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Abstract

Objective: Sepsis is an inflammatory syndrome caused by infection, and both its incidence and mortality are high. Because
interferon-gamma (IFN-c) plays an important role in inflammation, this work assessed IFN-c single nucleotide polymorphism
(SNPs) that may be associated with sepsis.

Methods: A total of 196 patients with pneumonia-induced sepsis and 213 age- and sex-matched healthy volunteers
participated in our study from July 2012 to July 2013 in Guangzhou, China. Patient clinical information was collected. Clinical
pathology was assessed in subgroups defined based on clinical criteria, APACHE II (acute physiology and chronic health
evaluation) and SOFA (sepsis-related organ failure assessment) scores and discharge rate. Four functional SNPs, 21616T/C
(rs2069705), 2764G/C (rs2069707), +874A/T (rs2430561) and +3234C/T (rs2069718), were genotyped by Snapshot in both
sepsis patients and healthy controls. Pearson’s chi-square test or Fisher’s exact test were used to analyze the distribution of
the SNPs, and the probability values (P values), odds ratios (OR) and 95% confidence intervals (CIs) were calculated.

Results: No mutations in the IFN-c 2764G/C SNP were detected among the participants in our study. The +874A/T and
+3234C/T SNPs were in strong linkage disequilibrium (LD) (r2 = 0.894). The 21616 TC+TT, +874 AT+AA genotype and the
TAC haplotype were significantly associated with sepsis susceptibility, while the CTT haplotype was associated with
protection against sepsis incidence. Genotype of 21616 TT wasn’t only protective against severity of sepsis, but also against
higher APACHE II and SOFA scores as +874 AA and +3234 CC. The TAC haplotype was was protective against progression to
severe sepsis either.

Conclusion: Our results suggest that functional IFN-c SNPs and their haplotypes are associated with pneumonia-induced
sepsis.
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Introduction

Sepsis can be defined as a systemic inflammatory response

syndrome caused by infectious pathogens [1], while severe sepsis is

sepsis combined with acute organ dysfunction, including hypo-

perfusion and hypotension [2]. The mortality rate from sepsis is

10–20%, and the mortality rate from severe sepsis is 20–50% [1];

these rates correspond to those reported in surveys of Chinese

epidemics [3]. Because the disease is severely life threatening, the

pathogenesis, prognostic factors and modes of therapy are of great

interest to both clinicians and academic researchers. Recently,

some studies showed that the individual genetic background is

associated with the personal inflammatory response and also

influences the pathology. Genes with related polymorphisms

include the antigen recognition pathway protein [4,5], proteins

associated with blood biochemistry [6], pro- [7,8] and anti-

inflammatory cytokines [9,10] and others.

IFN-c, a member of the interferon family, plays an important

role in inflammation and acquired immunity in infection [11].

Initially, IFN-c was presumed to only interfere with viral

replication [12], but subsequent experimental studies showed that

it also protects the individual against bacterial [13,14] and fungal

pathogens [15]. The most important function of IFN-c is its

macrophage-activating function, which up-regulates the expres-

sion of the major histocompatibility complexes (MHC) I [16,17]

and II [18,19], which are involved in the antigen processing and
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presentation pathways. IFN-c also mediates functions such as

leukocyte attraction [16,20], maturation and differentiation,

natural killer (NK) cell activity [21] and immunoglobulin (Ig)

production and class switching in B cells [16]. In sepsis, IFN-c is

an important regulator of infection and inflammation; it is released

in small amounts during the initial period of infection, and the

amount released increases during the inflammation period [22–

24]. It is postulated that suppressing IFN-c to near normal levels

during the early period of inflammation may benefit the host by

preventing bacteria outflow [22]. Increased IFN-c levels during

the later period [22–24] may be beneficial by stimulating the

body’s defense system [16].

The IFN-c gene is located on chromosome 12 q14, and several

SNPs in this gene have reportedly been associated with

immunologic diseases such as aplastic anemia [25], hepatitis

infection [26–29], systemic lupus erythematosus [30,31], and

asthma [32,33]. Some of the disease-associated SNPs are

functional. The SNPs in the 59 untranslated regions (UTR) are

translation-level regulators [26,31,34,35], and some SNPs in the

introns may function to modify mRNA expression [36–39]. Both

the minor allele frequency (MAF) and the influence of the SNPs on

disease pathology vary among populations. In addition to IFN-c
participating in the key immune response and sepsis development,

its SNPs are functional and are related to immunologic disease.

There have been few reports in the literature regarding the

epidemiology of IFN-c SNPs in relation to sepsis, with the

exception of one study examining the association between intron 1

polymorphisms and trauma due to sepsis [40].

We focused on interpreting the relationship between pneumo-

nia-induced sepsis and four functional SNPs of IFN-c; these

included two SNPs in the 59 UTR 21616T/C (rs2069705) and

2764G/C (rs2069707), as well as two SNPs in the introns +874A/

T (rs2430561, intron1) and +3234C/T (rs2069718, intron 3). To

the best of our knowledge, this study is the first to assess the

potential implication of IFN-c functional genotypes and haplo-

types on the incidence, development and outcome of pneumonia-

induced sepsis.

Materials and Methods

Study Population
In this study, 196 patients with pneumonia-induced sepsis were

enrolled within 24 hours of admission to the intensive care unit

(ICU) at the Third Affiliated Hospital of Guangzhou Medical

University (Guangzhou, China) from July 2012 to July 2013. The

patients in the experimental group have signed their names by

Chinese on written informed consent, and agreed that their

peripheral blood will be used for genotyping and collection of

other clinical information. The peripheral blood sample of each

individual was collected by routine examination, and the

examination result was entered into our study database supple-

mented with the information of sex, age and the clinical

description collected from the physician. For the control group,

213 health examination volunteers without infection and sepsis,

with sex and age matched, were selected from our hospital

database, and the blood samples were obtained from the clinical

laboratory. The volunteers have agreed on a verbal consent that

their peripheral blood will be used for harmless, non-profit

purpose only and their personal information will be kept

confidential upon the health examination; therefore, we didn’t

re-connect them for the written consent. This practice of verbally

informed consent was reviewed and approved by the Ethics

Committee. The control group entries in our database included no

personal information but sex, age and peripheral blood sample

number only. The present study was approved by the Ethics

Committee of The Third Affiliated Hospital of Guangzhou

Medical University. The exclusion criteria were ,18 years of

age, primary site of infection other than the lungs, un-drainable

surgical source of sepsis, missing informed consent forms and

patients with immunosuppression of any etiology, including

cancer, current immunosuppressive therapy or chemotherapy,

human immunodeficiency virus (HIV) infection, liver insufficiency

and severe chronic renal disease with dialysis therapy. The severe

group included those who experienced organ dysfunction, and the

severity of organ dysfunction was graded according to the

APACHE II and SOFA indexes.

SNP Genotype
The four IFN-c SNPs(764G/C, 21616T/C, +874A/T and

+3234C/T), as the gene expression involved based on the other

functional experiments, were selected. Genomic DNA was

extracted from peripheral blood using QIAamp DNA Blood Mini

Kit (Qiagen, Dusseldorf, Germany) according to the manual and

stored at 220uC before use. The primers (Table 1) for polymerase

chain reaction (PCR) amplification and Snapshot extension

reactions were designed by the Primer Premier 5 program and

the sequence from the gene bank of the National Center for

Biotechnology Information (NCBI). Every PCR amplicon was

confirmed by agarose electrophoresis for fragment size and

detailed by sequencing on an ABI 3130XL sequencer (Applied

Biosystems, ABI, California, USA). PCR was performed using the

Hot Star Taq kit (Qiagen). PCR products were purified using

shrimp alkaline enzyme (SAP) (Promega, Wisconsin, USA) and

exonuclease I (EXO I) (EpiCentre, Palmerston North, New

Zealand) according to the manufacturers’ instructions and were

used as a template for extension. Extension was performed using a

commercial kit for Snapshot Multiplex reaction (ABI), and the

products were purified using SAP (Promega) and loaded onto an

ABI 3130XL sequencer for sequencing. The raw data from the

ABI 3130XL sequencer were subjected to analysis with Gene-

Mapper 4.0 (ABI).

Table 1. Primers for PCR and Snapshot.

Primer 59–39 Size (bp)

PCR

21616T/C F:CCTAGCACTTTATGAGGATTACC

R:GTTATGGGGCAAACTTGATTC 176

2764G/C F:GTCTCAAACTCCTGACCTTGT

R:CTTCAGTATGCATCAATATACTACAT 187

+874A/T F:TACATCTACTGTGCCTTCCTG

R:CATTATTTGTTTAAAACTTAGCTGT 195

+3234C/T F:TGGTGAGTAGCCATAGTGTTCC

R:ACTTTTCCAGTACCCTGCCTT 171

Snapshot

21616C/T ATCTAGCTATATGATTGTGAGTTA 24

2764G/C TGGAACTCCCCCTGGGAATATTCT 24

+874A/T TTATTCTTACAACACAAAATCAAATC 26

+3234C/T GAGGAAGGTAAATGGTCCACAT 22

doi:10.1371/journal.pone.0087049.t001
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Statistical Analysis
The demographic variables and differences between the sepsis

patients and controls were tested using Pearson’s chi-square test

(for categorical variables) or Student’s t-test (for continuous

variables). As there were no mutations for IFN-c 2764G/C,

Hardy–Weinberg equilibrium (HWE) for allele, genotype and

haplotype of the other three IFN-c SNPs (21616T/C, +874A/T

and +3234C/T) were compared between cases and controls and

between groups of cases using the Pearson chi-square test or

Fisher’s exact test. For these tests, P values of ,0.05 were

considered to be statistically significant. The Bonferroni correction

was applied for SNP allele and genotype analysis; when the three

SNPs were regarded as two independent factors, the significance

threshold was adjusted to ,0.025 and .0.025, with ,0.05

considered as the margin. For every comparison, odds ratios (OR)

with respective confidence intervals (95% CI) were calculated, and

for significant and marginal P values, OR .1 and 95% CI .1

indicated susceptibility, while OR ,1 and 95% CI ,1 indicated

protection. However, the OR and 95% CI were not available for

all acceptable P values because they require at least one case, as

otherwise the value of the weight variable is zero. Multivariate

logistic regression models were used to assess the incidence,

development and outcome of sepsis, controlling for age and sex as

potential risk factors. All risk factors were defined categorically,

and all tests were adjusted for age and sex. SPSS 19.0 (SPSS Inc.,

Chicago, IL, USA) was used for statistical calculations, and the

online software SHESIS was used to calculate linkage disequilib-

rium (LD).

Results

Characteristics and Grouping of the Study Population
The patients in our study consisted of 196 individuals from

Southern China who had at least two conditions meeting the

criteria of systemic inflammatory response syndrome (SIRS),

including 107 individuals with acute organ dysfunction (including

hypoperfusion and hypotension) or shock who were categorized as

having severe sepsis. All patients were treated for sepsis in the ICU

and received specific antimicrobial therapy and supportive care.

The patients’ clinical information and characteristics of the groups

are shown in Table 2. The sex ratio was nearly 1:1, the mean age

was 64.09 years and the standard deviation was 20.67 (Table 2).

The control group included 213 healthy age- and sex- matched

volunteers, and the t test showed no significant differences between

the sepsis group and the control group in terms of age (P = 0.905)

or sex (P = 0.169) (Table 2). For the groups with sepsis and severe

sepsis, there were significant differences in age and APACHE II

and SOFA scores according to the t test (P,0.0001) (Table 2). The

APACHE II and SOFA scores were graded according to clinical

pathology, and the APACHE II 20 and SOFA 10 scores were used

to divide patients with sepsis into the sepsis and severe sepsis

groups, with the two groups exhibiting significantly different scores

according to the t test. The group with the higher score was older,

but there was no difference in terms of sex distribution (Table 2).

Among all patients with sepsis, 109 recovered and were

discharged, while 87 died. The mortality rate among patients

with sepsis was 40%, and the mortality rate was 44.86% among

patients with severe sepsis. Death was significantly associated with

the APACHE II score (P = 0.012) and marginally associated with

the SOFA score (P = 0.06), but it was not associated with sex or

age (Table 2).
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Association of the IFN-c SNPs with Risk of Sepsis
While the +784 and +3234 SNPs exhibited strong equilibrium,

their linkages with 21616 were not obvious (Table 3). For

monofactorial analysis, the threshold of the P value was 0.05,

though for the Bonferroni correction, considering that two of the

three SNPs showed strong LD, the threshold of the P value was

adjusted to 0.025, and we accepted P values ,0.05 and .0.025 as

being marginally significant. Although the age and sex distribution

did not differ between patients with sepsis and healthy controls, we

adjusted the genotype results by age and sex in order to increase

confidence in our results. The genotype frequency of the three

positions indicated different trends for sepsis risk (Table 3). The

21616 SNP was significantly associated with sepsis risk, and the

frequency of the TC (P = 0.0045) [OR and 95% CI: 1.99 (1.31–

3.01)] and TC+TT (P = 0.0024) [1.84 (1.24–2.73)] genotype were

greater among patients with sepsis compared with healthy controls

(Table 3). The genotype frequency of +874 indicated a trend (P

= 0.013) of higher frequency of TA+AA in the sepsis group [1.68

(1.11–2.54)]; the A allele was significantly associated with sepsis

susceptibility (P = 0.024) [1.49 (1.05–2.12)] (Table 3). There were

no significant associations in the +3234 analysis for either genotype

(P = 0.18 and 0.067) or allele (P = 0.2) (Table 3). Following the law

of linkage disequilibrium, the 21616, +874 and +3234 loci formed

three dominant haplotypes, which were CTT, TAC and TTT.

CTT conferred protection against sepsis (P = 0.009) [0.66 (0.49–

0.90)], but TAC was associated with susceptibility to sepsis

(P = 0.022) [1.51 (1.06–2.16)] (Table 3).

Combination Analysis of the IFN-c SNPs and Sepsis
Development by Clinical Grouping

We created four divisions within the sepsis patients in order to

interpret the relationship between sepsis development and IFN-c
SNPs (Table 4). The group of patients with severe sepsis according

to the APACHE II and SOFA scores was divided according to

sepsis progression, and patients were also divided based on final

outcome, i.e., survival. There weren’t any sense result in the

dominant mutations analysis. The +874T allele was significant

protective against progression of severe sepsis (P = 0.02) [0.57

(0.35–0.91)], while +3234C were marginally (P = 0.04) [0.60

(0.37–0.98)] (Table 4). The 21616 TT genotype was also

protective against sepsis progression (P,0.001) [0.06 (0.01–0.50)]

and against higher APACHE II (P,0.0001) and SOFA (P = 0.001)

[0.09 (0.01–0.75)] scores (Table 4). The +874 AA and +3234 CC

genotype didn’t appearance in the higher score group, and the

trend was significant (Table 4). To our surprise, these results were

opposite of the haplotype results regarding sepsis risk, as the CTT

haplotype as associated with a marginally higher risk of sepsis

progression (P = 0.054) [1.51 (0.99–2.31)], though the TAC

haplotype was associated with a lower risk of progression to

severe sepsis (P = 0.038) [0.60 (0.37–0.98)] (Table 4). The other

tests for sepsis development were rejected, and there was no

accepted test of genotype or haplotype for sepsis outcome (Table 4).

Discussion

Sepsis, especially severe sepsis, is a great hazard to human

health, as indicated by its increasing incidence and the higher than

average mortality rates in intensive care units (ICU) [1,41].

According to the American College of Chest Physicians (ACCP)

and the Society of Critical Care Medicine (SCCM), sepsis is

defined as having at least two criteria of systemic inflammatory

response syndrome (SIRS) in addition to confirmed or suspected

pathogenic infection. SIRS refers to a series of clinical symptoms

involved in infection, such as core body temperature .38uC or

,36uC, heart rate . = 90 bpm, respirations . = 20/min (or

partial pressure of carbon dioxide in the blood ,32 mmHg), white

blood cell . = 12,000/ul or = ,4,000/ul or .10% immature

forms. [2] Severe sepsis is marked by acute organ dysfunction

(including hypoperfusion and hypotension) that is caused by sepsis

[2]. Patient scores on APACHE II and SOFA, which are two

widely accepted evaluation systems [42–44] based on clinical

indictors, were considered important indexes associated with sepsis

development and outcome. We focused on patients with pneu-

monia-induced sepsis and age- and sex-matched healthy controls,

and pneumonia was regarded as a common precipitating factor of

sepsis [45]. We collected patient information and grouped patients

by clinical severity, APACHE II score and SOFA score to examine

the genetic factors related to the incidence of sepsis and its clinical

presentation. All the patients in our study presented with

community acquired pneumonia, not acquired in a hospital or a

nursing home residence. Many published papers have examined

the relationship between genetic polymorphisms and sepsis. These

studies focused on immune cell surface markers [4,5] and

cytokines [6–10], which are important for the immune system,

and functional genetic polymorphisms. Our work sought to

examine functional IFN-c polymorphisms in relation to pneumo-

nia-induced sepsis.

The function of IFN-c on infection and inflammation is

multifaceted. IFN-c is produced by most of the immune cells,

including NK cells, T lymphocytes and macrophages [46,47], and

is regulated by cytokines IL-12 and IL-18, which are secreted after

the antigen is presented [48,49]. While some experiments have

shown that IFN-c is essential for the host immune response to

pathogens [50,51], the investigation of IFN-c-deficient patients

highlights the functions of IFN-c in stimulating the inflammatory

response and regulating the immune system by demonstrating

increased susceptibility to intracellular but not extracellular

pathogens, with some decreased immunity as demonstrated by

neutrophil mobilization and NK cell activation [52]. However,

there are opposing opinions regarding the function of IFN-c in

sepsis following studies in non-human models, including studies in

lipopolysaccharide (LPS)-induced shock and cecal ligation and

puncture (CLP) models in the rat. These reports stated that IFN-c
could confer susceptibility and affect the outcome. There was

evidence of a trend in the plasma level as well as evidence that

antibody-mediated blockade of IFN-c improved the survival rate

in an animal model [22–24,53], as IFN-c deficiency decreases the

pathogen burden [53].

The IFN-c gene has some functional genetic polymorphisms

associated with immunologic disease. Following the published

literature, we selected four functional point mutations, which

included two promoter SNPs (21616T/C, rs2069705 [31,34,54–

56] and 2764G/C, rs2069707 [26]) and two intron SNPs (intron

1, +874A/T, rs2430561 [57–59] and intron 3, +3234C/T,

rs2069718 [26,31,32,39]). Based on the functional study, the

21616T, 2764G, +874A and +3234C alleles were associated with

a higher level of IFN-c than the 21616C, 2764C, +874T and

+3234T alleles. Our subjects were limited in number, and all were

from the Han population of Southern China. No mutation was

detected in the 2764 position, and the frequencies of heterozy-

gosity at 21616, +874 and +3234 were 0.48, 0.32 and 0.33,

respectively, which differed from the frequencies in the National

Center for Biotechnology Information (NCBI) data (21616, 0.499;

2764, 0.051; +874, 0.393; and +3234, 0.473). Linkage disequi-

librium (LD) analysis show the +874 and +3234 SNPs were in

strong LD (r2 = 0.894), which partly agrees with surveys from the

northern Chinese population [60]. In addition, three haplotypes,

CTT, TAC and TTT, were examined.
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Although some results were rejected by the corrected Bonfer-

roni analysis, the trend should be noted, such as, 21616T allele

conferred protection against sepsis and the +3234C allele was

exhibit protection against severity. Compared with those results,

some alleles, genotype and haplotype data remained significant

after Bonferroni correction, and the significant differences were

strong enough to interpret the relationship between sepsis and the

IFN-c polymorphism. The dominate mutation of 21616 and

+874 (the addition analysis was the dominant model) were

significant associated with the sepsis susceptibility. All the

homozygosis mutation of 21616, +874 and +3234 were associated

with protection against higher APACHE II and SOFA scores,

while the 21616TT genotype was statistic sense in progression to

severe sepsis either. As we expected, the haplotype results were

consistent with the functional IFN-c research in sepsis. The CTT

haplotype was associated with protection against sepsis initiation

but marginal susceptibility to progression to severe sep-

sis(P = 0.054). The TAC haplotype.was associated with suscepti-

bility to sepsis incidence and protection against progression to

severe sepsis. There were three haplotypes for the 21616, +874

and +3234 SNPs. The TAC haplotype composed by three high-

expression IFN-c alleles was the most frequent combination, while

the CTT haplotype was the least frequent. Our results suggest that

individuals with a genetic background associated with high IFN-c
expression are more susceptible to sepsis, but once they have sepsis

they are less likely to experience progression to severe sepsis.

Individuals with low IFN-c expressions are less susceptible to

sepsis, which is consistent with the results of the animal

experiments.

One limitation of our study is that there were no significant

differences in the distribution of IFN-c SNPs between the sepsis

outcomes. The population involved in our study settled in

Guangzhou in the subtropical zone, which has a special

environment including high temperature, high humidity and air

pollution. While the patients in our study had pneumonia-induced

sepsis, and some reports suggest that environmental conditions can

significantly influence pneumonia [61,62], we expect our results to

be less affected by environment factors because they are difficult to

adjust for. As we expected, patients grouped by severity showed

significant differences in age and APACHE II and SOFA scores,

which corresponds to epidemiologic studies of sepsis, though the

mortality from sepsis in our study was 40% compared to the

reported rate of 10–20% [1,3]. Due to this difference, we could

conclude that the distribution of IFN-c SNPs in relation to sepsis

outcome is only applicable to our region.

To the best of our knowledge, this is the first study to examine

functional IFN-c SNPs and their haplotypes in relation to the

incidence, development and outcome of pneumonia-induced

sepsis. In conclusion, our IFN-c polymorphism study suggests

that genetics influence personal sepsis pathology, and IFN-c SNPs

Table 3. Association of the IFN-c SNPs with risk of sepsis.

Sepsis (%) Control (%) OR(95%CI) P value r2

21616T/C +874 A/T

21616 T/C

CC 83 (42.3) 121 (56.8) 1.00 (reference)

TC 98 (50.0) 74 (34.7) 1.99 (1.31–3.01)

TT 15 (7.7) 18 (8.5) 1.22 (0.58–2.57) 0.0045

TC+TT 113 (57.7) 92 (43.2) 1.84 (1.24–2.73) 0.0024

C 264 (67.3) 316 (74.2) 1.00 (reference)

T 128 (32.7) 110 (25.8) 0.72 (0.53–0.97) 0.032

+874 A/T 0.52

TT 116 (59.2) 150 (70.4) 1.00 (reference)

TA 71 (36.2) 56 (26.3) 1.68 (1.09–2.58)

AA 9 (4.6) 7 (3.3) 1.70 (0.61–4.78) 0.046

TA+AA 80 (40.8) 63 (29.6) 1.68 (1.11–2.54) 0.013

T 303 (77.3) 356 (83.6) 1.00 (reference)

A 89 (22.7) 70 (16.4) 1.49 (1.05–2.12) 0.024

+3234 C/T 0.595 0.894

TT 117 (69.7) 145 (68.1) 1.00 (reference)

TC 71 (36.2) 60 (28.2) 1.49 (0.97–2.27)

CC 8 (4.1) 8 (3.8) 1.26 (0.45–3.50) 0.18

TC+CC 79 (40.3) 68 (32.0) 1.46 (0.97–2.20) 0.067

T 305 (77.8) 350 (82.2) 1.00 (reference)

C 87 (22.2) 76 (17.8) 1.31 (0.93–1.85) 0.2

Haplotype

C T T 262 (66.8) 311.85 (73.2) 0.66 (0.49–0.90) 0.009

T A C 87 (22.2) 65.85 (15.5) 1.51 (1.06–2.16) 0.022

T T T 41 (10.5) 35.09 (8.2) 1.27 (0.79–2.03) 0.33

Values in bold and underline indicate statistical significance.
doi:10.1371/journal.pone.0087049.t003

Polymorphisms of Interferon-gamma Affect Sepsis

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e87049



T
a

b
le

4
.

C
o

m
b

in
at

io
n

an
al

ys
is

o
f

th
e

IF
N

-c
SN

P
s

an
d

se
p

si
s

d
e

ve
lo

p
m

e
n

t
b

y
cl

in
ic

al
g

ro
u

p
in

g
.

S
e

p
si

s
(%

)
S

e
v

e
re

se
p

si
s

(%
)

O
R

(9
5

%
C

L
)

P v
a

lu
e

A
P

A
C

H
E

,
=

2
0

(%
)

A
P

A
C

H
E

.
2

0
(%

)
O

R
(9

5
%

C
L

)
P v

a
lu

e

S
O

F
A

,
=

1
0

(%
)

S
O

F
A

.
1

0
(%

)
O

R
(9

5
%

C
L

)
P v

a
lu

e
D

is
ch

a
rg

e
d

(%
)

D
e

a
th

(%
)

O
R

(9
5

%
C

L
)

P v
a

lu
e

2
1

6
1

6
T

/C

C
C

3
6

(4
0

.5
)

4
7

(4
3

.9
)

1
.0

0
(r

e
fe

re
n

ce
)

4
1

(4
4

.1
)

4
2

(4
1

.2
)

1
.0

0
(r

e
fe

re
n

ce
)

4
5

(4
3

.3
)

3
8

(4
1

.3
)

1
.0

0
(r

e
fe

re
n

ce
)

4
1

(3
7

.6
)

4
2

(4
8

.3
%

)
1

.0
0

(r
e

fe
re

n
ce

)

T
C

3
9

(4
3

.8
)

5
9

(5
5

.1
)

1
.2

5
(0

.6
7

–
2

.3
4

)
3

8
(4

0
.9

)
6

0
(5

8
.8

)
1

.6
5

(0
.8

8
–

3
.1

0
)

4
5

(4
3

.3
)

5
3

(5
7

.6
)

1
.3

9
(0

.7
7

–
2

.5
4

)
6

0
(5

5
.1

)
3

8
(4

3
.7

%
)

0
.6

8
(0

.3
7

–
1

.2
5

)

T
T

1
4

(1
5

.7
)

1
(0

.9
)

0
.0

6
(0

.0
1

–
0

.5
0

)
,

0
.0

0
1

1
5

(1
6

)
0

N
A

,
0

.0
0

0
1

1
4

(1
3

.5
)

1
(1

.1
)

0
.0

9
(0

.0
1

–
0

.7
5

)0
.0

0
1

8
(7

.3
)

7
(8

.3
)

0
.9

8
(0

.3
1

–
3

.0
7

)
0

.4
4

T
C

+T
T

5
3

(5
9

.5
)

6
0

(5
6

.1
)

0
.9

4
(0

.5
1

–
1

.7
2

)
0

.8
4

5
3

(5
6

.4
)

6
0

(5
8

.8
)

1
.1

8
(0

.6
5

–
2

.1
6

)
0

.5
8

5
9

(5
6

.7
)

5
4

(5
8

.7
)

1
.1

0
(0

.6
1

–
1

.9
7

)
0

.7
5

6
8

(6
2

.4
)

4
2

(5
0

)
0

.7
2

(0
.4

0
–

1
.2

9
)

0
.2

7

C
1

1
1

(6
2

.4
)

1
5

3
(7

1
.5

)
1

.0
0

(r
e

fe
re

n
ce

)
1

2
0

(6
3

.8
)

1
4

4
(7

0
.6

)
1

.0
0

(r
e

fe
re

n
ce

)
1

3
5

(6
4

.9
)

1
2

9
(7

0
.1

)
1

.0
0

(r
e

fe
re

n
ce

)
1

4
2

(6
5

.1
)

1
2

2
(7

0
.1

)
1

.0
0

(r
e

fe
re

n
ce

)

T
6

7
(3

7
.6

)
6

1
(2

8
.5

)
1

.5
1

(0
.9

9
–

2
.3

1
)

0
.0

5
6

8
(3

6
.2

)
6

0
(2

9
.4

)
1

.3
6

(0
.8

9
–

2
.0

7
)

7
3

(3
5

.1
)

5
5

(2
9

.9
)

1
.2

7
(0

.8
3

–
1

.9
4

)
0

.2
7

7
6

(3
4

.9
)

5
2

(2
9

.9
)

1
.2

6
(0

.8
2

–
1

.9
3

)
0

.3

+8
7

4
A

/T

T
T

4
7

(5
2

.8
)

6
9

(6
4

.5
)

1
.0

0
(r

e
fe

re
n

ce
)

5
5

(5
8

.5
)

6
1

(5
9

.8
)

1
.0

0
(r

e
fe

re
n

ce
)

6
2

(5
9

.6
)

5
4

(5
8

.7
)

1
.0

0
(r

e
fe

re
n

ce
)

5
8

(5
3

.2
)

5
8

(6
6

.7
)

1
.0

0
(r

e
fe

re
n

ce
)

T
A

3
4

(3
8

.2
)

3
7

(3
4

.6
)

0
.7

7
(0

.4
1

–
1

.4
3

)
3

0
(3

1
.9

)
4

1
(4

0
.2

)
1

.2
8

(0
.6

8
–

2
.3

8
)

3
3

(3
1

.7
)

3
8

(4
1

.3
)

1
.3

0
(0

.7
1

–
2

.3
8

)
4

5
(4

1
.3

)
2

6
(2

9
.9

)
0

.6
3

(0
.3

4
–

1
.1

8
)

A
A

8
(9

)
1

(0
.9

)
0

.1
9

(0
.0

2
–

1
.6

6
)

0
.1

8
9

(9
.6

)
0

(0
)

N
A

0
.0

1
2

9
(8

.7
)

0
(0

)
N

A
0

.0
0

5
6

(5
.5

)
3

(3
.4

)
1

.4
5

(0
.3

1
–

6
.7

9
)

0
.3

5

T
A

+A
A

4
2

(4
7

.2
)

3
8

(3
5

.5
)

0
.7

0
(0

.3
8

–
1

.2
9

)
0

.2
5

3
9

(4
1

.5
)

4
1

(4
0

.2
)

1
.0

8
(0

.5
9

–
2

.0
0

)
0

.8
4

2
(4

0
.4

)
3

8
(4

1
.3

)
1

.0
9

(0
.6

0
–

1
.9

7
)

0
.7

7
5

1
(4

6
.8

)
2

9
(3

3
.3

)
0

.6
5

(0
.3

6
–

1
.1

9
)

0
.1

6

A
5

0
(2

8
.1

)
3

9
(1

8
.2

)
1

.0
0

(r
e

fe
re

n
ce

)
4

8
(2

5
.5

)
4

1
(2

0
.1

)
1

.0
0

(r
e

fe
re

n
ce

)
5

1
(2

4
.5

)
3

8
(2

0
.7

)
1

.0
0

(r
e

fe
re

n
ce

)
5

7
(2

6
.1

)
3

2
(1

8
.4

)
1

.0
0

(r
e

fe
re

n
ce

)

T
1

2
8

(7
1

.9
)

1
7

5
(8

1
.8

)
0

.5
7

(0
.3

5
–

0
.9

1
)

0
.0

2
1

4
0

(7
4

.5
)

1
6

3
(7

9
.9

)
0

.7
3

(0
.4

6
–

1
.1

9
)

0
.2

1
5

7
(7

5
.5

)
1

4
6

(7
9

.3
)

0
.8

0
(0

.5
0

–
1

.2
9

)
0

.3
6

1
6

1
(7

3
.9

)
1

4
2

(8
1

.6
)

0
.6

4
(0

.3
9

–
1

.0
4

)
0

.0
7

+3
2

3
4

C
/T

T
T

4
8

(5
3

.9
)

6
9

(6
4

.5
)

1
.0

0
(r

e
fe

re
n

ce
)

5
6

(5
9

.6
)

6
1

(5
9

.8
)

1
.0

0
(r

e
fe

re
n

ce
)

6
3

(6
0

.6
)

5
4

(5
8

.7
)

1
.0

0
(r

e
fe

re
n

ce
)

5
9

(5
4

.1
)

5
8

(6
6

.7
)

1
.0

0
(r

e
fe

re
n

ce
)

T
C

3
4

(3
8

.2
)

3
7

(3
4

.6
)

0
.7

8
(0

.4
2

–
1

.4
5

)
3

0
(3

1
.9

)
4

1
(4

0
.2

)
1

.3
0

(0
.7

0
–

2
.4

2
)

3
3

(3
1

.7
)

3
8

(4
1

.3
)

1
.3

3
(0

.7
3

–
2

.4
2

)
4

5
(4

1
.3

)
2

6
(2

9
.9

)
0

.6
4

(0
.3

5
–

1
.2

0
)

C
C

7
(7

.9
)

1
(0

.9
)

0
.2

2
(0

.0
2

–
2

.0
1

)
0

.2
7

8
(8

.5
)

0
(0

)
N

A
0

.0
2

8
(7

.7
)

0
(0

)
N

A
0

.0
0

9
5

(4
.6

)
3

(3
.6

)
1

.0
7

(0
.2

2
–

5
.1

5
)

0
.3

6

T
C

+C
C

4
1

(4
6

.1
)

3
8

(3
5

.5
)

0
.7

2
(0

.3
9

–
1

.3
3

)
0

.3
3

8
(4

0
.4

)
4

1
(4

0
.2

)
1

.1
2

(0
.6

1
–

2
.0

6
)

0
.7

2
4

1
(3

9
.4

)
3

8
(4

1
.3

)
0

.7
9

(0
.4

1
–

1
.5

1
)

0
.8

1
5

0
(4

5
.9

)
2

9
(3

3
.3

)
0

.6
7

(0
.3

7
–

1
.2

3
)

0
.2

0

T
1

3
0

(7
3

.0
)

1
7

5
(8

1
.8

)
1

.0
0

(r
e

fe
re

n
ce

)
1

4
2

(7
5

.5
)

1
6

3
(7

9
.9

)
1

.0
0

(r
e

fe
re

n
ce

)
1

5
9

(7
6

.4
)

1
4

6
(7

9
.3

)
1

.0
0

(r
e

fe
re

n
ce

)
1

6
3

(7
4

.8
)

1
4

2
(8

1
.6

)
1

.0
0

(r
e

fe
re

n
ce

)

C
4

8
(2

7
.0

)
3

9
(1

8
.2

)
0

.6
0

(0
.3

7
–

0
.9

8
)

0
.0

4
4

6
(2

4
.5

)
4

1
(2

0
.1

)
0

.7
8

(0
.4

8
–

1
.2

5
)

0
.3

4
9

(2
3

.6
)

3
8

(2
0

.7
)

0
.8

4
(0

.5
2

–
1

.3
6

)
0

.4
9

5
5

(2
5

.2
)

3
2

(1
8

.4
)

0
.6

7
(0

.4
1

–
1

.0
9

)
0

.1
1

H
ap

lo
ty

p
e

C
T

T
1

1
1

(6
1

.7
)

1
5

3
(7

1
.5

)
1

.5
1

(0
.9

9
–

2
.3

1
)

0
.0

5
4

1
2

0
(6

3
.2

)
1

4
4

(7
0

.6
)

1
.3

6
(0

.8
9

–
2

.0
8

)
0

.1
5

4
1

3
5

(6
4

.3
)

1
2

9
(7

0
.1

)
1

.2
7

(0
.8

3
–

1
.9

4
)

0
.2

7
3

1
3

9
(6

3
.8

)
1

2
5

(7
1

.8
)

1
.3

2
(0

.8
6

–
2

.0
4

)
0

.2
0

2

T
A

C
4

8
(2

6
.7

)
3

9
(1

8
.2

)
0

.6
0

(0
.3

7
–

0
.9

8
)

0
.0

3
8

4
6

(2
4

.2
)

4
1

(2
0

.1
)

0
.7

8
(0

.4
8

–
1

.2
5

)
0

.2
9

8
4

9
(2

3
.3

)
3

8
(2

0
.7

)
0

.8
5

(0
.5

2
–

1
.3

6
)

0
.4

8
9

5
6

(2
5

.7
)

3
1

(1
7

.8
)

0
.6

8
(0

.4
1

–
1

.1
1

)
0

.1
2

2

T
T

T
1

9
(1

0
.6

)
2

2
(1

0
.3

)
0

.9
6

(0
.5

0
–

1
.8

4
)

0
.8

9
9

2
2

(1
1

.6
)

1
9

(9
.3

)
0

.7
8

(0
.4

1
–

1
.4

8
)

0
.4

4
2

4
(1

1
.4

)
1

7
(9

.2
)

0
.7

8
(0

.4
1

–
1

.5
0

)
0

.4
5

8
2

3
(1

0
.5

)
1

8
(1

0
.4

)
1

.0
5

(0
.5

5
–

2
.0

1
)

0
.8

8
6

V
al

u
e

s
in

b
o

ld
an

d
u

n
d

e
rl

in
e

in
d

ic
at

e
st

at
is

ti
ca

l
si

g
n

if
ic

an
ce

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

8
7

0
4

9
.t

0
0

4

Polymorphisms of Interferon-gamma Affect Sepsis

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e87049



may be used to choose the most appropriate therapy for

individuals suffering from sepsis.
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