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Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto
magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays,
such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS
method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer
simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and
noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively,
indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating
dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds
104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when
calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly
improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a
vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat
sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an
SSS-modified sensor lead field in the voxel space analysis.

1. Introduction

Development of a sensor system that can measure biomag-
netic signals in room-temperature environments has gained
great interest. One promising candidate among room-
temperature sensors for biomagnetic systems is magnetore-
sistive (MR) sensors [1–4], which can lead to the development
of novel low-initial-cost and maintenance-free biomagnetic
systems. A potential near-future application of such systems
is a low-cost magnetocardiography (MCG) system using
MR sensors [5]. Such low-cost and maintenance-free MCG
systems could replace the 12-lead electrocardiogram (ECG)
now routinely used in daily clinical examinations.

However, to develop such low-cost systems, one major
problem is the removal of ambient noise magnetic fields that
exist in urban hospital environments. Biomagnetic signals
are many orders of magnitude weaker than these ambient
interference magnetic fields, called environmental noise. To
reduce the influence of such environmental noise, biomag-
netic measurements have traditionally relied on two kinds
of hardware-based solutions: one is magnetically shielded
rooms (MSRs) and the other is gradiometer sensors [6].

According to a purely technical point of view, use of an
MSR would be advantageous even for MR sensor systems.
However, the use of a high- or a medium-quality MSR may
invalidate our goal, which is developing low-initial-cost
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biomagnetic systems, because MSRs are, in general, very
costly and the use of even a medium-quality MSR causes a
considerable increase of the total initial cost of the system.
Gradiometers can significantly reduce the environmental
noise, and the reduction ratio of a typical first-order gradi-
ometer is believed to reach almost two orders of magnitude
[6], although the noise reduction capability strongly depends
on the precision in sensor manufacturing. However, for MR
sensor systems, it is currently unknown whether gradiome-
ters can be incorporated into the MR sensor hardware
design. No gradiometer-type MR sensors have been devel-
oped so far.

Therefore, to attain the goal of developing low-cost
biomagnetic systems, it may not be possible to rely on tradi-
tional hardware-based methods. This paper addresses a third
option, developing software shielding methods, namely, effi-
cient signal processing methods for environmental noise
cancellation. A number of signal processing methods have
been developed for this purpose, and arguments for and
against those methods can be found in [7]. This paper
focuses on a method called signal space separation (SSS),
which was originally proposed for environmental noise can-
cellation for magnetoencephalography (MEG) SQUID sen-
sor arrays [8–10].

The SSS method has an excellent characteristic that it
imposes almost no prerequisites on the data or sources (i.e.,
it does not use any restrictive data or source models). One
mild prerequisite of the SSS method, which can naturally be
fulfilled, is that the region in which sensors are installed
should be source-free (i.e., no current sources in that region).
Under this assumption, the method decomposes the mea-
sured data into two components originated from the so-
called “internal” and “external” regions. The internal region
refers to a region that is closer to the origin than the sensors
are, and the external region refers to the one that is farther
from the origin than the sensors are.

The method can efficiently suppress interferences over-
lapped onto biomagnetic signals if clever choices of the origin
location can make the internal and external regions match
the signal and interference regions, respectively. It is not dif-
ficult to find such origin locations for helmet-type sensor
arrays used in MEG. However, the SSS method has not been
considered applicable to data from nonhelmet-type sensor
arrays, such as sensor arrays arranged on a flat plane, which
are usually used for MCG systems, because it does not seem
possible to find an appropriate origin location for those
nonhelmet-type arrays.

This paper presents a computer simulation-based inves-
tigation that explores the possibility of applying the SSS
method to data measured from an array of sensors
arranged on a flat plane. The goal of the investigation is
to show that the SSS method is still effective for data from
such flat sensor arrays. A series of computer simulations
are performed assuming flat sensor arrays whose sensor
arrangement is typical in MCG applications [11–15]. Using
the results of these computer simulations, this paper seeks
optimal values for numerical parameters used in the SSS
method, showing that their choices are crucial for the effec-
tive use of the SSS method when applied to flat sensor

arrays. It is found that the application of the SSS method
to flat sensor data causes a distortion of signals but that this
distortion can be corrected by using the SSS-modified lead
field in the voxel space analysis.

This paper is organized as follows. In Section 2, the SSS
method is described in detail, including the analysis of the
problems caused when the SSS method is applied to flat
sensor data. Section 3 presents computer simulation-based
investigation, which shows the effectiveness of the SSS
method for data from flat sensor arrays. This section includes
empirical determinations of SSS parameters crucial to attain
optimal performance of the SSS method. Section 4 summa-
rizes the findings of the investigation.

2. Signal Space Separation Method

2.1. Data Model. Biomagnetic measurement is conducted
using a sensor array, which simultaneously measures the
signal with multiple sensors. Let us define the measurement
of the mth sensor as ym. The measurement from the whole
sensor array is expressed as a column vector y y =
y1, y2,… , yM T . Here, M is the number of sensors, and the
superscript T indicates the matrix transpose. Throughout
this paper, plain italics indicates scalars, lowercase boldface
indicates vectors, and uppercase boldface indicates matrices.

The location in the three-dimensional space is repre-
sented by r r = x, y, z . The source magnitude at r is
denoted by a scalar s r . The source vector is denoted by
s(r), and the source orientation is denoted by η =
ηx, ηy, ηz

T . We thus have the relationship: s r = s r η. Let
us assume that a unit-magnitude source exists at r. When this
unit-magnitude source is directed in the x, y, and z directions,
the outputs of the mth sensor are, respectively, denoted by
lxm r , lym r and lzm r . Let us define an M × 3 matrix L r
whose mth row is equal to lxm r , lym r , lzm r . This matrix
L r , referred to as the lead field matrix, represents the sen-
sitivity of the sensor array at r. When the unit-magnitude
source at r is oriented in the η direction, the outputs of the
sensor array are expressed as l r = L r η. This column vec-
tor l r , referred to as the lead field vector, represents the
sensitivity of the sensor array in the direction of η at the
location r.

The outputs of the sensor array y are expressed as the
sum of a magnetic signal b and additive sensor noise, repre-
sented by a random vector ε

y = b + ε 1

Here, the magnetic signal b is expressed as

b = bS + bI 2

Here, bS, called the signal vector, represents the biomag-
netic signal that is the target of the measurements, and bI ,
called the interference vector, represents the interference
overlapped onto the signal bS. In this paper, the interference
bI represents so-called environmental noise, and sources of
environmental noise are assumed to be located much farther
from the sensors than the sources of interest are. Sources of
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environmental noise are, in general, located from several
meters (in cases of the noise sources such as electronic appli-
ances in a laboratory) to several kilometers (in cases of urban
environmental noise sources such as the subway noise) dis-
tant from the magnetically shielded room.

The sources that generate bS are confined to a region
called the source space (e.g., the source space is the cardiac
region for MCG and the brain region for MEG measure-
ments). Let us assume that a total of Q discrete sources
exist in the source space. Their locations are denoted
by r1,… , rQ, their orientations by η1,… , ηQ, and their
magnitudes by s1,… , sQ. Then, the source distribution is
expressed as

s r, t = 〠
Q

q=1
sqηqδ r − rq , 3

where δ r indicates the Dirac delta function. The signal
vector bS is expressed as

bS =
Ω
L r 〠

Q

q=1
sqηqδ r − rq dr = 〠

Q

q=1
sqlq, 4

where lq represents the lead field vector of the qth source
obtained such that lq = L rq ηq.

2.2. Derivation of SSS Basis Vectors. One fundamental
assumption of the SSS method is that the sensors are installed
in a source-free region, which is referred to as the sensor
region. Then, the magnetic field at r, B(r), is expressed using
the spherical polar coordinate r = r, θ, ϕ by

B r = −μ0 〠
∞

ℓ=1
〠
ℓ

m=−ℓ
αℓ,m

νℓ,m θ, ϕ
rℓ+2

− μ0 〠
∞

ℓ=1
〠
ℓ

m=−ℓ
βℓ,mr

ℓ−1ωℓ,m θ, ϕ ,
5

where μ0 indicates the magnetic permeability of free space.
In (5), νℓ,m θ, ϕ and ωℓ,m θ, ϕ are the modified vector
spherical harmonics [8, 16]. The index parameter ℓ is called
the multipole-order or multipole parameter. In the right-
hand side of (5), the first term represents the magnetic field
generated from sources located closer to the origin than the
sensors are.

The second term represents the magnetic field from
sources located farther from the origin than the sensors are.
The region closer to the origin than the sensors is referred
to as the internal region, and the region farther from the ori-
gin than the sensors is referred to as the external region. Let
us define the polar radial coordinate of the sensor nearest
to the origin as rmin

D and the radial coordinates of the sensor
farthest from the origin as rmax

D . The internal region is formally
defined as the region with r < rmin

D and the external region as
the region with r > rmax

D . The region with rmin
D < r < rmax

D is
called the intermediate region.

Let us derive the SSS basis vectors. To do so, the magnetic
signal detected by the jth sensor is denoted by bj and the loca-
tion and the normal vector of the jth sensor by r j and ζj.
Then, we have

bj = B rj ⋅ ζj = bjint + bjext, 6

where the notation “·” indicates taking the inner product
between two vectors (note that when the area of the
pickup coils is taken into consideration, the sensor signal
bj is obtained as a surface integral of B rj · ζj over the

area of the jth pick-up coil). Here, bjint and bjext, respec-
tively, represent magnetic components originating from
the internal and external regions. These components are
expressed as

bjint = −〠
∞

ℓ=1
〠
ℓ

m=−ℓ
αℓ,m

νℓ,m θ j, ϕj ⋅ ζj
rℓ+2j

,

bjext = −〠
∞

ℓ=1
〠
ℓ

m=−ℓ
βℓ,mr

ℓ−1
j ωℓ,m θj, ϕj ⋅ ζj ,

7

where we set μ0 = 1 for simplicity. Let us define the internal and

external components of the vector b as bint = b1int,… , bMint
T

and bext = b1ext,… , bMext
T
, which are expressed such that

bint = 〠
∞

ℓ=1
〠
ℓ

m=−ℓ
αℓ,mcℓ,m,

bext = 〠
∞

ℓ=1
〠
ℓ

m=−ℓ
βℓ,mdℓ,m,

8

where column vectors cℓ,m and dℓ,m are given by

cℓ,m =

1
rℓ+21

νℓ,m θ1, ϕ1 ⋅ ζ1

⋮

1
rℓ+2M

νℓ,m θM , ϕM ⋅ ζM

,

dℓ,m =

rℓ−11 ωℓ,m θ1, ϕ1 ⋅ ζ1
⋮

rℓ−1M ωℓ,m θM , ϕM ⋅ ζM

9

Truncating the summation with respect to the multiple
order ℓ to LC for bint and LD for bext, we finally obtain

b = bint + bext = 〠
LC

ℓ=1
〠
ℓ

m=−ℓ
αℓ,mcℓ,m + 〠

LD

ℓ=1
〠
ℓ

m=−ℓ
βℓ,mdℓ,m 10
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Thus, defining

C = c1,−1, c1,0, c1,1,… , cLC ,LC ,

D = d1,−1, d1,0, d1,1,… , dLD ,LD ,

α = α1,−1, α1,0, α1,1,… , αLC ,LC
T ,

β = β1,−1, β1,0, β1,1,… , βLD ,LD
T ,

11

we obtain

b = bint + bext = Cα +Dβ = C,D
α
β

= Sx, 12

where S = C,D and x = αT , βT T
. Here, C is an M ×NC

matrix, and D is an M ×ND matrix, where

NC = L2C + 2LC ,
ND = L2D + 2LD

13

Note that the truncation values LC and LD correspond
to the highest spatial frequencies possibly contained in bint
and bext [9, 17], respectively. Therefore, setting these
parameters at too low values may result in an insufficient
representation of the signal vectors bint and bext. The
effects of LC and LD for data from the 306-channel Elekta
Neuromag have been investigated and values of LC = 8
and LD = 3 were found to be sufficient for such data sets
in [8, 9].

2.3. SSS Signal Extractors. Equation (12) is the basis for esti-
mating the internal and external components bint and bext
from given magnetic signal data b. That is, the least squares

estimate x̂ = α̂T , β̂T
T
is obtained as

x̂ = STS −1STb 14

Then, bint and bext are estimated as

b̂int = Cα̂, 15

b̂ext =Dβ̂ 16

We now derive SSS signal extractors and rewrite (15) and
(16) using these extractors. To do so, let us define an opera-
tion to make a new column vector ai,… , aj T by using the

ith to jth components of a = a1,… , aM T as a i j (namely,

a i j = ai,… , aj T). From (14), we have

α̂ = STS −1STb
1 NC

17

With a small positive constant κ, the relationship

α̂ = STS −1STb
1 NC

≈ STS + κI −1STb
1 NC

, 18

holds. Then, using the matrix inversion formula

STS + κI −1STb = ST SST + κI −1b, 19

we get

α̂ ≈ STS + κI −1STb
1 NC

= ST SST + κI −1b
1 NC

=CT SST + κI −1b ≈CT SST −1b =CT CCT +DDT −1b
20

Using (15) and (20), we obtain

b̂int ≈CCT CCT +DDT −1b 21

Thus, the internal component bint can be extracted by
multiplying

Pint =CCT CCT +DDT −1, 22

with the magnetic-field data b. That is, the matrix Pint acts
as a projector that passes the internal components and
blocks the external ones (note that since Pint

2 = Pint and
Pint

T = Pint do not hold, Pint is not actually a projector).
Therefore, we call Pint the SSS signal extractor in this paper.

In exactly the same manner, we can derive

b̂ext =Dβ̂ ≈DDT CCT +DDT −1b, 23

and the SSS external-signal extractor Pext is derived as

Pext =DDT CCT +DDT −1 24

This Pext passes the external components but blocks the
internal ones.

2.4. Interference Suppression. A key condition for the success
of the SSS interference suppression is that the origin is prop-
erly set such that the source space Ω is included within the
internal region and the interference sources are located
within the external region. A typical configuration between
the helmet-type sensor array and the source space is depicted
in Figure 1(a). As can be seen in this figure, an appropriate
location of the origin can be found so that the internal region
covers the whole source space and the external region covers
all locations of interference sources. (Note that, in this paper,
interference indicates only environmental noise, and its
sources are assumed to be located much farther from the sen-
sors than the signal sources.)

When this key condition is met, (10) provides a natural
separation between the signal and interference. That is, when
the source space is included within the internal region, the
relationship

bS ∈ span C , 25

holds, where the notation span C indicates the span of the
column vectors of C. This span C is referred to as the
internal subspace in this paper. That is, since the signal
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vector bs belongs to the internal subspace, bs is expressed as
a linear combination of the column vectors of C

bS = 〠
NC

j=1
αjcj =Cα, 26

where cj is the jth column of C, αj is the jth expansion coef-
ficient, and α is a column vector containing the coefficients
(i.e., α = α1,… , αNC

T). Thus, denoting an ND × 1 column
vector whose elements are all zero by 0, we can derive the
relationship

PintbS = PintCα = PintS
α

0
=C CT SST −1S

α

0

= C ST SST −1S
α

0 1 NC

= C STS −1STS
α

0
= Cα = bS

27
The equation above indicates that the SSS signal extractor

Pint passes the signal vector bS with no distortion.
The assumption that the interference sources are located

within the external region leads to

bI ∈ span D , 28

where span D is referred to as the external subspace. Since
the interference vector bI belongs to the external subspace,
the interference vector bI is expressed as

bI = 〠
ND

j=1
βjdj =Dβ, 29

where dj is the jth column of D, βj is the jth expansion coef-
ficient, and β is a column vector containing coefficients

β = β1,… , βND

T . Again denoting the NC × 1 column vec-
tor whose elements are all zero by 0, we have the relationship

PintbI = PintDβ = PintS
0
β

= C STS −1STS
0
β 1 NC

=C0 = 0

30
The equation above indicates that the extractor Pint

completely blocks the interference vector bI .
Consequently, using (1) and (2), we show

Pinty = PintbS + Pint + bI + Pintε = bS + ε′ 31

The equation above indicates that, by multiplying the
extractor Pint with the data vector y, the signal vector bS is
selectively extracted with no distortion.

In (31), ε′ ε′ = Pintε indicates the noise in the SSS-
cleaned data. Assuming that the sensor noise ε is Gaussian
with the covariance matrix σ2I, the covariance matrix of ε′,
Σε′ is derived such that

〠
ε′
= ε′ ε′

T
= Pint εεT PT

int = σ2PintPT
int, 32

where we have εεT = σ2I and the notation ⋅ indicates
averaging. The equation above shows that PintPT

int can be
considered as the noise gain of the SSS interference suppres-
sion process. Particularly, since the diagonal elements of Σε′
expresses the gain relationship between the variances of the
input and output noises, we define the noise gainGε such that

Gε =
1
M

〠
M

j=1
〠
ε′ j,j

, 33

where Σε′ j,j indicates the jth diagonal element of the

matrix Σε′.

Sensor region

Origin Internal region

External region

Source
space

Intermediate
region

(a)

Sensor region

Origin

Source space

External region

Internal
region

Intermediate
region

(b)

Figure 1: (a) A typical configuration of the internal region relative to the source space for a helmet-type sensor array. As can be seen, an
appropriate location of the origin can be found such that the internal region covers the whole source space. (b) A possible configuration of
the internal region relative to the source space in case of a flat sensor array. The internal region cannot entirely cover the source space,
which extends into an intermediate region. In these figures, the inner circle with a broken line indicates the boundary between the internal
and intermediate regions. The outer circle with a broken line indicates the boundary between the intermediate and external regions.
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2.5. SSS Method for Flat Sensor Arrays. In Figure 1(b), a pos-
sible configuration of the internal region relative to the
source space and sensors is depicted for the case of a flat sen-
sor array. As shown here, the internal region may not cover
the entire source space, and the source space is extended into
the intermediate region. As a result, the lead field vector of a
signal source, lq, may have components expanded by the col-
umns of D, as well as components expanded by the columns
of C, resulting in

lq =Cα′ +Dβ′, 34

where α′ and β′ are column vectors containing the expan-
sion coefficients.

Therefore, by applying the SSS extractor Pint to lq, we have

Pintlq = Pint Cα′ +Dβ′ = Cα′ = lq 35

That is, the extractor Pint changes the lead field of this sig-
nal source from lq to lq. Assuming that Q signal sources exist,
the signal vector bS t is expressed as

bS t = 〠
Q

q=1
sq t lq 36

This signal vector changes to bS t , which is given by

bS t = PintbS t = Pint 〠
Q

q=1
sq t lq = 〠

Q

q=1
sq t Pintlq = 〠

Q

q=1
sq t lq

37

It is clear here that applying the SSS extractor Pint distorts
the signal vector bS t . This is a problem that occurs when
the SSS method is applied to data measured with a flat sensor
array. Computer simulation-based investigation of the signal
distortion and its correction are given in Section 3.6.

As can be seen in Figures 1(a) and 1(b), the external
region does not differ between helmet and flat sensor arrays.
In this paper, we assume that all interference is environmen-
tal noise and no interference sources exist in the vicinity of
sensors. Since, under this assumption, we assume that all
interference sources are located in the external region, the
interference vector bI t does not have components belong-
ing to span C , and applying Pint to the data vector removes
the interference vector.

2.6. Evaluation of the SSS Method’s Performance. As dis-
cussed in the preceding sections, a flat sensor array imposes
nonideal conditions on the SSS interference suppression,
and (25) is never fulfilled. In addition, the existence of sensor
calibration errors (which will be considered in Section 3.4)
could, to some extent, invalidate the assumption in (28).
Therefore, for data from flat sensor arrays, the relationships

PintbS = bS,
PintbI = 0,

38

will never be attained.

We can evaluate the performance of the SSS method for
data from flat sensor arrays by checking how close the SSS-
processed results come to (38). Namely, we define the perfor-
mance measures such that

GS =
PintbS
bS

, 39

GI =
PintbI
bI

40

In the equations above, GS is called the signal gain. Ide-
ally, GS is equal to 1, and deviation of GS from 1 is a measure
of performance degradation of the SSS method. GI is called
the interference gain. Ideally, GI is equal to zero, indicating
that the method completely blocks the interference. Thus,
a deviation of GI from 0 is a measure of the performance
degradation. Note that 1/GI has been often called the shield
factor in the previous literature [9, 18]. We use GS and GI
(or 1/GI, the shield factor), as well as the noise gain Gε in
(33) to evaluate the performance of the SSS method when
it is applied to data from flat sensor arrays in Section 3.

3. Computer Simulation

3.1. Problems with Flat Sensor Data for SSS Applications. In
order to show that the SSS method is still effective for data
from sensors arranged on a flat plane, a series of computer
simulation has been performed. First, we clarify the problems
caused when the SSS method is applied to flat sensor data by
comparing two cases of SSS application: one in which a
helmet-type sensor array is used and the other in which a flat
sensor array is used. For helmet-type sensor arrays, the key
condition for the SSS method can be fulfilled, that is,
one can find a proper location of the origin so that the
internal region includes the source space and the external
region includes the locations of interference sources, as
depicted in Figure 1(a). Therefore, the SSS method can
effectively suppress the interference with no signal distor-
tion. For flat sensor arrays, however, the internal region
covers only a part of the source space, which extends into
the intermediate region, as depicted in Figure 1(b). There-
fore, the signal vector has both external and internal com-
ponents, and, as a result, the signal vector is distorted
through the SSS application.

Let us first check this fact. An array of sensors and the
coordinate system used in our computer simulation are
shown in Figure 2(a). The sensor array consists of 64 sensors
arranged in an 8× 8 configuration on the plane z = 10 cm; the
plane on which sensors are arranged is called the sensor
plane. The sensor array covers an area of 20 cm× 20 cm,
and the sensorsmeasure only the z component of themagnetic
field, which is the component normal to the sensor plane. This
sensor arrangement is almost the same as the one in the MC-
6400MCG system (Hitachi High-Technologies Corporation,
Tokyo, Japan), which is used in a number of investigations
[11–13]. A similar sensor arrangement is used in the KRISS
64-channel biomagnetometer (Bio-Signal Research Center,
KRISS, Daejeon, Korea). Therefore, the arrangement of
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the sensor array assumed in this computer simulation can
be considered as a typical one used in current clinical
MCG studies.

A single source was assumed to exist at (−3 cm, 0 cm, and
2 cm), and the source time course assigned to this source is
shown in Figure 2(b). The signal sensor data bS(t) were com-
puted by projecting the source time course through the sen-
sor lead field obtained using the Biot-Savart law. The signal
data bS(t) are shown in the upper panel of Figure 2(c). Sensor
noise was then added to the signal data with a signal-to-noise
ratio (SNR) of 10 to generate the signal plus sensor-noise
data, bS t + ε, which are shown in the lower panel of
Figure 2(c). Here, the sensor noise was assumed to be the
white Gaussian noise uncorrelated between different sensor
channels, that is, the noise vector had a statistical property
of ε ∼N ε ∣ 0, σ2I , where σ2 is the variance of the noise in
all sensor channels.

In order to generate environmental noise, four interfer-
ence sources were assumed to exist; their coordinates and

distances from the center of the sensor array are shown in
Table 1. The locations of these interference sources with
respect to the sensor array are shown in Figure 3(a). Four
random time courses shown in Figure 3(b) were assigned to
these four interference sources, and the interference data bI
t were computed. The generated interference data are
shown in Figure 3(c).

Sensors

Source space

x (cm)
y (cm)

z (
cm

)
10
8
6
4
2
0

−2
−4
−6
10

5
0

−5
−10 −10

−5
0

5
10

(a)

Time

1

0

−1
0 1000 2000

(b)

Time

1

0

−1

1

0

−1

0 1000 2000

0 1000 2000

(c)

Figure 2: (a) An array of sensors and the coordinate system used in our computer simulation. The sensor array consists of 64 sensors
arranged in an 8× 8 configuration on the plane z = 10 cm, called the sensor plane. The sensor array covers an area of 20 cm× 20 cm,
and the sensors measure the z component of the magnetic field, which is the component normal to the sensor plane. The source space
(−10 ≤ x ≤ 10 cm, −10 ≤ y ≤ 10 cm, −7 ≤ z ≤ 7 cm) is shown. (b) The source time course assumed for a source located at (−3 cm, 0 cm,
and 2 cm). (c) The signal sensor data bS t are shown in the upper panel, and the signal plus sensor-noise data bS t + ε are shown in
the lower panel. Here, sensor noise was added to the signal data with the signal-to-noise ratio (SNR) of 10. The sensor time courses are
normalized to the maximum value in each panel, and the ordinate indicates the normalized values.

Table 1: Locations of interference sources assumed in a computer
simulation.

Source number Location (cm)
Distance from the
sensor array (cm)

1 (−60, 130, 200) 238

2 (300, −150, 360) 485

3 (−72, −80, −200) 236

4 (−105, −150, −100) 214
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We applied the SSS extractors to bS t and bI t in order
to check how large the internal and external components are
in each of bS t and bI t . The upper and lower panels,
respectively, of Figure 4(a) show PintbS t and PextbS t .
Here, PintbS t and PextbS t indicate the internal and exter-
nal components contained in bS t . These results show that
the signal vector bS t contains a considerable amount of
external components, confirming the validity of our analysis
in Section 2.5. The upper and lower panels, respectively, of
Figure 4(b) show PintbI t and PextbI t . Here, PintbI t is
nearly equal to zero, and PextbI t is almost the same as bI
t . These results verify our arguments in Section 2.5 that
bI t contains almost no internal components.

We performed the same experiments using an MEG
helmet-type sensor array for comparison; the arrangement
of the helmet sensors used in this computer simulation is
shown in Figure 5(a). The upper and lower panels, respec-
tively, of Figure 5(b) show PintbS t and PextbS t , and the
upper and lower panels, respectively, of Figure 5(c) show
PintbI t and PextbI t . These results clearly confirm that
the amount of the external components in bS t , as well as
the amount of the internal components in bI t , is very small,

explaining why the SSS method works well for data from
helmet-type sensor arrays used in MEG.

3.2. Optimal Location of the Origin. We next explored the
optimal location of the origin for SSS application to flat sen-
sor data. The origin location significantly affects the final
results of the SSS interference suppression, and, thus it is
one of the most important parameters in the SSS implemen-
tation. In order to see how the origin location affects the SSS
results, the internal component PintbS t and the external
component PextbS t were computed with the origin set at
four different locations of (0, 0, and zori) where zori was
equal to 9 cm, 6 cm, 3 cm, and 0 cm. (Note that the center
of the sensor array is located at (0 cm, 0 cm, and 10 cm)).
Here, the signal sensor data (plus sensor noise) bS t + ε
shown in Figure 2(c) were used. The truncation values
LC and LD were, respectively, set at 7 and 3, which are
the values found to be optimal in previous investigations
[8, 9]. Results of this experiment are shown in Figure 6,
exhibiting a general tendency that the signal leakage
becomes larger when the origin becomes closer to the sen-
sor plane (z=10 cm). However, the results also show that
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Figure 3: (a) Locations of four interference sources shown with respect to the sensors. (b) Random (normalized) time courses assigned to the
four interference sources. (c) Generated interference sensor data bI t . These interference sensor data are computed by projecting the
interference-source time courses in (b) through the sensor lead field obtained using the Biot-Savart law. The sensor time courses are
normalized, and the ordinate indicates the normalized values.
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when the origin becomes farther from the sensor plane,
the SSS results become significantly noisy. In summary,
the location of the origin affects both the amount of signal
leakage and the noise in the SSS results.

The amount of signal leakage can be assessed by the
signal gain GS defined in (39). Let us derive a quantita-
tive relationship of the signal gain GS versus zori. To do
this, voxels with 0.5 cm intervals were assumed in a 3-
dimensional source space (−10≤ x≤ 10 cm, −10≤ y≤ 10 cm,
and −7≤ z≤ 7 cm), which is shown in Figure 2(a). The signal
sensor data bS t were computed by setting the signal source

at one of the voxel locations, and the signal gain GS was
computed using bS t . The mean signal gain was computed
by averaging the signal gains obtained from all voxel loca-
tions. Here, the SSS extractor was derived with zori varied
from 0 cm to 10 cm. The mean signal gain versus zori is plot-
ted with a broken line in Figure 7(a). It can be seen in these
plots that GS gradually decreases as the origin becomes
closer to the sensor plane.

The noise gain Gε is also plotted in Figure 7(a), and we
can see that the noise gain becomes significantly larger as
the origin becomes farther from the sensor plane, confirming
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Figure 4: Results of experiments that apply the SSS extractors to bS t and bI t computed assuming the flat sensor array in Figure 2(a). (a)
The upper and lower panels, respectively, show PintbS t and PextbS t , which indicate the internal and external components in bS t . (b) The
upper and lower panels, respectively, show PintbI t and PextbI t , which indicate the internal and external components in bI t . In the sensor
time courses in (a), they are normalized to the maximum value from the upper panel, and the sensor time courses in (b), they are normalized
to the maximum value from the lower panel.
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the general tendency observed in Figure 6. The ratio GS/Gε
is also plotted in Figure 7(a), and it can be seen that the
ratio gradually increases as the origin becomes closer to the
sensor plane. It reaches maximum at zori approximately equal
to 9 cm.

We next performed computer simulation to derive the
relationship between the interference gain GI and the origin
location zori. To do this, we assumed a sphere with its radius
equal to rI and its center at the center of the sensor array;
such a sphere is shown in the upper part of Figure 7(b).
The surface of the sphere was defined as a region where
interference sources exist, and the interference data bI t
were computed by assuming that a single interference
source exists on the surface. The interference gain GI was
computed with 100 different locations of the interference
source, and the mean interference gain is computed and
plotted with respect to the origin parameter zori. Here,
denoting the polar coordinate of the interference source by

(rI , θ, ϕ), 100 locations of the interference source were deter-
mined as locations with 10 equal-interval θ and 10 equal-
interval φ.

The plots of GI with respect to zori are shown in
Figure 7(b). Here, two cases, rI = 5m and rI = 20m, are
shown. The case rI = 5m represents cases in which an inter-
ference source is located relatively near to the sensors, and
the case rI = 20m represents cases in which an interference
source is located relatively far from the sensors. These plots
indicate that the interference gain generally decreases as the
origin becomes closer to the sensors, and it reaches a mini-
mum at zori≈ 9 cm for both cases.

3.3. Choices of LC and LD, Truncated Values of Multipole-
Order ℓ. We explore the optimal values of the parameters
LC and LD, which are the truncation values of the
multipole-order ℓ introduced in (10). So far, these parameters
have been set at the values found to be optimal in previous
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Figure 5: Results of the same experiments in which the SSS extractors are applied to bS t and bI t , assuming a helmet-type sensor array
used in MEG. (a) Locations of sensors in the helmet-type array assumed in this computer simulation. The sensor arrangement is from the
275-channel whole head sensor array of the Omega™ (VMS Medtech, Coquitlam, Canada). (b) The upper and lower panels, respectively,
show PintbS t and PextbS t . (c) The upper and lower panels, respectively, show PintbI t and PextbI t . In the sensor time courses in (b),
they are normalized to the maximum value from the upper panel, and the sensor time courses in (c), they are normalized to the
maximum value from the lower panel.
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investigations [8, 9], and so, LC and LD were, respectively, set
at 7 and 3 in the preceding subsections. In Figure 8, the signal
gain GS, noise gain Gε, and their ratio GS/Gε are plotted with
respect to zori for three different values of LC (LC = 5, 6, and 7)
and two different values of LD (LD = 2 and 3). The noise gain
is plotted in Figure 8(a), the signal gain in Figure 8(b), and
the gain ratio in Figure 8(c). In these figures, the broken lines
indicate the results with LD = 2, and the solid lines indicate
those with LD = 3.

It can be seen that the noise gain is considerably smaller
when LD = 2 than when LD = 3. The signal gain when LD =
2 is greater than when LD = 3. The differences in the signal
and noise gains among different values of LC are generally
small. These results suggest that LD should be set at 2, rather
than 3. In Figure 8(c), the plots of the gain ratio GS/Gε for
LD = 2 are shown to have peak maxima when zori > 8, regard-
less of the value of LC . The results in Figure 8 suggest that, as
far as the signal and noise gains concerned, LD = 2 should be
the best choice, and any value of LC = 5, 6, and 7may be cho-
sen if we set zori such that zori > 8.

The interference gain is plotted with respect to zori for
the three values of LC and the two values of LD in Figure 9.

Here, the cases rI = 5m and rI = 20m are, respectively,
shown in Figures 9(a) and 9(b), where the broken lines indi-
cate the results of LD = 2 and the solid lines indicate those of
LD = 3. These plots show that regardless of the values of LC
and LD, there is a general tendency that the gain decreases
as the origin becomes closer to the sensors, and it reaches
a minimum near zori equal to 9 cm. Namely, the value of zor-
i≈ 9 cm gives the minimum interference gain (the maximum
shield factor) for all values of LC and LD. On the basis of the
results in Figures 8 and 9, we can conclude that the origin
parameter zori should be set at 9, that is, the best origin loca-
tion is determined as (0, 0, and 9), which is 1 cm below the
center of the sensor array. We use this value throughout
the experiments described below.

3.4. Influence of Sensor Calibration Errors. The SSS method is
known to be very sensitive to sensor calibration errors, and
an accurately calibrated sensor array is needed for effective
suppression of interference [18]. Sensor calibration errors
are known to severely affect the shielding capability, so the
influence of sensor calibration errors on the interference gain
GI is investigated by using erroneous sensor locations and
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Figure 6: The internal component Pint bS t + ε and the external component Pext bS t + ε of the signal vector (plus sensor noise) with four
different locations of the origin (0, 0, and zori): (a) zori = 0 cm, (b) zori = 3 cm, (c) zori = 6 cm, and (d) zori = 9 cm. The upper panel indicates the
internal components, and the lower indicates the external components PextbS t . The filled circle shows the location of the origin, and the
square indicates the location of the source. In each pair of the sensor time courses, they are normalized to the maximum value from the
upper panel, and the ordinate indicates the normalized values.
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orientations when computing the SSS basis vectors. Here, the
sensor location error Eloc is assessed using

Eloc =
1
M

〠
M

j=1

rdj − r̂dj
r̂dj

, 41

where rdj is the true location of the jth sensor, and r̂dj is the
calibrated location of this sensor. Note that r̂dj is assumed to
contain an error. Here, rdj is obtained by adding (small)
random displacements to r̂dj . The signal vector bS t and
the interference vector bI t were computed using the true
location rdj , while the SSS basis vectors were computed using
the calibrated location r̂dj . In exactly the same manner, the
error in the sensor orientation, Eori, is assessed using

Eori =
1
M

〠
M

j=1

ζj − ζ̂ j
ζ̂j

, 42

where ζj is the true normal vector of the jth sensor, and ζbj is
the calibrated normal vector, which is ζ̂j = 0, 0, 1 . Here, ζj is
obtained by adding random vectors to ζ̂j. The signal vector
bS t and the interference vector bI t were computed using

ζj, while the SSS basis vectors were computed using the erro-

neous orientation ζ̂j.
In Figure 10, the interference gain is plotted with respect

to rI , the distance to the interference source, for the three
values of LC and the two values of LD. Again, the broken lines
indicate the results with LD = 2, and the solid lines indicate
those with LD = 3. Here, the plots in Figure 10(a) indicate
the case of no calibration error (Eloc = Eori = 0). The plots in
Figures 10(b)–10(d), respectively, indicate the cases Eloc =
Eori = 0 03%, Eloc = Eori = 0 1%, and Eloc = Eori = 1%. In
Figures 10(b)–10(d), the mean values obtained over 100
Monte Carlo trials are plotted. That is, a set of random
values were assigned as the errors of sensor locations and ori-
entations in each trial, and the mean results from 100 such
trials are plotted.

First, we can observe that the interference gain (i.e., the
shield factor) is seriously affected by the calibration errors.
When there are no calibration errors, the shield factor 1/GI
for rI> 15m is greater than 104 with LD = 2 but it drops to less
than 30 when Eloc = Eori = 1%. Regarding the optimal choices
of the parameters LC and LD, the choice of LD = 2 mostly
gives greater shield factor than LD = 3. There are no signifi-
cant differences among the choices of LC , but the choice of
LC = 6 gives slightly better results when Eloc = Eori > 0 1%.
Since such errors as Eloc = Eori > 0 1% may be considered
the practical values of sensor calibration errors, the choices
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Figure 7: (a) Plots of the mean signal gain GS, the noise gain Gε, and their ratio GS/Gε versus the z coordinate of the origin zori. The signal
sensor data bS t were computed by setting the signal source at one of the voxel locations, and the signal gain GS was obtained. The mean
signal gain was computed by averaging GS obtained from all voxel locations. (b) The mean interference gain GI versus zori. The plot with
the broken line shows the case rI = 20m, and the plot with the solid line shows the case rI = 5m. The interference data bI were computed
by setting a source at 100 equally spaced locations on the surface of a sphere with a radius of rI , and the interference gain GI was
obtained. The mean interference gain was computed by averaging GI obtained from all 100 source locations. The sphere with a radius rI is
shown in the upper part.
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of LC = 6 and LD = 2 are determined as the best choices for
the truncation of the multipole parameter ℓ. Note that,
according to the arguments for signal and noise gains in
Section 3.3, the choices of LC = 6 and LD = 2 also give
the best results.

With the choices of LC = 6, LD = 2, and zori=9 cm, the
interference gain GI is replotted with respect to rI , the dis-
tance to the interference source. The results are shown in
Figure 11(a). It can be seen that the shield factor (1/GI)
exceeds 104 for rI > 15m when no calibration errors exist
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Figure 8: (a) The signal gain GS, (b) noise gain Gε, and (c) their ratio GS/Gε plotted with respect to the origin’s z coordinate, zori, for three
values of LC (LC = 5, 6, and 7) and two values of LD (LD = 2 and 3). The broken lines indicate the results with LD = 2, and the solid lines
indicate those with LD = 3.
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Figure 10: The plots of the interference gain GI with respect to the distance to the interference source, rI , for the three values of LC and
the two values of LD. (a) No calibration errors (ELoc = EOri = 0). (b) Calibration errors of ELoc = EOri = 0 03%. (c) Calibration errors of
ELoc = EOri = 0 1%. (d) Calibration errors of ELoc = EOri = 1%. The broken lines indicate the results with LD = 2 and the solid lines
indicate those with LD = 3. The origin was set at (0 cm, 0 cm, and 9 cm) (zori = 9 cm).
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Figure 11: (a) The interference gain GI replotted with respect to rI , the distance to interference sources. The choices of LC = 6, LD = 2, and
zori = 9 cm were used. (b) The signal and noise gains versus the origin’s z coordinate (zori). The plots with the solid line indicate the case of
no calibration errors, and the plots with the broken line indicate the case of 1% calibration errors. The multiple-order truncation was set
such that LC = 6 and LD = 2.
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but that the shield factor drops to 100 when calibration errors
of 0.1% exist, and to 30 when calibration errors of 1% exist.
With the parameter settings, LC = 6, LD = 2, and 1% sensor
calibration errors, signal and noise gains versus zori are plot-
ted in Figure 11(b). Here, the plot with the solid line indicates
the case of no calibration errors, and the plot with the broken
line indicates the case of 1% calibration errors. The two plots
nearly overlap, and this fact confirms that the influence of cal-
ibration errors on the signal and noise gains is small.

3.5. The Performance of the SSS Method for Different Sensor
Arrays. Here, the SSS performance with two different types
of flat sensor arrays is tested: one is a sensor array with a
larger sensor coverage and the other is a sensor array consist-
ing of vector sensors. In the sensor array with a larger cover-
age, the sensors are arranged on a 24 cm× 24 cm coverage

area and consist of 10× 10 sensors that measure the magnetic
field normal to the sensor plane. This sensor array is a larger-
scale version of the sensor array used in the preceding subsec-
tions. The vector sensor array consists of 6× 6 vector sensors
arranged on a 20 cm× 20 cm coverage area. Here, a vector
sensor indicates a set of three sensors; each measures one of
the x, y, and z components of the magnetic field, and there-
fore this sensor array actually has a total of 108 sensors.

Assuming the sensor array with a larger sensor coverage,
the interference gainGI versus rI (the distance to the interfer-
ence sources) was plotted in Figure 12(a). It can be seen that
the plots in this figure are almost the same as the plots in
Figure 11(a), suggesting that the influence of the number of
sensors and sensor coverage on the shielding capability is
rather small. The signal and noise gains with respect to the
origin’s z coordinate (zori) were plotted in Figure 12(b),
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Figure 12: The SSS performance computed by assuming a larger sensor array in which the sensors are arranged on a 24 cm× 24 cm coverage
area and consist of 10× 10 sensors that measures the magnetic field normal to the sensor plane. (a) The interference gain GI plotted with
respect to rI for six different calibration errors. The choices of LC = 6, LD = 2, and zori = 9 cm were used. (b) The signal and noise gains
versus the origin’s z coordinate (zori). The plots with the solid line indicate the case of no calibration errors, and the plots with the broken
line indicate the case of 1% calibration errors. The multiple-order truncation was set such that LC = 6 and LD = 2.
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Figure 13: The SSS performance computed by assuming a vector sensor array in which the array consists of 6× 6 vector sensors arranged on a
20 cm× 20 cm coverage area. (a) The interference gain GI plotted with respect to rI for six different calibration errors. The choices of LC = 6,
LD = 2, and zori = 9 cm were used. (b) The signal and noise gains versus the origin’s z coordinate (zori). The plots with the solid line indicates
the case of no calibration errors, and the plots with the broken line indicates the case of 1% calibration errors. The multiple-order truncation
was set such that LC = 6 and LD = 2.

15Journal of Healthcare Engineering



where the plot with the solid line indicates the case of no cal-
ibration errors and the plot with the broken line indicates the
case of 1% calibration errors. Again, we can observe that the
plots here are very similar to the plots in Figure 11(b).

The SSS performance for the vector sensor array was
investigated. The interference gain GI versus rI was plotted
in Figure 13(a). We can observe significant improvements
in the shielding capability.
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Figure 14: (a) Upper panel: the signal plus sensor-noise time courses bS t + ε. Lower panel: the interference time courses bI t . (b) Upper
panel: the interference-overlapped sensor time courses y t . Lower panel: the SSS interference removal results Pinty t . These time courses are
normalized to the maximum value in each panel. (c) The current-density map obtained from bS t + ε. (d) The current-density map obtained
from interference-overlapped sensor time courses y t . (e) The current-density map obtained from the SSS interference-removal results
Pinty t with the original lead field L r . (f) The current-density map obtained using Pinty t with the SSS-modified lead field L r =
PintL r . Here, two-dimensional current-density maps on the plane z = 2 cm, which is the plane 8 cm below the sensor plane, are
reconstructed using the field map at t = 1200. The signal data bS t were computed assuming two sources, located at (−5 cm, 4 cm,
and 3 cm) and (4 cm, −3 cm, and 3 cm).
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That is, with 1% calibration errors, the vector sensor array
has a shield factor of approximately 500 (GI = 2 × 10−3). The
two sensor arrays with normal-component-only sensors have

shield factors of nearly 30 with 1% calibration errors, accord-
ing to Figures 11(a) and 12(a). These results are consistent
with the previous investigation [19], which have reported
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Figure 15: (a) Source reconstruction results obtained using the signal plus sensor-noise time courses in Figure 2(c). (b) Source reconstruction
results obtained using the sensor time courses y t created by adding the interference data shown in Figure 3(c) onto the signal plus
sensor-noise time courses in Figure 2(c). (c) Source reconstruction results obtained using the SSS interference removal results Pinty t
with the original lead field L r . (d) Source reconstruction results obtained using the SSS interference removal results Pinty t with the
SSS-modified lead field L r . The RENS beamformer [20, 21] was applied to the field data at t = 1260 for three-dimensional source
reconstruction.
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SSS performance improvements due to the use of tangential
sensors. The signal and noise gains with respect to the ori-
gin’s z coordinate (zori) are plotted for the vector sensor array
in Figure 13(b). It can be seen that the plots here are very sim-
ilar to the plots in Figure 11(b) or 12(b), indicating that these
gains are not affected by the use of vector sensors.

3.6. Correction of Signal Distortion in Source Space Analysis

3.6.1. Two-Dimensional Current-Density Reconstruction
Experiments. As discussed in Section 2.5, the SSS-processed
signal vector bS t bS t = PintbS t becomes distorted
because the SSS application causes the removal of the exter-
nal components from the signal vector bS t . This distortion,
however, can be corrected by using the SSS-modified lead
field because the distorted signal vector is expressed as a
sum of distorted lead field vectors, as shown in (37). A series
of computer simulations were performed to verify this idea.
The results for 2-dimensional current-density mapping are
presented in Figure 14.

The signal data bS t were computed assuming the two
sources located at (−5 cm, 4 cm, 3 cm) and (4 cm, −3 cm,
and 3 cm). The signal plus sensor-noise data bS t + ε are
shown in the upper panel of Figure 14(a). The interference
bI(t) is generated by assuming the same four sources as in
Figure 3(a); the generated interference is shown in the lower
panel of Figure 14(a). The upper panel of Figure 14(b) shows
the sensor time courses y t ; y t = bS t + ε + ξbI t , where
a positive constant ξ controls the signal-to-interference ratio
(SIR) (The SIR is defined as the ratio bS t / ξbI t in
this computer simulation), which was set equal to 0.25 in this
computer simulation. The SSS interference suppression
results Pinty t are shown in the lower panel of Figure 14(b).

The current-density reconstruction was performed using
RENS beamformer, proposed in [20, 21]. The current-
density map obtained from the signal plus sensor-noise data,
bS t + ε, is shown in Figure 14(c). This map works as the
ground truth for the following experiments. The current-
density map obtained from the interference-overlapped data
y t is shown in Figure 14(d). The results far from the ground
truth are obtained due to the overlap of the large interference.

The current-density reconstruction was performed twice,
using the SSS results Pinty t with the original lead field L r
and with the SSS-modified lead field L r : L r = PintL r .
The current-density map obtained with the original lead field
L r is shown in Figure 14(e). A considerable amount of dis-
tortion can be seen in this current-density map, although the
SSS method seems to have nearly perfectly removed the
interference according to the SSS-processed time courses
(the lower panel of Figure 14(b)). The current-density map
obtained with the SSS-modified lead field is shown in
Figure 14(f). Here, results very close to the ground truth
can be obtained; these results verify the idea that the signal
distortion can be compensated for by using the SSS-
modified lead field in the voxel space analysis.

3.6.2. Three-Dimensional Source Localization Experiments.
Next, three-dimensional source localization experiments
were performed. Reconstruction results obtained using the

signal plus sensor-noise data shown in Figure 2(c) are shown
in Figure 15(a). A single source is reconstructed near (−3, 0,
and 2), which is the location assumed for the data generation.
These results work as the ground truth when evaluating the
following results. The interference-overlapped sensor data y
t were computed using the interference data shown in
Figure 3(c) overlapped onto these signal plus sensor-noise
data with the SIR equal to 0.25. The source reconstruction
was performed using the interference-overlapped sensor data
y t , and the results are shown in Figure 15(b). A large influ-
ence from the interference can be seen here.

The source reconstruction was carried out using the SSS
interference suppression results Pinty t with the original
lead field L r . The results are shown in Figure 15(c), in
which a single source is reconstructed but the location of
the source differs considerably from the assumed location.
The source reconstruction was then carried out using the
SSS-modified lead field L r , and the results are shown in
Figure 15(d). These results are almost the same as the ground
truth, verifying the effectiveness of the use of the SSS-
modified lead field in the voxel space analysis.

4. Discussion and Summary

This paper presented computer simulation-based investiga-
tion to explore the possibility of applying the SSS method
to data measured from an array of sensors arranged on a flat
plane, which is commonly used in magnetocardiographic
applications. The findings from the investigation are summa-
rized as follows:

(1) When applying the SSS method to data from a flat
sensor array, a signal vector has components of the
external subspace as well as those of the internal
subspace. As a result, the signal is distorted through
the SSS interference suppression process.

(2) The signal distortion can be compensated for by
using the SSS-modified lead field in voxel space
analysis. The computer simulations using two-
dimensional current-density mapping and three-
dimensional source localization confirmed that the
distortion can be corrected in the voxel space.

(3) The origin location can significantly affect the results
of the SSS method. It is shown that the optimal loca-
tion of the origin can be determined by assessing the
dependence of signal and noise gains of the SSS
extractor on the origin location. The optimal location
is empirically found to be approximately 1 cm below
the sensor plane for typical flat sensor arrays used
in MCG applications.

(4) The optimal values of the parameters LC and LD, the
truncation values of the multipole-order ℓ, can also
be determined by evaluating dependences of the sig-
nal, noise, and interference gains (shield factor) on
these parameters. Results of computer simulation
suggest LD = 6 and LD = 2 to be the optimal choices
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for typical flat sensor arrays currently used in clinical
magnetocardiography.

(5) The sensor calibration errors affect the shielding
capability. The shield factor exceeds 104 for interfer-
ence originating from fairly distant sources (rI > 15
m) when no calibration errors exist. However, the
shield factor drops to approximately 100 when the
calibration errors become 0.1% and to 30 when the
calibration errors become 1%.

(6) The shielding capability can significantly be
improved by using vector sensors, which measure
the x, y, and z components of the magnetic field.
With 1% calibration errors, a vector sensor array still
maintains a shield factor of approximately 500, while
the arrays with sensors measuring only the normal
direction have a shield factor of about 30 with the
same 1% calibration errors.

Finally, it should be emphasized that the SSS interfer-
ence suppression method is effective even for arrays of sen-
sors arranged on a flat plane. This is the main finding in
this paper. The use of such signal processing methods with
low-cost sensors, such as magnetoresistive sensors, can lead
to the development of low-initial-cost and maintenance-
free magnetocardiography systems, which in the near
future may replace the electrocardiogram now routinely
used in hospitals.
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