological rel-
evance of ncRNAs with correlated expression levels with 
coding genes, we used the three implemented algorithms 
to generate clusters of highly correlated transcripts (i.e. 
Spearman > 0.95). The correlation analysis revealed a set 
of 17,732 correlated transcripts (4829 coding genes and 
12,903 non-coding RNAs). Hierarchical and K-means 
algorithms generated three clusters, meanwhile mean 
shift generated four (Additional file  1: Table  S2). The 
algorithms generated two clusters composed mainly by 
non-coding RNAs (more than 50%). The gene ontology 

enrichment analysis revealed that these clusters were 
associated with coding genes related to different meta-
bolic processes, localization and inflammatory and 
defense responses (Fig. 3).

Discussion
CORAZON implemented normalization/transformation 
methodologies that can be used in RNA-seq, microar-
ray and/or NanoString nCounter. It is worth to note that 
microarray and NanoString can only use the normali-
zation methods that do not requires the transcript size. 
Those methodologies can normalize gene expression tak-
ing into account the different characteristics of the data 
(i.e. sequencing depth, transcript length, samples with 
disproportionate expression values). We successfully 
applied the tool to characterizing the expression patterns 
of coding and non-coding genes from 13 different tissues 
generated by the ENCODE project. Co-expressed tran-
scripts are normally part of common biological pathways 
and functional GO categories, or they can be regulated by 
similar mechanisms [20–25]. Firstly, all 41,283 expressed 
coding (19,912) and non-coding (21,371) transcripts were 
clustered according to their expression values, using 
the three unsupervised clustering algorithms incorpo-
rated in CORAZON. This analysis revealed 10 clusters 
for hierarchical and K-means algorithms and 13 clusters 
for the mean shift algorithm. GO analysis revealed that 
most of the clusters generated by the three algorithms 

Fig. 2  Enrichment analysis of Hierarchical clustering results. The x-axis represents the clusters found in this particular analysis, while the y-axis 
corresponds to the set of biological processes (GO terms) enriched in each cluster
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are enriched with similar biological process categories, 
associated with key general processes from the cell (i.e. 
metabolic processes, transport, systems development, 
detection of stimulus, RNA processing, sensory percep-
tion, immunological system, digestion, reproduction, 
synaptic signaling, neurological system and defense 
response). Thus, the similarity in the results (from hier-
archical to partition methods) of the clusters enrichment 
analysis, strengthens the hypothesis that these transcripts 
actually have similar biological processes.

Furthermore, we observed that clusters enriched 
with coding genes (i.e. composed by more than 80% of 
coding genes) are related to GO terms associated with 
general metabolic processes, development, and cell 
adhesion. Clusters enriched with ncRNAs (i.e. more 
than 70% of non-coding genes) are related to coding 
genes associated with reproduction, immunological 
system, neurological system, localization, and diges-
tion. Those results suggest that the set of ncRNAs clus-
tered together with coding genes that are associated 
with the functional categories listed above could also 
be part of biological cellular processes directly linked 
to these mechanisms. The performance of ncRNAs 
in most of these processes have been widely studied, 

revealing its role in regulating proper cell functioning 
or disease (i.e. neurological disorders and cancers) [34–
41]. For instance, [42] used the enrichment of func-
tional GO annotations of coding genes located in the 
vicinity to ncRNAs, and noted that the two groups with 
the highest number of ncRNAs were associated with 
“synaptic transmission” (47 non-coding RNAs) and 
“generation of male gametes” (20 ncRNAs). This finding 
is consistent with previous studies and reinforce that 
ncRNAs are particularly active in the brain or during 
embryonic development.

Using CORAZON to cluster highly correlated tran-
scripts (i.e. Spearman > 0.95), each algorithm gener-
ated two clusters represented in its majority by ncRNAs 
(more than 50%). Those clusters were associated with 
different metabolic processes, localization, inflammatory 
and defense responses. It was also observed that other 
clusters had specificities in cellular, metabolic, localiza-
tion, transport and response processes. Finally, it was 
observed that clusters composed in its majority by cod-
ing genes (i.e. more than 82%) were related to metabolic 
processes. It was also observed that hierarchical cluster 
1 (with 93.33% of coding genes) and K-means cluster 2 
(with 93.69% of coding genes) were almost identical.

Fig. 3  Enrichment of the ENCODE clusters generated by the three algorithms. The x-axis represents the clusters found in this particular analysis, 
while the y-axis corresponds to the set of biological processes (GO terms) enriched in each cluster
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In summary, CORAZON simplifies gene expression 
normalization and unsupervised clustering. The results 
obtained in this study illustrate the potential of the tool 
and the possibilities of obtaining functional insights 
from clusters through the use of predictive associations 
between ncRNAs and the functional categories of clus-
tered together coding genes. There are other methodolo-
gies for gene expression data normalization available in 
literature (e.g. quantile and RMA for microarrays; RLE 
for RNA-seq [43, 44]) that are not yet incorporate in our 
tool, but we intend to implement in the close future.

Limitations
CORAZON architecture works with a process queue, 
resulting in a potential long-time waitlist for the user if 
we have hundreds of users at the same time. We are cur-
rently working on the parallelization of the tool to avoid 
this issue.

Supplementary information
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