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a b s t r a c t

The infants' gut microbiome is dynamic in nature. Literature has shown high inter-individual variability of 
gut microbial composition in the early years of infancy compared to adulthood. Although next-generation 
sequencing technologies are rapidly evolving, several statistical analysis aspects need to be addressed to 
capture the variability and dynamic nature of the infants' gut microbiome. In this study, we proposed a 
Bayesian Marginal Zero-inflated Negative Binomial (BAMZINB) model, addressing complexities associated 
with zero-inflation and multivariate structure of the infants' gut microbiome data. Here, we simulated 32 
scenarios to compare the performance of BAMZINB with glmFit and BhGLM as the two other widely similar 
methods in the literature in handling zero-inflation, over-dispersion, and multivariate structure of the in-
fants' gut microbiome. Then, we showed the performance of the BAMZINB approach on a real dataset using 
SKOT cohort (I and II) studies. Our simulation results showed that the BAMZINB model performed as well as 
those two methods in estimating the average abundance difference and had a better fit for almost all 
scenarios when the signal and sample size were large. Applying BAMZINB on SKOT cohorts showed re-
markable changes in the average absolute abundance of specific bacteria from 9 to 18 months for infants of 
healthy and obese mothers. In conclusion, we recommend using the BAMZINB approach for infants' gut 
microbiome data taking zero-inflation and over-dispersion properties into account in multivariate analysis 
when comparing the average abundance difference.

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).

1. Introduction

The advent of high throughput sequencing in parallel with sub-
stantial advances in computational, molecular, and quantitative 
fields has opened new avenues in our understanding of trillions of 
microbes that call the human intestine home (termed as "human gut 
microbiome") [1–4]. In vitro and in vivo studies have shown that the 
human gut microbiome takes shape shortly after birth mainly via 
transmission from the maternal microbial pool (vagina, gut, skin, or 

breastmilk) and continues to develop until it becomes mature two to 
three years after the initial colonization [5–8]. Any changes that 
could disrupt the stability of the healthy gut microbiome, particu-
larly at the early stages of life, could result in severe dysbiosis, which 
could pave the path for major health issues in adulthood [9–11].

For instance, dysbiosis in newly colonized microbes of an infant's 
gut could result in disorders such as failure to thrive, which have a 
negative impact on child growth [12]. Necrotizing enterocolitis is 
another common intestinal disease associated with early life dys-
biosis, severe intestinal inflammation, and irritable bowel diseases 
[13]. Furthermore, a study conducted by Ivashkin and colleagues on 
patients with irritable bowel syndrome (IBS) showed a link between 
alteration in the gut microbial community and disruption of the pro- 
inflammatory, anti-inflammatory cytokines and tight junction pro-
teins expression [14]. IBS and some diseases associated with in-
testinal inflammation are believed to be one of the long-term side 
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effects of early gut dysbiosis [15]. Another prime example of the 
effect of early gut dysbiosis, which appears later on in life, is obesity 
[16]. A study conducted by Kasai and colleagues show higher di-
versity in bacteria in obese individuals compared to non-obese in-
dividuals [17]. An increase in the abundance of specific microbial 
taxa has heavily influenced the biological activity of neutrophils, 
lymphocytes, antigen-presenting cells, and T and B cells [18]. As a 
result of such substantial influence of the gut microbiome over the 
human immune system, diseases such as atopy [19], rheumatoid 
arthritis [20], and nervous system's demyelination-related patholo-
gies [21], or Crohn's disease and ulcerative colitis [22], have all been 
suspected to be triggered by changes in gut microbial community 
structure.

While innovations in next-generation sequencing (NGS) tech-
nologies decipher the relationship between the dynamic changes in 
the human microbiome and various diseases through 16 s ribosome 
RNA gene sequencing or shotgun metagenomics sequencing, the 
development of statistical methods in microbiome research has not 
kept up with the same pace. Recent NGS technologies offer a massive 
amount of sequence reads that provide information about species or 
bacteria with high resolution [23]. On the basis of this data, statis-
tical techniques were used to examine the relationships between 
various types of bacteria and the characteristics of the subjects or 
the environment [24]. These circumstances or traits may have an 
impact on the absolute abundance of microorganisms, and must be 
taken into account for a more accurate differential abundance ana-
lysis [25]. Furthermore, there may be a clinical need to quantify the 
association between the microbiome and these con-
founders [26–29].

Current literature shows that the analysis of microbial data is 
complicated due to inherited characteristics of microbiome count 
data, such as over-dispersion, zero inflation, and fluctuating library 
size. Fortunately, some of these challenges have been widely studied 
in the context of microarray and single-cell RNA analysis. For ex-
ample, library size is suggested to be controlled by implementing a 
complex normalization technique into the classic Negative Binomial 
(NB) model, a well-known model for handling over-dispersion. This 
can be found in R packages such as edgeR [30] and DESeq2 [31,32]. 
Another example is implementing a zero-inflated Gaussian mixture 
model [33] in the metagenomes package to accommodate zero-in-
flated data in the analysis. Although these tools seem useful for 
microbiome data analysis, the assurance of generating precise and 
unbiased results depends on the sample size and multivariate cor-
relation structure of the microbiome data. The common solution for 
the dimensionality issue in such tools is the utilization of dimension 
reduction methods and dissimilarity matrices (i.e., principal com-
ponent or partial least squares) [34]. However, relevant information 
could be lost by selecting a pre-specified number of eigenvalues or 
factors [35].

Another set of (single cell)-RNA-seq analysis methods has been 
recently adapted to microbiome studies. These methods address the 
dimensionality issue using Markov chain Monte Carlo (MCMC) al-
gorithms [36]. Glmfit function in edgeR package and bglm function 
in BhGLM package [37] are two examples of such tools in genome 
data analysis. Glmfit function can generate effect sizes for each 
bacterium as well as the whole microbiome composition (for eco-
logical studies), estimating one common over-dispersion term and 
adjusting for library size. On the contrary, bglm function is limited to 
only univariate analysis, generating the result for each bacterium at 
a time with the estimation of an over-dispersion term per bacterium 
and adjusting for library size. However, because both tools use the 
classic NB model, the analyses do not address the current zero-in-
flation issue.

Geert Molenberghs and Geert Verbeke discussed marginal 
models for discrete longitudinal data and their strength [38]. We 
proposed a Bayesian Marginal Zero-inflated Negative Binomial 

(BAMZINB) model, addressing complexities associated with zero- 
inflation and multivariate structure of gut microbiome data de-
scribed above. Our modeling construction includes several ad-
vantages. First, BAMZINB can generate results for individual 
bacterium and the entire microbiome composition. Second, it in-
corporates zero inflation, over-dispersion, fluctuating library size, 
and multivariate correlation structure of the microbiome data using 
the generalized linear model framework. Furthermore, it models the 
heterogeneity among subjects via a random intercept component. 
More specifically, the BAMZINB model can perform the differential 
absolute abundance analysis of responses one by one, focusing on 
the relationship of interest and simultaneously controlling for the 
microbiome data's multivariate correlation structure.

As we proceed, the material and method section will further 
describe the details of the BAMZINB method, the extensive simula-
tion study, and the application of the SKOT Cohorts data [39–41]. Our 
simulation studies and a real data application will be presented in 
the results and discussion sections in terms of performance criteria 
such as absolute relative bias (ABR) and deviance.

2. Methods and materials

2.1. Bayesian Marginal Zero-inflated Negative Binomial (BAMZINB)

2.1.1. The joint zero-inflated negative binomial distribution
Multivariate models are used to accommodate multiple corre-

lated outcomes via statistical models that jointly represent re-
lationships between outcomes and predictors. A broad objective of 
joint modeling is to provide a framework to ensure valid inferences 
by accounting for the correlation among the outcome variables. Let 
Y1 and Y2 be random variables representing correlated outcomes. 
While we restrict attention to the case of two response variables, an 
extension to a higher dimension is straightforward. In the zero-in-
flated negative binomial regression model, the objectives are to 
identify significant factors influencing the zero-inflation count of the 
bacteria and determine the extent of the effect of potential biological 
and environmental factors on the mean count of a specific bacteria 
in the presence of zero inflation and overdispersion. Let's assume 
that Y1 follows the zero-inflated negative binomial distribution 
(Eq. 1):
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where Y= (Y1, Y2, …, Ym), = …( , , , )i 1 2 m , µ µ µ µ= …( , , , )i 1 2 m is the 
mean and = …( , , , )i 1 2 m . Lambert [43] and Mullay [44] proposed 
a model for zero inflated negative binomial model as follows:

µ= = = …logit Z Log X( ) and ( ) ; i 1, 2, ,mi i (3) 
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Where = …( , , , )p1 2 and = …( , , , )q1 2 are the regression 
coefficient vectors, Z and X are the covariates matrices with ele-
ments zjk and xjk’ as the observed covariate for the jth individual of 
the kth and k th predictor for each process, respectively. In practice, 
both processes often have the same vector of variables, but not ne-
cessarily all the time. The association between Y1, Y2, …, Ym is 
considered using a working covariance matrix which contains the 
variance and covariance of model residuals. In the covariance matrix

×

m

m m m m

1
2

1

1
2

i
2 is the variance of residuals for the ith outcome sub model and ii is 

the covariance between the residuals of the outcomes i and i .

2.1.2. Marginalized Multivariate Zero-inflated Negative Binomial 
(MZINB) model

Marginalized zero-inflated count response models are useful 
when the overall mean of specific bacteria µ = E Y[ ]i i is of primary 
interest [42,45]. In this model, exp( )j represents the multiplicative 
increase in the mean count for bacteria in the overall population 
corresponding to a one-unit increase in the covariate xij and exp( )j
represents the odds ratio of observing non-zero number of bacteria 
corresponding to a one-unit increase in the covariate zij. A margin-
alized Multivariate Zero-Inflated Negative Binomial (MZINB) re-
gression model likelihood function is introduced within a likelihood 
framework of m outcomes as follows:
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we run simulations, including our proposed method, BAMZINB. 
Variance-covariance matrix is the responsible component of the 
model for capturing the association among the variables. This matrix 
can be of different covariance pattern models such as autoregressive, 
exchangeable, unstructured and etc. In the current study, we con-
sidered an unstructured covariance pattern model due to the Baye-
sian framework of analysis. In addition, we used Bayesian estimation 
methods to cover potentially problematic issues, such as over- 
parametrization and small sample sizes.

2.1.3. Bayesian parameter estimates
We needed to specify a prior distribution for parameters in the 

model to obtain a Bayesian estimation of the unknown parameters 
in the BAMZINB model. Formulation of an informative prior dis-
tribution results from providing good prior information [46]. In this 
study, we assumed Gamma (a=0.001, b=0.001) distribution for 
overdispersion parameter ( ) and Normal (0, 10e+6) distribution for 
model parameter coefficients ( , ). Therefore, the prior distribution 
for parameters ( , , ) is written as the following:
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Using the combination of the prior (Eq. 5) and the likelihood (Eq. 
4), the posterior for the parameters can be written as:
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The posterior distributions were sampled by Monte Carlo Markov 
Chain (MCMC) [47,48] techniques available in JAGS [49] using runjags 
package [50] in R software. The Bayesian estimated average will be 
considered as the estimated effect size. The Deviance Information 
Criteria (DIC) [51] will be used as a goodness of fit criteria for model 
performance comparisons.

2.2. Simulation

We conducted a simulation study to compare the performance of 
BAMZINB with two alternative models, the Genewise Negative 
Binomial Generalized Linear Models (glmFit) [52] implemented in 
edgeR package [53] and the Bayesian hierarchical Generalized Linear 
Model (BhGLM) [37] implemented in BhGLM package in R software 
version 4.0.4 [54].

2.2.1. Data generation
We assumed a sample of 300 amplicon sequence variants (ASVs) 

for 50 and 100 subjects. We generated two sets of data for each si-
mulation scenario with fixed treatment effects: β = 0, representing 
no signal, and β = 2, indicating a considerable large signal. There was 
only one binary covariate defined as an indicator of the exposed 
group, and the probability of a subject coming from the exposed 

Table 1 
Summary of simulation study parameters. 

Parameter Ranges

Sample size, n 50, 100
Number of coefficients One: 1, categorical (p = 0.5)
Effect size, β Zero: 0, no signal 

Two: 2, large signal
Over-dispersion : Low= 0.75, Moderate= 0.5
Zero-inflation : Low= 0.3, Moderate= 0.5
Correlation : Low= 0.2, Moderate= 0.5
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group was set at 50 %. Table 1 summarizes the simulation study 
parameters for 32 scenarios.

Each simulation scenario consisted of the following steps: 

1. Take 50 or 100 random samples from each dataset with re-
placement.

2. Fit four models: 
a. BAMZINB without random intercept,
b. BAMZINB with random intercept.
c. glmFit [52],
d. BhGLM [37].

3. Extract and store parameter estimates and deviances.
4. Compare parameter estimates with the true values.
5. Calculate the average absolute relative bias and deviance.

In step 2 and a BAMZINB with random intercept, adding a 
random intercept can be useful for detecting undefined hetero-
geneity in the dataset. We tried to evaluate the presence/absence of 
such a factor. In step 2 and a BAMZINB with random intercept, the 
random intercept can easily be added to the Eq. 3 as 

= +logit Z b( )i i and µ = +Log X u( )i i, where bi and ui can follow 
independent or bivariate normal distribution with mean zero and 
corresponding variances.

We set iteration parameters as follows, burning = 4000, 
sample = 10,000, adapt = 2000, and did not encounter any con-
vergence issues. More information regarding the details of the model 
is available in the practical example explained in the Supplementary 
materials.

In this paper, we used Gaussian Copula [55] to accommodate the 
correlation among outcome variables and zero-inflated negative 
binomial distribution to generate each response variable (Eq. 7). The 
Gaussian copula conveniently describes a complex relationship [55]. 
The Gaussian copula function is
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where is the standard normal cumulative distribution function. 
The copula we consider here is extended for p outcomes 
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2
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= …F y ;j p( ) 1. .j , are the zero-inflated negative binomial cumulative 
distribution functions.

Given the zero-inflation and over-dispersion in the gut micro-
biome count data, we reason that zero-inflated negative binomial 
distribution and Gaussian Copula to incorporate correlation re-
present the best choice for data generation.

2.2.2. Performance comparison measures
We used the ARB as the average difference between the true 

values and estimated values across 100 bootstrap samples in each 
scenario. In addition, we used the Deviance Information Criteria 
(DIC) [51] to compare the goodness of fit of four models including 
BAMZINB without random intercept, BAMZINB with random inter-
cept, glmFit [52], and BhGLM [37]. We reported the average ARB (SD) 
and average DIC (SD) among 300 simulated ASVs. Lower ARB and 
DIC values indicate better estimates and the preferred model.

2.3. Application of SKOT cohorts data

We used SKOT Cohorts (I and II) to show the application of 
BAMZINB on the real-life dataset. SKOT Cohorts include two studies, 
SKOT I and SKOT II. SKOT is the Danish abbreviation for "Dietary 
habits and wellbeing of young children." The main goal of SKOT 
studies was to investigate the relationship between obesity and 

metabolic syndrome with early diet and growth development. SKOT 
I included 311 single birth full-term infants with no chronic illness at 
nine months ±  2 weeks of age. All infants' fecal samples were taken 
at nine months and the second visit at 18 months. SKOT II included 
184 infants from obese pregnant mothers who participated in the 
TOP study [56] (Treatment of Obese Pregnant Woman at Hvidovre 
Hospital in the Copenhagen area) with the same inclusion criteria as 
SKOT I study. Similar to SKOT I study, infants in SKOT II studies were 
examined at 9 (  ±  2 weeks) months and 18 (  ±  4 weeks) months 
[40]. In this study, Sequenced reads and infants' age were down-
loaded from the National Center for Biotechnology Information 
(NCBI) with the accession number SRP052851. We used 465 in-
dividuals in the SKOT I and SKOT II study to compare the abundance 
of specific bacteria at the Phylum and Class levels between 9 months 
and 18 months assessments in each cohort separately.

ASVs were generated from raw archived sequences with the aid of 
DADA2 ("High-resolution sample inference from Illumina amplicon 
data") implemented in the Quantitative Insights into Microbial Ecology 
(QIIME 2™) pipeline [57,58]. ASVs were assigned to taxonomy via a 
Naive Bayes classification algorithm using Silva (version 132) as the 
reference database from the 515F/806R region of the reference se-
quences [59]. The quality filtering threshold based on expected errors 
was set to 5, and the reverse sequence read length was truncated to 
110. The maximum number of the reads was used for training the error 
model. We reported the average abundance difference for Actino-
bacteria, Bacteroidetes, Firmicutes, and Proteobacteria at the Phylum 
level. Laursen et al. study on SKOT Cohorts showed that these four 
phyla categories were the most dominant groups covering 95 % of the 
data [40]. In addition, we extended our investigation to include Acti-
nobacteria, Bacteroidia, Bacilli, Gammaproteobacteria, and Alphapro-
teobacteria at the Class-level for infants born to healthy mothers and 
obese mothers from 9 months to 18 months.

3. Results

3.1. Simulation results

First, we compared the performance of four models for each 
scenario presented in Tables 2 and 3. Then we compared the per-
formance of the different scenarios for each model in Figs. S1-S4.

The average ARB and average deviance results for each model in 
different scenarios can be found in Supplementary material.

Table 2 shows the average ARB of the estimated simulated effect 
size for BAMZINB with and without random intercept, BhGLM, and 
glmFit. For all scenarios, the maximum difference between the 
average ARB of the BAMZINB models and BhGLM or glmFit was less 
than 0.22. This result shows that the BAMZINB model performed as 
well as BhGLM and glmFit.

Table 3 shows the average deviance of the models in the simu-
lation study. Average deviance showed the goodness of fit of BAM-
ZINB models (with- and without- random intercept) were better for 
almost all cases when the signal and sample size were large (β = 2, 
n = 100), except for two scenarios when zero-inflation and correla-
tion were high at both levels of over-dispersion. In other scenarios, 
the BhGLM or glmFit had better deviance when there was no signal, 
and the sample size was low (β = 0, n = 50), except for five scenarios 
when zero-inflation was low, and over-dispersion was high at both 
levels of correlation, when zero-inflation and correlation were low at 
both levels of over-dispersion, and when all properties were at the 
highest level. One of the BAMZINB models performed better in these 
five scenarios, as mentioned earlier.

3.2. SKOT cohorts data results

We showed the application of BAMZINB with a random intercept 
on the SKOT Cohorts data. Figs. 1 and 2 show the Bayesian mean (SD) 
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abundance difference from 9 months to 18 months for infants from 
healthy and obese mothers at the Phylum and Class levels.

Fig. 1 shows that the average abundance for Actinobacteria, 
Bacteroidetes, and Firmicutes increased, and the abundance of Pro-
teobacteria decreased over time for infants with healthy mothers. 
Infants with obese mothers showed the same pattern for Actino-
bacteria and Proteobacteria. Compared to infants born to healthy 

mothers, the average abundance of Bacteroidetes had a remarkable 
lower positive difference for infants from obese mothers from 9 
months to 18 months. In addition, the average abundance of Firmi-
cutes decreased over time for infants from obese mothers.

Fig. 2 shows an increase in the average abundance of Actino-
bacteria, Bacteroidia, Bacilli, Gammaproteobacteria and a decrease in 
average abundance for Alphaproteobacteria over time for infants 

Table 2 
The average and standard deviation of absolute relative bias among 300 simulated AVSs in the simulation study. 

Zero-inflation Over-dispersion Correlation Effect size, β Sample size, N Average Absolute Relative Bias (SD)

BAMZINB_ No Random Intercept BAMZINB+ Random Intercept BhGLM glmFit

0.3 0.75 0.2 Zero 50 0.417 
(0.374)

0.394 
(0.328)

0.455 
(0.407)

0.423 
(0.363)

100 0.328 
(0.256)

0.331 
(0.268)

0.254 
(0.202)

0.268 
(0.224)

Two 50 2.06 
(0.505)

2.041 
(0.591)

1.996 
(0.532)

1.981 
(0.462)

100 2.008 
(0.391)

2 
(0.34)

1.969 
(0.463)

1.949 
(0.401)

0.3 0.75 0.5 Zero 50 0.309 
(0.258)

0.309 
(0.262)

0.303 
(0.255)

0.335 
(0.28)

100 0.224 
(0.182)

0.213 
(0.174)

0.224 
(0.183)

0.212 
(0.179)

Two 50 1.659 
(0.766)

1.674 
(0.765)

1.715 
(0.768)

1.604 
(0.761)

100 1.564 
(0.736)

1.615 
(0.737)

1.62 
(0.749)

1.593 
(0.737)

0.3 0.5 0.2 Zero 50 0.522 
(0.489)

0.492 
(0.385)

0.506 
(0.421)

0.542 
(0.513)

100 0.273 
(0.209)

0.31 
(0.241)

0.284 
(0.231)

0.33 
(0.273)

Two 50 1.721 
(0.777)

1.667 
(0.81)

1.649 
(0.849)

1.597 
(0.776)

100 2.047 
(0.458)

1.984 
(0.393)

1.933 
(0.424)

2.001 
(0.516)

0.3 0.5 0.5 Zero 50 0.303 
(0.309)

0.299 
(0.225)

0.283 
(0.245)

0.318 
(0.23)

100 0.317 
(0.268)

0.306 
(0.269)

0.354 
(0.275)

0.364 
(0.319)

Two 50 2.081 
(0.551)

2.079 
(0.51)

1.919 
(0.574)

1.975 
(0.552)

100 1.608 
(0.764)

1.655 
(0.784)

1.621 
(0.772)

1.625 
(0.776)

0.5 0.75 0.2 Zero 50 0.633 
(0.598)

0.545 
(0.445)

0.537 
(0.61)

0.539 
(0.507)

100 0.358 
(0.308)

0.34 
(0.269)

0.331 
(0.265)

0.365 
(0.306)

Two 50 1.618 
(0.821)

1.691 
(0.824)

1.643 
(0.777)

1.575 
(0.79)

100 1.646 
(0.776)

1.6 
(0.763)

1.62 
(0.777)

1.539 
(0.795)

0.5 0.75 0.5 Zero 50 0.363 
(0.317)

0.343 
(0.319)

0.366 
(0.364)

0.451 
(0.401)

100 0.295 
(0.22)

0.269 
(0.217)

0.271 
(0.216)

0.325 
(0.266)

Two 50 1.955 
(0.434)

2.035 
(0.464)

1.986 
(0.429)

2.013 
(0.395)

100 1.486 
(0.803)

1.564 
(0.849)

1.444 
(0.814)

1.539 
(0.834)

0.5 0.5 0.2 Zero 50 0.603 
(0.547)

0.549 
(0.552)

0.524 
(0.487)

0.435 
(0.481)

100 0.459 
(0.399)

0.443 
(0.36)

0.41 
(0.377)

0.436 
(0.384)

Two 50 1.773 
(0.95)

1.869 
(1.028)

1.822 
(0.892)

1.69 
(0.926)

100 1.575 
(0.772)

1.625 
(0.773)

1.648 
(0.79)

1.632 
(0.802)

0.5 0.5 0.5 Zero 50 0.481 
(0.417)

0.457 
(0.422)

0.405 
(0.383)

0.468 
(0.408)

100 0.359 
(0.358)

0.403 
(0.322)

0.297 
(0.254)

0.338 
(0.32)

Two 50 1.801 
(0.791)

1.749 
(0.839)

1.745 
(0.774)

1.594 
(0.822)

100 1.727 
(0.806)

1.674 
(0.783)

1.715 
(0.829)

1.583 
(0.76)
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from healthy mothers. Although Actinobacteria, Bacilli, and Alpha-
proteobacteria showed the same pattern for infants born to obese 
mothers, Bacteroidia and Gammaproteobacteria decreased from 9 
months to 18 months in infants with obese mothers. In addition, the 
average abundance change of Alphaproteobacteria was remarkably 
higher for infants born to obese mothers that infants of a healthy 
mothers over time.

Firmicutes phyla play an essential role in breaking down the 
carbohydrates in the infants' gut. Significance changes in Firmicutes 
and Bacteroidetes abundance over time could be associated with 
childhood obesity [60–64]. Recently, much attention was given to 
the Firmicutes/Bacteroidetes ratio as a relevant marker of gut mi-
crobiome-related diseases [65–68], especially in relation to obesity 
and inflammatory bowel disease [66,69]. Evidence shows that 

Table 3 
The average and standard deviation of deviance among 300 simulated AVSs in the simulation study. 

Zero- 
inflation

Overdispersion Correlation Effect size, β Sample size, N Average Deviance (SD)

BAMZINB_ No Random Intercept BAMZINB+ Random Intercept BhGLM glmFit

0.3 0.75 0.2 Zero 50 23.21 
(23.267)

22.541 
(21.151)

22.52 
(21.327)

22.47 
(21.284)

100 45.145 
(43.623)

44.866 
(43.42)

44.95 
(43.482)

44.93 
(43.471)

Two 50 62.029 
(78.834)

73.346 
(114.514)

54.635 
(59.92)

57.597 
(61.56)

100 98.65 
(9.765)

105.146 
(70.941)

99.511 
(10.662)

110.248 
(101.446)

0.3 0.75 0.5 Zero 50 25.183 
(23.313)

25.512 
(23.52)

25.151 
(23.337)

25.265 
(23.525)

100 41.884 
(40.551)

42.79 
(41.531)

42.337 
(41.138)

43.372 
(42.089)

Two 50 27.774 
(35.505)

26.195 
(32.027)

24.763 
(23.374)

27.51 
(38.83)

100 55.58 
(57.911)

53.066 
(50.362)

53.596 
(50.981)

54.18 
(51.984)

0.3 0.5 0.2 Zero 50 22.183 
(23.241)

21.81 
(22.653)

21.006 
(21.245)

20.759 
(20.242)

100 43.231 
(41.666)

43.701 
(44.011)

44.084 
(43.516)

43.27 
(41.73)

Two 50 31.225 
(62.697)

35.13 
(66.232)

33.363 
(63.579)

33.345 
(68.432)

100 97.125 
(106.473)

120.361 
(180.038)

100.118 
(108.267)

116.785 
(175.243)

0.3 0.5 0.5 Zero 50 21.587 
(20.283)

22.631 
(21.745)

21.731 
(20.497)

21.68 
(20.566)

100 53.711 
(38.314)

53.527 
(37.583)

53.543 
(37.538)

53.461 
(37.952)

Two 50 55.409 
(51.182)

52.019 
(42.644)

56.483 
(73.472)

59.813 
(75.561)

100 53.716 
(77.988)

46.595 
(46.451)

48.324 
(53.733)

47.397 
(47.013)

0.5 0.75 0.2 Zero 50 17.345 
(18.581)

17.372 
(19.064)

18.156 
(20.12)

17.48 
(18.211)

100 37.404 
(36.321)

37.291 
(36.239)

38.004 
(37.619)

37.679 
(38.046)

Two 50 45.557 
(105.697)

36.61 
(76.06)

33.501 
(67.864)

40.655 
(90.208)

100 46.224 
(82.145)

44.261 
(72.867)

52.69 
(96.289)

56.871 
(126.317)

0.5 0.75 0.5 Zero 50 30.234 
(21.422)

30.005 
(20.994)

29.262 
(21.336)

30.699 
(21.67)

100 84.994 
(11.443)

83.364 
(13.431)

81.791 
(12.893)

81.762 
(11.512)

Two 50 30.234 
(21.422)

30.005 
(20.994)

29.262 
(21.336)

30.699 
(21.67)

100 68.984 
(103.569)

58.118 
(60.645)

64.185 
(90.921)

58.008 
(56.018)

0.5 0.5 0.2 Zero 50 34.438 
(15.757)

39.587 
(33.979)

38.566 
(28.874)

35.499 
(19.657)

100 43.866 
(31.102)

45.853 
(36.111)

49.673 
(48.2)

47.02 
(39.599)

Two 50 35.283 
(76.951)

37.75 
(84.385)

40.819 
(89.961)

45.822 
(102.464)

100 56.574 (114.541) 50.559 
(104.925)

59.399 
(129.781)

65.171 
(146.331)

0.5 0.5 0.5 Zero 50 17.934 
(14.447)

16.983 
(14.903)

17.053 
(14.494)

17.221 
(14.9)

100 42.926 
(31.228)

41.626 
(29.832)

42.681 
(30.294)

42.741 
(30.506)

Two 50 29.753 
(51.233)

25.159 
(39.436)

26.767 
(56.673)

29.69 
(54.827)

100 43.263 
(61.705)

51.5 
(103.458)

41.772 
(56.621)

43.915 
(64.84)
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maternal microbiota is an initial provider of infants' gut microbiota, 
and this transfer process impacts the newborn's overall physiolo-
gical condition [70,71]. Therefore, maternal obesity could be a po-
tential risk factor for overweight or childhood obesity [72]. Muller 
et al. study on infants of overweight/obese mothers showed a re-
duction in Proteobacteria, suggesting the changes in the gram-ne-
gative bacteria such as Gammaproteobacteria may be caused by the 
vertical transition of maternal microbiota [73]. Several studies have 
found that women who had obesity prior to pregnancy or gained 
weight during the pregnancy had significantly different gut micro-
biome than normal-weight pregnant women [74,75].

4. Discussion

We proposed a Bayesian Marginal Zero-inflated Negative 
Binomial (BAMZINB) model for gut microbiome count data. 
BAMZINB estimates the effects of covariates on microbial composi-
tion and each taxon while allowing for incorporating correlations of 
residuals. Other methods in the literature, such as glmFit [52], de-
signed to analyze microbiome count data by considering taxon one 

by one, have heavily depended on the utilization of normalization 
methods using the negative binomial distribution [76]. Tang et al. 
proposed BhGLM to address this issue by using raw counts and in-
corporating library size as an offset [37]. However, zero-inflation is 
one of the proven properties of gut microbiome data, and both 
BhGLM and glmFit models ignore it by using negative binomial 
distribution for microbiome count data [77,78].

In addition to taking properties of zero-inflated negative bino-
mial distribution into account, BAMZINB is capable of considering 
random intercept and library size as modeling parameters. Using 
offset features in the BAMZINB model is similar to modeling the taxa 
abundance (each raw count divided by the total sequence reads for 
each sample), therefore accounting for the differences in the library 
size of the microbiome data. This also allows for an analysis of mi-
crobiome data without normalization which preserves the original 
nature of the data and makes the differential abundance results 
more interpretable [79].

Literature has shown high inter-individual variability of gut mi-
crobial composition in the early years of infancy compared to 
adulthood [80,81]. Generally, the microbial composition tends to be 
the same for everyone in adulthood. In BAMZINB, we incorporated 
random intercept to take inter-individual variability into account 
when analyzing infants' microbiome count data. Although BAMZINB 
has more advantages than the other two models (theoretically), si-
mulation results showed that the BAMZINB model performed as well 
as BhGLM and glmFit models with respect to the ARB. One reason for 
this result could be the difference in the initial values for model 
parameters. We explained the priors for BAMZINB in Section 2.1.3. 
BhGLM offers three priors: Student-t (default), Double-exponential, 
and mixture Student-t [37]. In this paper, we used the default priors 
as Student-t for comparison with BAMZINB and glmFit. Further 
studies could focus on comparing different priors and comparing 
them to the other existing models. Deviance was different among 32 
scenarios depending on the dataset's properties and sample size.

The real data application on SKOT Cohorts showed a different 
pattern over time for the average abundance of specific bacteria 
between infants of healthy mothers and infants of obese mothers. 
The structure of the SKOT Cohort data required using a random in-
tercept due to changes in gut microbiome composition of infants in 
early life from 9 to 18 months, given that interpersonal changes are 
significantly higher in childhood than in adulthood [82]. In addition, 
the acquisition of zero-inflated negative binomial distribution and 
unstructured variance-covariance matrix in BAMZINB helped with 
zero-inflation, over-dispersion, and within-sample correlation issues 
in infants' gut microbiome data.

Future studies are needed to develop the BAMZINB method to 
analyze studies with random slopes and use different variance- 
covariance structures for multivariate analyses. There are several 
gaps in the literature for microbiome data analyses that need to be 
addressed or developed in the future. Machine learning methods are 
still developing in microbiome literature as they are well-known for 
feature selection and high-dimension data analyses [83,84].

Sample size calculation for microbiome studies is one of the 
common challenges. Current methods that exist in the literature are 
not well developed due to a lack of established metrics to define a 
suitable magnitude of reasonable and clinically meaningful effect 
size in microbiome studies [85]. Jiang et al. study explained three 
strategies to extract effect size for sample size and power calcula-
tions in microbiome studies, including pilot studies, data from prior 
studies, and simulation studies [86].

Another gap in the microbiome studies is the lack of advanced 
statistical tools for longitudinal analyses. Bokulich et al. proposed 
plugin software for the QIIME2 platform that provides various tools, 
including mixed models and interactive plots for microbiome long-
itudinal analysis [87,88]. Zhang et al. introduced a negative binomial 
mixed model to handle over-dispersion and variability in total reads 

Fig. 1. This figure shows the average abundance difference for Actinobacteria, 
Bacteroidetes, Firmicutes, and Proteobacteria at the phylum-level for infants from 
healthy mothers and obese mothers from 9 months to 18 months.

Fig. 2. This figure shows the average abundance difference for Actinobacteria, 
Bacteroidia, Bacilli, Gammaproteobacteria, and Alphaproteobacteria at the Class-level 
for infants from healthy mothers and obese mothers from 9 months to 18 months.
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and dynamic trend and correlation structure among longitudinal 
samples [89]. More advanced longitudinal methods are needed to 
elucidate the relationship between taxa, environmental factors, and 
the host over time. In addition, one of the advantages of our pro-
posed BAMZINB model is the ability to include multiple time mea-
surements in the analysis.

5. Conclusions

It has been shown that the gut microbiome data analyses can be 
affected by the choice of statistical analysis method. This study 
proposed the BAMZINB method to account for over-dispersion, zero- 
inflation, multivariate correlation structure, and dimensionality is-
sues in the infants’ gut microbiome data. We know from previous 
studies that the consequences of ignoring these features of gut mi-
crobiome data cause a lack of precision in estimating effect sizes and 
loss of statistical power. In this study, we compared the performance 
of several statistical methods in 32 scenarios and showed the ap-
plication of BAMZINB on a real data set. The findings of this study 
could help other research groups compare the properties of their 
dataset with one of the 32 scenarios and make a better decision 
when choosing a statistical analysis method.
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