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Abstract: The reaction of para-hydroxybenzyl alcohols with ferrocene in the presence of a catalytic
amount of InCl3 provided ferrocenyl phenol derivatives, an interesting class of organometallic
compounds with potential applications in medicinal chemistry. This transformation exhibited a
reasonable substrate scope delivering the desired products in synthetically useful yields. Evidence
of involvement of a para-quinone methide intermediate in this coupling process was also provided.
Preliminary biological evaluation demonstrated that some of the ferrocene derivatives available by
this methodology exhibit significant cytotoxicity against several cancer cell lines with IC50 values
within the range of 1.07–4.89 µM.
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1. Introduction

Since the discovery of ferrocene in the 1950s [1,2], the interest in this organometallic compound
has not declined. In fact, its chemistry remains one of the most active areas of research. Very likely,
this enduring interest resides in the fact that many functionalized ferrocene derivatives display a wide
number of applications in a diverse range of fields [3–9]. For example, recent investigations have
demonstrated the potential of some ferrocene derivatives in medicinal chemistry [10,11]. Particularly,
some ferrocene-containing phenols have proved to be of great interest in cancer therapeutics because of
their antitumoral activity [12–16]. Among them, a family of ferrocene analogues of hydroxytamoxifen,
the so-called ferrocifens (Figure 1a), have been the subject of in-depth investigations showing
exceptional cytotoxic activities against some types of breast cancer [17–19]. The mode of action of
these organometallic drug candidates has been elucidated by electrochemical and chemical oxidation
methods. According to these studies, ferrocenyl quinone methides have been suggested to play a key
role in the antiproliferative activity [20–24]. The antitumoral activity of some unconjugated bisphenol
derivatives of ferrocene (Figure 1b) has also been evaluated [25,26].
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monophenol derivatives available by this methodology (Figure 1c) display remarkable cytotoxic 
activity against various cancer cell lines. 

In order to elucidate the structural requirements for cytotoxicity and, eventually, to identify 
more bioactive derivatives, we decided to develop a synthetic methodology for the synthesis of the 
isomeric para-substituted ferrocenylphenol analogues (Figure 1d). Herein, we report the results of 
this study; specifically, we describe the generation of para-quinone methide intermediates and their 
trapping with ferrocene. Preliminary biological evaluation of some of the functionalized ferrocene 
derivatives prepared in this study is also disclosed. 

 
Figure 1. Phenol-ferrocene conjugates: (a) Ferrocifen family; (b) ferrocene bisphenol derivatives;  
(c) ortho-substituted ferrocenyl phenols previously developed in our group; (d) para-substituted 
ferrocenyl phenols reported in this study. 

2. Results and Discussion 

The present study was carried out using easily available p-hydroxybenzyl alcohols 1a–l outlined 
in Figure 2. 

 
Figure 2. Starting p-hydroxybenzyl alcohols 1 used in this work. 

For our initial study, p-hydroxybenzyl alcohol 1a was chosen as the model substrate (Scheme 1). 
On the basis of our previous investigations in the ortho series, InCl3 in dichloroethane (DCE) was 
selected as the catalytic system. Pleasingly, we found that heating a mixture of 1a (1 equiv.), ferrocene 
(2, 3 equiv.), and InCl3 (10 mol%) in DCE at 60 °C led to complete disappearance of the starting  
p-hydroxybenzyl alcohol after 2 h (checked by thin layer chromatography, TLC). Chromatographic 
purification (SiO2, 5:1 hexane ethyl acetate) provided the desired functionalized ferrocene derivative 
3a in a remarkable 75% yield. Interestingly, under otherwise similar conditions, benzydryl alcohol 
1a’ was found to be a fruitless reaction partner, thus demonstrating the key role of the phenolic OH 
group in the reaction course [31,32]. 

Figure 1. Phenol-ferrocene conjugates: (a) Ferrocifen family; (b) ferrocene bisphenol derivatives;
(c) ortho-substituted ferrocenyl phenols previously developed in our group; (d) para-substituted
ferrocenyl phenols reported in this study.

In connection with our studies on C–H bond functionalization of ferrocene based on the trapping
of highly electrophilic species [27–29], we have recently described the trapping of ortho-quinone
methide intermediates with ferrocene [30]. Interestingly, some of the ferrocene-containing monophenol
derivatives available by this methodology (Figure 1c) display remarkable cytotoxic activity against
various cancer cell lines.

In order to elucidate the structural requirements for cytotoxicity and, eventually, to identify more
bioactive derivatives, we decided to develop a synthetic methodology for the synthesis of the isomeric
para-substituted ferrocenylphenol analogues (Figure 1d). Herein, we report the results of this study;
specifically, we describe the generation of para-quinone methide intermediates and their trapping
with ferrocene. Preliminary biological evaluation of some of the functionalized ferrocene derivatives
prepared in this study is also disclosed.

2. Results and Discussion

The present study was carried out using easily available p-hydroxybenzyl alcohols 1a–l outlined
in Figure 2.
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Figure 2. Starting p-hydroxybenzyl alcohols 1 used in this work.

For our initial study, p-hydroxybenzyl alcohol 1a was chosen as the model substrate (Scheme 1).
On the basis of our previous investigations in the ortho series, InCl3 in dichloroethane (DCE) was
selected as the catalytic system. Pleasingly, we found that heating a mixture of 1a (1 equiv.), ferrocene
(2, 3 equiv.), and InCl3 (10 mol%) in DCE at 60 ◦C led to complete disappearance of the starting
p-hydroxybenzyl alcohol after 2 h (checked by thin layer chromatography, TLC). Chromatographic
purification (SiO2, 5:1 hexane ethyl acetate) provided the desired functionalized ferrocene derivative
3a in a remarkable 75% yield. Interestingly, under otherwise similar conditions, benzydryl alcohol 1a’
was found to be a fruitless reaction partner, thus demonstrating the key role of the phenolic OH group
in the reaction course [31,32].
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Scheme 1. Trapping of p-quinone methides with ferrocene: proof of concept. DCE: dichloroethane.  

Ferrocenyl phenol 3a was characterized by Nuclear Magnetic Resonance (NMR) spectroscopy. 
Moreover, crystals of compound 3a were obtained from diffusion of pentane into a dichloromethane 
solution at −20 °C and its molecular structure in the solid state has been determined by single-crystal 
X-ray diffraction (Figure 3 and Appendix A) [33,34]. The electrochemical behavior of compound 3a 
was investigated by cyclic voltammetry (Appendix B). 

 
Figure 3. X-ray structure of ferrocene derivative 3a. Thermal ellipsoids are drawn at the 30% 
probability level. Hydrogen atoms are excluded, except those bonded to C7 (H7) and O4 (H4O). 

With suitable reaction conditions in hand (10 mol% of InCl3, DCE as solvent, 60 °C), a variety of 
p-hydroxybenzyl alcohols were then evaluated for their suitability for this C–H bond 
functionalization process (Table 1). First, some p-hydroxybenzyl alcohols substituted with various 
aryl groups were investigated (entries 2–5). As shown, all three isomeric 4-
[hydroxy(tolyl)methyl]phenol derivatives 1b–d (R = tolyl) served as suitable reaction partners for this 
process furnishing the desired functionalized ferrocene derivatives 3b–d in acceptable isolated yields 
(51–82%, entries 2–4). Similarly, para-methoxy substituted substrate 1e (R = p-MeOC6H4) delivered 
the corresponding product 3e in moderate isolated yield (48%, entry 5). 

Next, substrates 1f–j with alkyl groups in the benzylic position were tested (entries 6–10). As 
shown, primary, secondary and tertiary alkyl groups were well tolerated delivering functionalized 
ferrocene derivatives 3f–j in moderate yields (42–62%). 

This transformation was compatible with unsaturated functional groups in the benzylic position 
as demonstrated by the synthesis of ferrocene derivative 3k in moderate yield when substrate 1k  

Scheme 1. Trapping of p-quinone methides with ferrocene: proof of concept. DCE: dichloroethane.

Ferrocenyl phenol 3a was characterized by Nuclear Magnetic Resonance (NMR) spectroscopy.
Moreover, crystals of compound 3a were obtained from diffusion of pentane into a dichloromethane
solution at −20 ◦C and its molecular structure in the solid state has been determined by single-crystal
X-ray diffraction (Figure 3 and Appendix A) [33,34]. The electrochemical behavior of compound 3a
was investigated by cyclic voltammetry (Appendix B).
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Figure 3. X-ray structure of ferrocene derivative 3a. Thermal ellipsoids are drawn at the 30% probability
level. Hydrogen atoms are excluded, except those bonded to C7 (H7) and O4 (H4O).

With suitable reaction conditions in hand (10 mol% of InCl3, DCE as solvent, 60 ◦C), a
variety of p-hydroxybenzyl alcohols were then evaluated for their suitability for this C–H bond
functionalization process (Table 1). First, some p-hydroxybenzyl alcohols substituted with various aryl
groups were investigated (entries 2–5). As shown, all three isomeric 4-[hydroxy(tolyl)methyl]phenol
derivatives 1b–d (R = tolyl) served as suitable reaction partners for this process furnishing the desired
functionalized ferrocene derivatives 3b–d in acceptable isolated yields (51–82%, entries 2–4). Similarly,
para-methoxy substituted substrate 1e (R = p-MeOC6H4) delivered the corresponding product 3e in
moderate isolated yield (48%, entry 5).
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Table 1. InCl3-catalyzed reaction of p-hydroxybenzyl alcohols 1 and ferrocene (2).
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Entry Substrate R 3 Yield (%) a

1 1a C6H5 3a 75
2 1b o-MeC6H4 3b 76
3 1c m-MeC6H4 3c 51
4 1d p-MeC6H4 3d 82
5 1e p-MeOC6H4 3e 48
6 1f Me 3f 62
7 1g Et 3g 60
8 1h n-Bu 3h 42
9 1i i-Pr 3i 62

10 1j t-Bu 3j 43
11 1k Allyl 3k 44
12 1l H 3l 64

a Isolated yield after chromatographic purification.

Next, substrates 1f–j with alkyl groups in the benzylic position were tested (entries 6–10). As
shown, primary, secondary and tertiary alkyl groups were well tolerated delivering functionalized
ferrocene derivatives 3f–j in moderate yields (42–62%).

This transformation was compatible with unsaturated functional groups in the benzylic position
as demonstrated by the synthesis of ferrocene derivative 3k in moderate yield when substrate 1k
(R = allyl) was subjected to the standard reaction conditions. Finally, we found that the parent
p-hydroxybenzyl alcohol 1l (R = H) is also a viable substrate affording the desired product 3l in 64%
yield (entry 12).

Next, to provide further evidence for the involvement of p-quinone methide intermediates
in the present coupling, we performed an experiment with a stable p-quinone methide. Thus,
4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dienone (4) and ferrocene (2) were subjected to the
standard reaction conditions (10 mol% of InCl3, DCE, 60 ◦C). However, a very low conversion
was observed after 24 h very likely due to steric hindrance by the tert-butyl groups. Gratifyingly,
performing the reaction in toluene at 100 ◦C enabled the preparation of ferrocene derivative 5 in 80%
yield (Scheme 2). Notably, in the absence of InCl3, no reaction occurred at all.
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Based on these control experiments and on previous related literature precedents, a mechanistic
proposal for the reaction of hydroxybenzyl alcohols 1 and ferrocene (2) is outlined in Scheme 3. In the
present process, the Lewis acid is proposed to play a dual role. Firstly, it would promote the generation
of the key quinone methide intermediate through dehydration of hydroxybenzyl alcohol 1. Subsequent
activation of the quinone methide by Lewis acid complexation would provide intermediate I. This
intermediate, with a high electrophilic character at the exocyclic C=C bond, may be involved in a
Friedel-Crafts type electrophilic aromatic substitution [35]. Indeed, 1,6-addition of ferrocene would
provide the σ-complex intermediate II, which would evolve to the final product with regeneration of
the catalyst [36].
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Some of the functionalized ferrocene derivatives prepared were evaluated for their cytotoxicity
against several cancer cell lines (Table 2). In this preliminary study, ferrocene derivatives 3a and 3g
were identified as the most active ones [37]. For example, 3a displayed significant toxicity against
A2780 ovarian cancer cell line (IC50 of 1.07 µM). Compared with the value previously reported for the
ortho-isomer (IC50 of 2.68 µM), ferrocene derivative 3a has superior characteristics. Ferrocene 3g also
displayed toxicity against this cell line (IC50 of 2.23 µM), although somewhat lower than that found
for the ortho-analogue (IC50 of 1.86 µM). We have also studied the cytotoxicity profile of ferrocene
derivatives 3a and 3g against A549 lung cancer cells. Both derivatives exhibited moderate cytotoxicity
with IC50 values of 3.55 and 4.89 µM, respectively. These values are comparable to that previously
measured for the ortho-isomers (IC50 of 2.77 and 5.96 µM, respectively).

Table 2. IC50 [µM] values for selected ferrocenyl compounds on different cell lines a.

3a 3g

A2780 1.07 2.23
A549 3.55 4.89

a Measured after 72 h of culture.
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3. Materials and Methods

3.1. General

NMR spectra were recorded at room temperature in CDCl3 on a Bruker DPX-300 or Bruker
AVANCE-300 MHz instruments (Bruker, Billerica, MA, USA). Chemical shifts are given in ppm relative
to TMS (1H, 0.0 ppm) or CDCl3 (13C, 77.0 ppm). High-resolution mass spectra were determined on a
VG Autospec M mass spectrometer (Waters Corporation, Milford, MA, USA). Cyclic voltammetric
studies were performed using a µ-AutoLab type II equipped with GPES 4.9 software (EcoChemie,
Utrecht, The Netherlands). All measurements were carried out using a conventional three electrode
system in phosphate saline buffer (pH 7.4). A modified carbon paste acted as the working electrode and
a Pt wire as a counter electrode. All potentials were referred to a Ag|AgCl|KCl(sat) reference electrode.

Experiments were carried out under nitrogen using standard Schlenck techniques.
1,2-Dichloroethane was distilled from CaH2. Toluene was distilled from sodium-benzophenone
ketyl prior to use. TLC was performed on aluminum-backed plates coated with silica gel 60 with F254

indicator. Flash column chromatography was carried out on silica gel (230–240 mesh). The solvents
used in column chromatography, hexane and ethyl acetate, were obtained from commercial suppliers
and used without further purification.

p-Hydroxybenzyl alcohols 1a–k were prepared by reaction of 4-hydroxybenzaldehyde with
the corresponding Grignard reagents following a literature procedure [38]. p-Hydroxybenzyl
alcohol 1l was obtained by the reaction of 4-hydroxybenzaldehyde with NaBH4 [39].
4-Benzylidene-2,6-di-tert-butylcyclohexa-2,5-dienone (4) was prepared from 2,6-di-tert-butylphenol
and benzaldehyde according to a literature procedure [40]. Ferrocene (2) was commercially available
and used without further purification.

3.2. General Procedure for the Synthesis of Ferrocene Derivatives 3a–l

InCl3 (4.4 mg, 0.02 mmol, 10 mol%) was added to a solution of p-hydroxybenzyl alcohols 1
(0.2 mmol) and ferrocene 2 (111.6 mg, 0.6 mmol) in 1,2-dichloroethane (2 mL). The mixture was stirred
at 60 ◦C for 2–14 h (disappearance of 1 checked by TLC). The solvent was removed under reduced
pressure and the resulting residue was purified by flash chromatography (silica gel, mixtures of
hexanes/ethyl acetate). Two fractions were collected. The first fraction was unreacted ferrocene and
the second one was the corresponding functionalized ferrocene derivative 3. Crystals of compound 3a
suitable for X-ray analysis were obtained from diffusion of pentane into dichloromethane at −20 ◦C.
Copies of 1H- and 13C-NMR spectra are provided in the Supplementary Materials.

4-[(Ferrocenyl)(phenyl)methyl]phenol (3a): yellow solid; melting point (m.p.) 63–64 ◦C; 1H-NMR
(300 MHz, CDCl3): 4.02 (s, 2H, Cp), 4.05 (s, 5H, Cp), 4.19 (s, 2H, Cp), 4.83 (s, 1H, OH), 5.13 (s,
1H, CH), 6.76 (d, J = 8.1 Hz, 2H, Ar), 7.07 (d, J = 8.1 Hz, 2H, Ar), 7.19–7.33 (m, 5H, Ar); 13C-NMR
(75 MHz, CDCl3): 51.0 (CH), 67.59 (CH), 67.63 (CH), 68.7 (CH), 92.0 (C), 114.9 (CH), 126.1 (CH), 128.1
(CH), 128.7 (CH), 129.9 (CH), 137.6 (C), 145.3 (C), 153.7 (C); HRMS (EI) calculated for [C23H20FeO]+

(M+): 368.0858, found 368.0856.

4-[(Ferrocenyl)(2-methylphenyl)methyl]phenol (3b): yellow solid; m.p. 66–67 ◦C; 1H-NMR (300 MHz,
CDCl3): 2.25 (s, 3H, CH3), 3.81 (s, 1H, Cp), 4.07 (s, 5H, Cp), 4.16–4.12 (m, 1H, Cp), 4.20–4.16 (m, 1H,
Cp), 4.76 (s, 1H, Cp), 5.25 (s, 1H, CH), 6.78 (d, J = 8.6 Hz, 2H, Ar), 6.96 (s, 1H, OH), 7.09–7.14 (m, 6H,
Ar); 13C-NMR (75 MHz, CDCl3): 20.3 (CH3), 47.9 (CH), 67.4 (CH), 68.5 (CH), 68.8 (CH), 69.1 (CH), 69.9
(CH), 93.4 (C), 115.1 (CH), 125.9 (CH), 126.5 (CH), 128.6 (CH), 130.5 (CH), 130.9 (CH), 135.5 (C), 136.0
(C), 144.7 (C), 154.1 (C); HRMS (EI) calculated for [C24H22FeO]+ (M+): 382.1015, found 382.1009.

4-[(Ferrocenyl)(3-methylphenyl)methyl]phenol (3c): yellow solid; m.p. 72–73 ◦C; 1H-NMR (300 MHz,
CDCl3): 2.32 (s, 3H, CH3), 4.02–4.05 (m, 7H, Cp), 4.18 (m, 2H, Cp), 4.62 (s, 1H, OH), 5.06 (s, 1H, CH),
6.75 (d, J = 8.4 Hz, 2H, Ar), 7.00–7.17 (m, 6H, Ar); 13C-NMR (75 MHz, CDCl3): 21.5 (CH3), 50.9 (CH),
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67.7 (CH), 68.9 (CH), 92.3 (C), 114.7 (CH), 120.5 (CH), 125.6 (CH), 126.8 (CH), 127.9 (CH), 129.4 (CH),
129.9 (CH), 137.5 (C), 145.2 (C), 153.7 (C); HRMS (EI) calculated for [C24H22FeO]+ (M+): 382.1015,
found 382.1011.

4-[(Ferrocenyl)(4-methylphenyl)methyl]phenol (3d): yellow solid; m.p. 64–65 ◦C; 1H-NMR (300 MHz,
CDCl3): 2.33 (s, 3H, CH3), 3.99 (m, 2H, Cp), 4.03 (s, 5H, Cp), 4.17 (m, 2H, Cp), 4.73 (s, 1H, OH), 5.08 (s,
1H, CH), 6.74 (d, J = 8.5 Hz, 2H, Ar), 7.04–7.11 (m, 6H, Ar); 13C-NMR (75 MHz, CDCl3): 21.4 (CH3),
51.0 (CH), 67.9 (CH), 69.1 (CH), 92.6 (C), 115.2 (CH), 128.9 (CH), 129.1 (CH), 130.2 (CH), 135.9 (C), 138.2
(C), 142.7 (C), 154.1 (C); HRMS (EI) calculated for [C24H22FeO]+ (M+): 382.1015, found 382.1009.

4-[(Ferrocenyl)(4-methoxyphenyl)methyl]phenol (3e): yellow oil; 1H-NMR (300 MHz, CDCl3): 3.80 (s, 3H,
OMe), 3.98 (s, 2H, Cp), 4.04 (s, 5H, Cp), 4.17 (s, 2H, Cp), 4.72 (s, 1H, CH), 5.06 (s, 1H, OH), 6.79–6.73
(m, 2H, Ar), 6.80–6.84 (m, 2H, Ar), 7.03–7.10 (m, 4H, Ar); 13C-NMR (75 MHz, CDCl3): 50.5 (CH), 55.7
(CH3), 68.0 (CH), 69.2 (CH), 92.9 (C), 113.8 (CH), 115.2 (CH), 130.0 (CH), 130.2 (CH), 138.1 (C), 138.3
(C), 154.1 (C), 158.2 (C); HRMS (EI) calculated for [C24H22FeO2]+ (M+): 398.0964, found 398.0972.

4-(1-Ferrocenylethyl)phenol (3f): yellow solid; m.p. = 95–96 ◦C; 1H-NMR (300 MHz, CDCl3): 1.57 (d,
J = 7.2 Hz, 3H, CH3), 3.90 (q, J = 7.2 Hz, 1H, CH), 4.09 (s, 1H, Cp), 4.10–4.18 (m, 8H, Cp), 4.63 (s, 1H,
OH), 6.74 (d, J = 8.6 Hz, 2H, Ar), 7.05 (d, J = 8.6 Hz, 2H, Ar); 13C-NMR (75 MHz, CDCl3): 23.1 (CH3),
39.3 (CH), 66.7 (CH), 67.3 (CH), 67.9 (CH), 68.2 (CH), 69.0 (CH), 95.1 (C), 115.4 (CH), 128.6 (CH), 140.4
(C), 153.9 (C); HRMS (EI) calculated for [C18H18FeO]+ (M+): 306.0702, found 306.0701. Ferrocene 3f is
a known compound; our characterization data match those previously reported in the literature [25].

4-(1-Ferrocenylpropyl)phenol (3g): yellow solid; m.p. = 87–88 ◦C; 1H-NMR (300 MHz, CDCl3): 0.85 (t,
J = 7.4 Hz, 3H, CH3), 1.67–1.83 (m, 1H, CH2), 2.07–2.14 (m, 1H, CH2), 3.41–3.46 (dd, J = 10.7 and 4.3 Hz,
1H, CH), 4.06 (s, 1H, Cp), 4.05–4.10 (m, 7H, Cp), 4.17 (s, 1H, Cp), 4.73 (s, 1H, OH), 6.78 (d, J = 8.5 Hz,
2H, Ar), 7.06 (d, J = 8.5 Hz, 2H, Ar); 13C-NMR (75 MHz, CDCl3): 12.7 (CH3), 30.0 (CH2), 47.0 (CH),
66.8 (CH), 66.9 (CH), 67.3 (CH), 67.4 (CH), 68.6 (CH), 94.8 (C), 114.9 (CH), 129.0 (CH), 137.8 (C), 153.6
(C); HRMS (EI) calculated for [C19H20FeO]+ (M+): 320.0858, found 320.0853.

4-(1-Ferrocenylpentyl)phenol (3h): yellow oil; 1H-NMR (300 MHz, CDCl3): 0.89 (t, J = 7.0 Hz, 3H, CH3),
1.16–1.40 (m, 4H, CH2), 1.70–1.82 (m, 1H, CH2), 2.01–2.08 (m, 1H, CH2), 3.53 (dd, J = 10.8 and 4.3 Hz,
1H, CH), 3.95 (s, 1H, Cp), 4.05–4.11 (m, 7H, Cp), 4.18 (s, 1H, Cp), 4.80 (s, 1H, OH), 6.76 (d, J = 8.3 Hz,
2H, Ar), 7.06 (d, J = 8.3 Hz, 2H, Ar); 13C-NMR (75 MHz, CDCl3): 14.1 (CH3), 22.7 (CH2), 30.2 (CH2),
36.8 (CH2), 45.1 (CH), 66.8 (CH), 66.9 (CH), 67.3 (CH), 67.4 (CH), 68.6 (CH), 95.1 (C), 114.9 (CH), 128.9
(CH), 138.1 (C), 153.6 (C); HRMS (EI) calculated for [C21H24FeO]+ (M+): 348.1171, found 348.1184.

4-[1-(Ferrocenyl)(2-methyl)propyl]phenol (3i): yellow solid; m.p. = 95–96 ◦C; 1H-NMR (300 MHz, CDCl3):
0.74 (d, J = 6.6 Hz, 3H, CH3), 0.92 (d, J = 6.6 Hz, 3H, CH3), 1.97–2.03 (m, 1H, CH), 3.08 (d, J = 8.7 Hz,
1H, CH), 3.94 (s, 5H, Cp), 4.13–4.27 (m, 4H, Cp), 4.74 (s, 1H, OH), 6.75 (d, J = 8.3 Hz, 2H, Ar), 7.05 (d,
J = 8.3 Hz, 2H, Ar); 13C-NMR (75 MHz, CDCl3): 21.7 (CH3), 22.2 (CH3), 53.1 (CH), 66.7 (CH), 67.2
(CH), 68.4 (CH), 69.3 (CH), 70.4 (CH), 94.7 (C), 114.9 (CH), 129.6 (CH), 137.8 (C), 153.5 (C); HRMS (EI)
calculated for [C20H22FeO]+ (M+): 334.1015, found 334.1012.

4-[1-(Ferrocenyl)(2,2-dimethyl)propyl]phenol (3j): yellow solid; m.p. = 105–106 ◦C; 1H-NMR (300 MHz,
CDCl3): 0.84 (s, 9H, CH3), 3.23 (s, 1H, CH), 3.73 (s, 5H, Cp), 4.07 (s, 1H, Cp), 4.14 (d, J = 6.2 Hz, 2H,
Cp), 4.24 (s, 1H, Cp), 4.93 (s, 1H, OH), 6.84 (d, J = 8.4 Hz, 2H, Ar), 7.27–7.29 (m, 2H, Ar); 13C-NMR
(75 MHz, CDCl3): 28.7 (CH3), 35.2 (C), 57.3 (CH), 65.7 (CH), 68.0 (CH), 68.1 (CH), 68.5 (CH), 69.2 (CH),
72.1 (CH), 90.4 (C), 114.2 (CH), 132.0 (CH), 136.9 (C), 153.6 (C); HRMS (EI) calculated for [C21H24FeO]+

(M+): 348.1171, found 348.1182.
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4-[1-(Ferrocenyl)but-3-enyl]phenol (3k): yellow oil; 1H-NMR (300 MHz, CDCl3): 2.53–2.62 (m, 1H, CH2),
2.80–2.89 (m, 1H, CH2), 3.65 (dd, J = 10.5 and 4.7 Hz, 1H, CH), 4.08 (s, 1H, Cp), 4.13–4.10 (m, 7H, Cp),
4.19 (s, 1H, Cp), 4.67 (s, 1H, OH), 4.93–5.04 (m, 2H, =CH2), 5.76–5.77 (m, 1H, =CH), 6.76 (d, J = 8.6 Hz,
2H, Ar), 7.06 (d, J = 8.6 Hz, 2H, Ar); 13C-NMR (75 MHz, CDCl3): 12.7 (CH3), 30.0 (CH2), 47.0 (CH),
66.8 (CH), 66.9 (CH), 67.3 (CH), 67.4 (CH), 68.6 (CH), 94.8 (C), 114.9 (CH), 129.0 (CH), 137.8 (C), 153.6
(C); HRMS (EI) calculated for [C20H20FeO]+ (M+): 332.0858, found 332.0855.

4-(Ferrocenylmethyl)phenol (3l): yellow oil; 1H-NMR (300 MHz, CDCl3): 3.64 (s, 2H, CH2), 4.11 (s, 4H,
Cp), 4.15 (s, 5H, Cp), 4.84 (s, 1H, OH), 6.75 (d, J = 8.2 Hz, 2H, Ar), 7.02 (d, J = 8.2 Hz, 2H, Ar); 13C-NMR
(75 MHz, CDCl3): 45.2 (CH2), 77.6 (CH), 78.7 (CH), 78.8 (CH), 98.7 (C), 125.1 (CH), 139.6 (CH), 144.0
(C), 163.7 (C); HRMS (EI) calculated for [C17H16FeO]+ (M+): 292.0545, found 292.0524. Ferrocene 3l is a
known compound [25].

3.3. Synthesis of Ferrocene Derivative 5

InCl3 (4.4 mg, 0.02 mmol, 10 mol%) was added to a solution of
4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dienone 4 (58.9 mg, 0.2 mmol) and ferrocene 2
(111.6 mg, 0.6 mmol) in toluene (2 mL). The mixture was stirred at 100 ◦C for 6 h (disappearance
of 4 checked by TLC). Then, the solvent was removed under reduced pressure and the resulting
residue was purified by flash chromatography (silica gel, hexanes/ethyl acetate 5:1) to yield ferrocene
derivative 5 (76.9 mg, 80%) as a yellow oil; 1H-NMR (300 MHz, CDCl3): 1.44 (s, 18H, CH3), 3.98–3.99
(m, 1H, Cp), 4.01 (s, 5H, Cp), 4.03–4.04 (m, 1H, Cp), 4.16–4.17 (m, 1H, Cp), 4.91 (s, 1H, Cp), 5.06 (s, 1H,
CH), 5.09 (s, 1H, OH), 7.04 (s, 2H, Ar), 7.18–7.21 (m, 3H, Ar), 7.26–7.29 (m, 2H, Ar); 13C-NMR (75 MHz,
CDCl3): 30.0 (CH3), 34.4 (CH), 51.8 (CH), 67.3 (CH), 67.6 (CH), 68.6 (CH), 68.7 (CH), 68.8 (CH), 92.8
(C), 125.4 (CH), 125.8 (C), 127.9 (CH), 128.6 (CH), 135.1 (C), 135.4 (C), 143.8 (C), 151.9 (C); HRMS (EI)
calculated for [C31H36FeO]+ (M+): 480.2110, found 480.2124.

3.4. Cytotoxic Assays

Cell Counting Kit-8 (CCK-8) from Sigma-Aldrich (Madrid, Spain) was used according to the
protocol provided by the company. The A2780 and A549 cell lines were used in this preliminary study.
First, cell lines were cultured for 7 days in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% (v/v) fetal bovine serum (FBS). Then, cells were seeded into a 96-well flat-bottom culture plate
at a cell density of 500–2000 cells/well and incubated for 24 h in the same medium (DMEM/10% FBS).
After that, 10 µL of a solution of the corresponding ferrocene derivative at different concentrations were
added and the cells were incubated for 72 h. Then, 10 µL of the CCK-8 solution were added to each
well of the plate. After 2 h of incubation the absorbance at 450 nm was recorded using a BioTek ELx800
Absorbance Microplate Reader (BioTek, Bad Friedrichshall, Germany). Measurements were performed
in triplicate, and each experiment was repeated three times. The IC50 values (µm) were estimated by
treatment of the data obtained with the statistical program GraphPad Prism5 (version 5.04).

4. Conclusions

Guided by earlier work from our group, we have developed a convenient synthesis of
para-substituted phenol derivatives containing a ferrocenyl moiety. Salient features of our protocol
include (i) easy availability of the required starting materials, (ii) synthetically useful yields, and
(iii) mild reaction conditions. This C–H bond functionalization of ferrocene relies on the generation
of a para-quinone methide intermediate that, activated by Lewis acid complexation, would serve
as electrophilic partner in an aromatic electrophilic substitution. Preliminary biological evaluation
revealed that some of the ferrocene derivatives available by this protocol display significant cytotoxicity
against ovarian and lung cancer cell lines. Further studies aimed at the preparation of new ferrocene
derivatives with enhanced antiproliferative properties are being pursued in our laboratory.
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Appendix A. Crystal Data for Ferrocene Derivative 3a

Crystal Data for C23H20FeO (Mr = 368.24 g/mol): monoclinic, space group P21/n (No. 14), a =
15.662(1) Å, b = 6.0219(3) Å, c = 18.786(1) Å, β = 96.990(6)◦, V = 1758.6(2) Å3, Z = 4, T = 299 K, µ(CuKα) =
6.91 mm−1, Dx = 1.391 g/cm3, 8336 measured reflections (3.5◦ < θ < 69.6◦), 3254 independent reflections,
2641 observed reflections (I > 2σ(I)), Rint = 0.045. Final R[F2 > 2σ(F2)] was 0.079 and wR(F2) = 0.255.

Appendix B. Electrochemical Study for Ferrocene Derivative 3a

Compound 3a was studied by cyclic voltammetry (CV). All potentials were referred to a
Ag|AgCl|KCl(sat) reference electrode. The ferrocene/ferrocenium couple (Ia/Ic) is clearly observed at
a formal potential, E◦′ = 0.352 V (Figure A1a). The anodic peak current is higher than the cathodic
one indicating that some ferrocenium ions diffuse from the carbon paste electrode to the bulk solution
due to the positive charge of the cation. Nucleation at potentials ~0.450 V points out to a dissimilar
electrochemical behavior with other structurally related compounds. When the potential is swept
up to +0.6 V, a second redox process (IIa/IIc) appears causing the decrease of Ia (Figure A1b). The
reduction of ferrocenium species (Ic) remains visible but progressively shifted towards less positive
potentials in subsequent scans. Process IIa at about +0.570 V is clear and well-shaped but process IIc

at 0.426 V is partially overlapped with Ic. Of note, a notably increase in the non-faradaic current is
observed. When the potential is extended to +1.3 V, additional oxidation reactions take place (see
the rising anodic current) probably associated to phenolic compounds. Only one reduction process
is observed as a result of Ic and IIc overlapping (Figure A1c). The potential of both oxidation and
reduction peaks shift to more extreme potentials which indicates that the process is irreversible. The
origin of the irreversibility might be the formation of non-conducting products on the electrode surface
that hinder the electron transfer. The appearance of resistance affecting the CV shape strongly supports
this explanation.
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