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Abstract: Polymers with the shape memory effect possess tremendous potential for application in
diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical
properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers
(BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts
as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion pro-
cesses. In addition to their application toward the prevention of biofilm formation or internal tissue
damage caused by permanent implant materials and the subsequent need for secondary surgery,
which causes secondary infections and complications, BSMPs have been highlighted for minimally
invasive medical applications. The properties of BSMPs, including high tunability, thermomechani-
cal properties, shape memory performance, and degradation rate, can be achieved by controlling
the combination and content of the comonomer and crystallinity. In addition, the biodegradable
chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable
polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates,
strongly affect the hydrolytic activity and erosion property. A wide range of applications including
self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the
BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.

Keywords: shape memory effect; biodegradable polymer; thermomechanical property; degradation
mechanisms; biomedical application

1. Introduction

Shape memory material (SMM) is a material capable of recovering the original shape
in response to particular stimuli. The temperature-triggered shape memory effect (SME)
has been observed in metal alloys such as gold–cadmium alloy [1] and nickel–titanium
alloy [2] after the mid-20th century. The SME of metal alloys is based on phase transfor-
mation via temperature control with mechanical deformation. SMM is widely used in
aerospace technologies [3], textile engineering [4], robot technologies [5] and biomedical
applications [6–11]. For example, space-deployable structures for satellite, antenna, and
solar arrays [3] and dynamic textiles, which sense and react to temperature changes, have
been used as window treatments, partitions, and wall hangings [4]. SMM is increasingly
used as an actuator of self-propelling soft-robotics-based systems to provide mobility by
programing multiple shape transitions [5].

Effective manufacturing of shape-memory nickel–titanium alloy (SMA) by using
spark-plasma sintering method was reported, increasing the purity of the product by
preventing the chemical inhomogeneity and oxidation introduced during the multi-step
conventional method [12]. Combining shape-memory alloy with polymer successfully
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produced multifunctional composites using the shape-transition behaviors of different
materials [13] and stability against inflammation by preventing the release of metal content
considering interfacial adhesion [14]. However, the high melting temperature and reactivity
of SMAs continue to make their manufacture more complex than shape memory polymers
(SMPs) [15]. SMPs are lightweight, low-priced, easily tunable, and more deformable
compared to shape memory alloys (SMAs) [8,10,16]. A wide range of mechanical and
thermal properties such as elastic moduli, yield strengths, and transition temperatures can
be imparted by polymers [8]. SMPs exhibit higher compatibility with biological tissues,
thereby reducing mechanical mismatches, because of their better mechanical properties
(softness and flexibility) than the typically stiff SMAs [9]. The high strain deformability
of polymers increases the capable range of shape recovery [8,10], resulting in a further
reduction in device size, and the shape recovery temperature of polymers can be easily
adjusted to the desired level because of their easier synthesis and lower melting temperature
than metal alloys [10]. The biodegradability and biocompatibility of some groups of
polymers make SMPs advantageous over SMAs [6,8–10].

Biodegradable polymers such as poly(lactic acid) (PLA), poly(lactide-co-glycolide)
(PLGA), poly(caprolactone) (PCL), and polyurethane (PU) and their copolymers are promis-
ing materials for biomedical applications because of their biodegradability, biocompatibility,
and low toxicity of byproducts. The biodegradability of the polymers addresses the con-
cerns arising from the long-term presence of implanted biomedical devices. For example,
metallic stents without biodegradability are prone to restenosis and renarrowing of blood
vessels if they reside in the body for more than six months [17], and the risk of cytotox-
icity due to corrosion products, depending on the exposure period in corrosive media
and concentration of byproducts, was reported [7,18]. The need for secondary surgery to
remove implanted biodegradable-polymer-based devices after the completion of medical
treatments is eliminated because of their biodegradability. In addition, biodegradabil-
ity may play a functional role in some applications such as drug-eluting systems [17].
SMPs produced using biodegradable polymers have been reported in various biomedical
applications, verifying their applicability toward in vitro and in vivo experiments [19,20].

In this review, the basic principle of SMPs is briefly introduced, and the design strate-
gies required to induce the thermomechanical properties and shape memory performance
of biodegradable shape memory polymers (BSMPs) are discussed. Major degradation
mechanisms and kinetics of representative biodegradable polymers used for BSMPs in
the body are introduced. Changes in the properties and performances of BSMPs during
the degradation process are discussed. This paper reviews biomedical applications for
self-expending stents, drug-eluting systems, and tissue engineering. In particular, many
studies aimed at reducing the shape recovery time of stents and combining stents with
drug release ability are reviewed.

2. Control of properties of BSMPs

BSMPs with various properties have been designed for use in extended biomedical
applications, such as suture threads [21–23], drug delivery vehicles [24–27], stents [28–32],
and tissue engineering [33–35]. The most common principle to program the SME involves
the utilization of a polymer network consisting of hard (net points) and soft (switchable)
segments [36–39]. The programing process of the SME involves shape deforming, fix-
ing and eliminating external forces. Soft segments respond to external stimuli such as
temperature [24,29,40–42], water [43,44], ultrasound [25,45] and others [31,46,47], forming
additional cross links or undergoing crystallization to affix a temporary shape in the fixing
stage. The hard segments are permanent networks and remain unchanged during the
programing process [48–50]. This region generates a spring that stores elastic potential
energy, which is the driving force for recovering the original shape, when the soft segments
are triggered by external stimuli [48–50].

Figure 1 shows a representative mechanism for temperature-controlled SMPs. The
mobility of soft segments with relatively low glass transition temperatures (Tg) or melting
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temperatures (Tm) significantly increases above the transition temperature (Tt) [36,49,51].
Cooling of the soft segments whose shape is deformed by stress enables the formation
of temporary crosslinks or crystallization, maintaining the deformed shape [36,49–51].
The permanent polymer network comprises hard segments with high Tt [36,49–51]. This
network, unaffected at Tt, stores the elastic potential energy for recovering its original
shape [8,9,36]. When the temperature exceeds Tt again, the energy is released, recovering
the original shape as the mobility of soft segments increases [8,9,36].
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Figure 1. Schematic representation of programming process for thermo-responsive shape memory polymer with schematic
of thermomechanical cyclic. Black dots and blue lines: hard segment; brown lines: soft segment below Tt; orange lines: soft
segment above Tt. (a) Initial shape; (b) shape at the elevated temperature (c) shape mechanically deformed at the elevated
temperature; (d) shape fixed as deformed by cooling; and (e) shape recovered by heating.

Shape memory performance is typically evaluated by calculating the shape fixity strain
(Rf) and shape recovery strain (Rr). The parameters are defined in Equations (1) and (2)
below: shape memory programing proceeds with the applied strain (ε l) by loading, the
remaining strain (εu) as the deformed shape after unloading, and the recovered strain
(εr) over Tt [51]. The shape fixity strain represents the extent to which the temporary
shape is fixed as programed, which is undertaken by the soft segment [51,52]. The shape
recovery strain indicates the extent to which the material recovers its original shape from
the temporary shape, which is the role of the hard segment [51,52].

R f =
εu

ε l
, (1)

Rr =
εu − εr

εu
, (2)
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The combination and ratio of the hard and soft segments in BSMP vary with the Tt,
shape memory performance, mechanical properties, and degradation rate. Table 1 lists
some BSMPs with several combinations of segments and their properties.

Table 1. Thermomechanical properties and shape memory performance of BSMPs with different combinations of segments.

Material Hard
Segment

Soft
Segment Ttrans(◦C) Rf Rr dRr/dt E (MPa) Ref

PPC/PCL PCL PPC 37 97 94 6%/s - [53]
PCL-SBS PCL SBS 58 - 100 1%/min 116 [54]
PCL/PU PU PCL 45 - 77 1.3◦/s 4.3–9 [30]

PCL-PLLA PLLA PCL 85 - - - 120–180 [55]
Fe3O4-PCLAU PLA PCL 40 99 82–85 0.2%/s - [31]

Fe3O4-PLA Crystallites Amorphous 65–67 90–95 4%/s 2–3 × 103 [47]
PLA Crystallites Amorphous 70 99 87–96 - 4 × 103 [29]

PLDU PLLA PDLLA 38–46 99 72–95 - 1.5–2 × 103 [56]
PLGA-PEG PLGA PEG 37 99 99 3–10%/min 206–330 [57]

PLGA/PEGDA PLGA PEG 37 - 82–92 0.7%/s 1.2–1.6 × 103 [43]
PCL-PEG PCL PEG 41–45 100 88–100 9–10%/s 28–97 [17]
GelUPy Gelatin UPy 100 - - - 2.42 [44]

PLA-PPG PLA PPG 92–96 87–99.5 2.6–3.5%/K - [58]
PDLLA-co-TMC DDLA TMC 37–44 99 94–100 - 175–200 [33]
PCL/TspPOSS OPD PCL 70 81 85 - - [24]

TPU/PCL TPU PCL 32 98 90 - - [40]
Sc-PLA-PDLLA Sc-PLA PDLLA 70 65–99 4.5–5%/s - [59]

PCL-DA DA PCL 54–60 100 95–100 - 0.54–4.3 [35,60]
PLGA-EA EA PLA 20–50 97–98 99–100 - 1.6–288 [42]
PLGA-BA BA PLA −10–40 93–97 84–100 - 3.3–30 [42]
PLGA-HA HA PLA −30–60 91–96 97–99 - 12–37 [42]

PCL-MDI-BDO MDI-BDO PCL 36–52 99 99 4%/s - [25]
PCL-PHBV PHVB PCL 40 94 98 4%/s 42–70 [32]
PCL-PPDO PPDO PCL 37 99 97–99 1.5%/s 407–542 [61]
ICM/PCL ICM PCL 60 89–100 85–100 - - [41]
OCL-HDI HDI OCL 37–39 98 99 - - [27]
OCL-ODX ODX OCL 40 98–99.5 76–99 5%/s - [22]

PPC = polypropylene carbonate, PCL = poly(ε-caprolactone), SBS = styrene butadiene styrene, PU = polyurethane, PLLA = poly(l-
lactide), PLA = poly(lactide), PLGA = poly(lactide-co-glycolide), PEG = polyethylene glycol, Gel = gelatin, UPy = ureido-pyrimidinone,
PPG = polypropylene glycol, TMC = 1,3-trimethylene carbonate, TspPOSS = trisilanol phenyl polyhedral oligomeric silsequioxane,
TPU = thermoplastic polyurethane, Sc-PLA = stereocomplex PLA, PDLLA = poly(d,l-lactide), DA = diacrylate, EA = ethyl acrylate,
BA = butyl acrylate, HA = hexyl acrylate, MDI = methylene, diphenyl 4,4′-diisocyanate, BDO = 1,4-butanediol, PHBV = poly[(R)-3-
hydroxybutyrate-co-(R)-3-hydroxyvalerate], PPDO = poly(p-dioxanone), ICM = 7-(3,5-dicarboxyphenoxy) carbonylmethoxycoumarin,
OCL = oligo(ε-caprolactone), HDI = hexamethylene diisocyanate, ODX = oligo(p-dioxanone), OPD = poly(2-oxepane-1,5-dione).

Achieving a Tt close to physiological temperature is the primary goal for biomedical
SMPs triggered by temperature, and discovering an appropriate combination of soft and
hard segments is a generally utilized strategy. For example, PLA, with a Tg ranging from 40
to 60 ◦C, is an attractive material for bioapplication that shows both biocompatibility and
biodegradability [8,62]. Tg needs to be lowered to achieve the shape memory characteristics,
which are triggered at the body temperature. Polypropylene glycol (PPG) (Tg = −73 °C)
can be added to lower the Tt to room temperature [58], providing soft segments and lower-
ing the Tg of the polymer network. Similarly, Zheng et al. [53] proposed biodegradable
self-expandable stents fabricated with a polymer blend of poly(propylene carbonate) (PPC)
and PCL. In this study, PPC acts as a soft segment because its Tg fluctuates between the
room and physiological temperatures and is lower than the potential Tt of PLC (59–64 ◦C);
thus, it can be utilized for shape recovery. The crystal phase of PCL became a hard segment
and controlled the recovery of the PPC phase by limiting mobility. They showed increasing
the PCL content increased the Tg of PCC/PCL up to 37 ◦C as shown in Figure 2a, while the
Tm remains practically constant. A gradual increase in Rf with an increasing PPC content
supported the PPC segment in fixing the temporary shape [53].
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The degree of crystallinity of semicrystalline soft segments directly influences Tt and is
achieved by altering the molecular weight of the soft segments, that is, by changing the soft-
to-hard segment ratio. A report by Han et al. [25] shows the relationship between molecular
weight, crystallinity, and Tt. They prepared polyurethane block copolymers synthesized by
combining 4, 4′-diphenylmethane diisocyanate (MDI) and 1, 4-butanediol (BDO) with PCL.
In their study, a controlled increase in the number averaged molecular weight (Mn) of the
PCL (soft) segment from 3000 to 8000 g·mol−1 increased the crystallinity from 13.4% to
25.4% and elevated the Tm of PCL from 39.6 to 52.3 ◦C. Le et al. similarly showed the effect
of altering the Mw by manipulating the relative amount of the monomer and initiator [63].
They showed the high Mw of PCL resulted in a long polymer chain, leading to a high
Tm due to the formation of stabilized crystallites. A polymer network with a Mw of
12,500 g·mol−1 exhibited a Tt of 36 ◦C and excellent shape memory performance with Rf
and Rr of 99% and 98%, respectively in the study. The addition of a nucleating agent to aid
crystallization can be used to control Tt [25]. For example, adding 4 wt% of copper sulfate
particles to assist in the crystallization of PCL increases the Tm by 6 ◦C, compared to that
of a polymer of the same molecular weight synthesized without a nucleating agent [25].

Combining comonomers significantly changes the mechanical properties and shape
memory performance of the polymer, as summarized in Figure 2b–d representative sample
of thermoplastic polyurethane (TPU)/PCL blends studied by Jing [40] showed the effect of
the content ratio of the hard and soft segments on the shape memory performance. In this
study, increasing the PCL phase improved the mechanical properties and Rf; however, it
yields a low Rr. The changes in the shape memory performance showed that the crystalline
region in PCL acts as a switch segment, thereby fixing the temporary shape, whereas
the rubber-like PU segments store the energy for recovering the original shape. The
melting temperature increased as the PCL ratio increases, owing to the high crystallinity of
the PCL phase [40]. AB-copolymers made of PLGA with different acrylates functioning
as comonomers exhibit improved thermal and mechanical properties [42]. Methacryloyl
chloride groups interacting with ethyl acrylate (EtA), butyl acrylate (BuA), or hexyl acrylate
act as hard segments, when PLGA was the soft segment. The addition of acrylate enhances
the elastic properties and toughness of the polymer network over a homonetwork of
poly [(L-lactide)-ran-glycolide] dimethacrylates, which are brittle below a Tg of 55 ◦C [42].
Additionally, the mechanical properties of lactide-based polymers generally tend to be
significantly decreased by hydration because of plasticization by water [64]. This challenge
in conventional degradable polymers was overcome by introducing polyethylene glycol
(PEG) crystallization [57]: the hydrophilic nature of the PEG domain stiffens the polymer
network, resulting in an increase in the elastic modulus of the water. The increasing
elasticity and degradation rate were controlled using the molar ratio between lactic acid and
glycolic acid. PEG, which acts as a soft segment, lowered Tt to the body temperature [57].
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Figure 2. Thermomechanical properties and shape memory performance of BSMPs (a) DSC heating curves of PCL, PPC,
and the PPC/PCL blends; (adapted with permission [53] ©2017, American Chemical Society) (b) stress–strain curves
of TPU/PCL blends; (c) thermomechanical cyclic schematic of TPU25%; (d) shape memory performances of TPU25%
(adapted with permission [40] ©2016, Elsevier Ltd.); (e) shape recovery rate curves of poly(caprolactone)/styrene-butadiene-
styrene blend for different molecular weights by degradation (adapted with permission [54] © 2020, Wiley Periodicals LLC);
(f) effect of polymer degradation on the mechanical properties of hydroxyl-dominant polymers (adapted with permission [65]
©2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

Controlling the chain length and cross-linking density was studied as a strategy to
improving the tensile properties. Yang et al. designed isosorbide (ISO)-PUs based SMPs
with different chain length of diisocyanates from ISO and hexamethylene diisocyanate
(HDI), which results in different hard segment contents [66]. The increase in hard-segment
length by synthesizing diisocyanate with different repeated numbers of ISO molecule en-
hanced the elastic modulus, tensile and compression strength of SMPs at body temperature.
The tensile properties of PUs from three ISO molecules doubled over those of the polymer
from an ISO molecule, with little drop in elongation at break [66]. Seo et al. proposed
soybean oil and polycaprolactone (SC)-based SMPs with enhanced mechanical properties
by introducing polyrotaxane (PRX) as cross-linker [67]. The methacrylate group in PRX
increased crosslinking density and flexibility, tripling and even quadrupling both tensile
strength and strain simultaneously over little change in elastic modulus compared to SC
without PRX. The improvements in mechanical properties and flexibility of SMPs are due
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to hydroxyl groups in PRX forming large amount of cross-linking points, and those can be
made to slide by applied stress [67].

3. Biodegradable Behaviors of BSMPs

The biodegradability of each component determines the dissolution characteristics of
the BSMPs. The biodegradation mechanisms of polyesters, PUs, and polyanhydrides are
reviewed as representative biodegradable polymers, which have been widely utilized and
investigated as SMPs. The mechanisms, products, and rates of degradation vary with the
functional groups in the polymer, reactive with water and oxygen [68]. Hydrolysis and
oxidation are the major degradation mechanisms in biomedical applications. The polymer
erodes through two different ways, surface and bulk erosion, depending on the water
diffusivity in the polymer matrix and the degradation rate of the polymer [69,70].

Polyester-based polymers have been extensively used and investigated among
biodegradable polymers [62,71–75]. This group of polymers are generally degraded by
hydrolysis in biofluids because of their chemical structure [62,71,72,75]. First, the ester
bond undergoes a hydrolytic cleavage through the penetration of aqueous fluid into the
polymer [62,71,72]. The cleaved ester bonds are then converted to carboxyl end groups, as
shown in Figure 3a, thus accelerating the hydrolytic reaction with other ester bonds [76].
The autocatalysis of carboxyl end groups generally occurs during the hydrolysis of poly-
mers with ester bonds [68]. As water uptake is critical in this reaction, the degradation
process dominates in amorphous domains, where permeation is easier than in crystalline
polymer regions [71].
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Figure 3. Degradation of ester bond based polymers. (a) Hydrolytic cleavage of ester bonds;
(b) degradation of PLGA (adapted with permission [76] ©2017, Elsevier); (c) hydrolysis of poly(ester-
urethane)s (adapted with permission [77] ©2018, Elsevier B.V.).

The degradation of ester bonds proceeds with slight weight loss for some time after
the initial stage [68]. Only a few degraded oligomers near the surface are mobile because
the polymer chains are not scissored sufficiently enough to allow the degraded oligomer
in the interior matrix to escape [69]. The degraded parts start to diffuse and dissolve
into fluids when the molecular weight decreases sufficiently, and an overall weight loss
begins [78]. Ester bonds located away from the surface are degraded faster than those near
the surface. This occurs because the density of the carboxyl end groups is higher in the
interior than on the exterior of the polymer networks [79]. This type of erosion is called
bulk erosion, as shown in Figure 4b [80]. Therefore, the degradation rate is dependent on
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the physical properties of the device, in particular, the thickness and surface-to-volume
ratio [68,79]. Consequently, the degradation of solid PLA is virtually independent of the
pH level in the human body because H+ and OH− ions diffuse with difficulty into the
bulk [68]. Semicrystalline polymers with ester bonds, such as PLGA (Figure 3b) and PCL,
show a similar degradation behavior, generating carboxyl end groups from ester bonds
as PLA.
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Crystallinity is a key factor in refining the degradation properties of semicrystalline
polymers [55,56,59]. For example, the microstructural phase ratio was controlled by the
PLA stereoisomer content to modify the degradation and mechanical properties because
semicrystalline poly (l, l-lactide) (PLLA) and poly (d-lactide) (PDLA) exhibit lower degra-
dation rates than amorphous poly (dl-lactic acid) (PDLLA) [8]. A PDLLA solution blended
with other stereoisomers enhances the shape memory performance and decreases the
enzymatic degradation rate with the addition of the semicrystalline content [59]. Another
PLA-stereoisomer-based polymer elastomer exhibits an increased thermal degradation
temperature with an increased PLLA to PDLLA ratio [55,56]. Reducing the chemical
crosslinking density and restricting the mobility of the PLA chain can enhance the degra-
dation speed [81]. In addition, using hydrophilic or hydrophobic copolymers can improve
degradation properties. For example, PCL generally exhibits a lower degradation rate than
PLGA and PLA because of its hydrophobicity and high crystallinity. The combination of
PCL with hydrophilic copolymers allows the acceleration of degradation [55].

Polyanhydrides show rapid hydrolytic degradation by the most reactive functional
groups in an aqueous environment [70]. Anhydride groups react with water molecules to
generate products with carboxyl end groups, similar to ester hydrolysis [70,82,83]. How-
ever, polyanhydrides were observed to be surface eroding, undergoing heterogeneous
degradation from a near surface, as shown in Figure 4a, because the water uptake process
in the polymer is slower than hydrolytic degradation [70]. The erosion type is switched
from surface to bulk erosion when the thickness of the device is reduced to a certain
depth [68–70]. The transition thickness estimated by comparing the diffusion and degra-
dation rates of water supports the occurrence of different erosions in polymers: surface
erosion dominates polyanhydrides (20 µm) and bulk erosion dominates PLA (40 mm) [68].
Surface erosion provides a linear degradation rate; thus, polymers with these properties
can be utilized as pacemakers to control degradation speed [26]. Xiao et al. introduced poly
(sebacic anhydride) to accelerate the degradation rate of PCL [26]. This study confirmed
that drug release and degradation rates were enhanced with slight reduction in shape
memory performance.
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PUs, another polymer group widely used for SMPs, are less reactive than the polymers
with aliphatic ester groups during hydrolytic degradation [68]. Large conjugate structures
reduce the hydrolytic activity of carbon by a steric effect [68]. Most PUs generally show
good hydrolytic stability, except for those made with polyester diols [77]. The polymer
degrades in the same way as PLA: water reacts with ester links to produce carboxyl
ends, leading to repetitive reactions, as shown in Figure 3c [77]. Oxidation degrades PUs
[poly (ester-urethanes) (PEtUS) and polycarbonate-urethanes (PCUs)] exposed to oxygen
molecules in a physiological environment (Figure 5) [77]. In addition, polyether and
polyamines contain free radicals that are critical for oxidation [68,77]. Oxygen molecules
react with free radicals in the polymer chains to produce two new free radicals [68,77].
These radicals are transferred to other polymer chains, and this process increases the
mobility of free radicals [68,77]. The chain with a free radical cleaves onto one chain with a
double bond and the other with a free radical [68]. The rate of degradation by oxidation
justifiably depends on the concentration of oxygen molecules and free radicals [68,77].
Swelling by water absorption and fatigue by repetitive mechanical loading generally play
a role in easing degradation [77]. Water uptake decreases the Tg of polymers acting as
plasticizers, and the resulting polymer network undergoes a loss in rigidity, elastic modulus,
creep resistance [68] and crack growth resistance [84]. Repetitive or chronic loading on
polymer networks creates mechanical friction and weakens the linkages between the linked
chains [68].

Adequate degradability, taking into account the time scale for shape recovery and
maintenance of mechanical properties, needs to be determined. The shape-recovery perfor-
mance decreases according to the degradation of the polymer network [54,72]. Degradation
decreases molecular weight (Mw) and changes the amorphous-to-crystalline phase ratio,
which is related to the ratio of the hard and soft segments. For example, the hydrolysis
of PCL blended with styrene-butadienestyrene (SBS) degrades the amorphous phase and
decreases the molecular weight of PCL which acts as the hard segment; it increases the crys-
tallinity elevates the Tg and Tm of the PCL phase [54]. This study shows that the decrease
of molecular weight of hard segments by degradation may decrease the shape recovery rate,
as seen in Figure 2e [54]. Samples Mw2 through Mw5 underwent enzymatic hydrolysis for
7, 15, 21 and 25 days respectively; Mw1 is an as-prepared sample [54]. Smaller molecular
weight creates shorter PCL chains, increases chain mobility, and decreases the degree
of entanglement, which fixes the permanent structure as a hard segment [54]. Pretsch
et al. showed the drawbacks in shape recovery rate with cyclic programming process of
poly(ester urethane) based SMP as it underwent hydrolytic degradation [72]. In this study,
the shape recovery ability of the hydrolyzed polymer deteriorated by 20% compared to the
polymer without hydrolysis. An increase in crystallinity of soft segments was observed
with degradation, resulting in the increase of Tm of soft segments by 15 °C, and similarly
for Tt [72].
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Mechanical properties also alter as degradation proceeds. Elastic modulus and tensile
strength generally decrease if polymer chains shorten and molecular weight drops [65,72].
The predictable effects of degradation on mechanical properties are significant in designing
BSMP to maintain proper functionality. Pretsch et al. showed that tensile properties
of poly(ester urethane)-based SMP, including elongation at break, tensile strength, and
toughness, show serious reduction with hydrolytic degradation. In this research, minor
reductions in mechanical properties by water immersion occurred in the first two days [72].
Hydrolytic degradation rapidly worsened the mechanical properties over several more
days, with decreases in cross-linking density by chain scission of ester bonds, and then
embrittlement was followed by erosion [72]. Serrano et al. showed the effect of hydrolytic
degradation on tensile properties of polydiolcitrate-based shape-memory elastomers with
different mole ratios of hydroxyl to carboxyl groups [65]. In this study, polymers with
the same ratio of functional groups show deterioration in tensile strength and increase
in elastic modulus with degradation. Small increases in the hydroxyl ratio and use of a
hydrophobic diol enhanced the elastic modulus and tensile strength of the polymer with
degradation time, though the elongation at break decreased (Figure 2f) [65].

4. Applications of BSMPs

BSMPs exhibit two main properties, namely, shape memory and biodegradability. SME
allows minimally invasive surgery and automatic actuation, exploiting stimuli-responsive
self-deformability to memorize shapes [24–32]. This effect makes the treatment focused on
the target region possible with a minimal influence on other organs along the migration
routes, which is significant for biomedical treatments, such as drug delivery or stent
implantation [24–32]. Biodegradable polymers, which naturally decompose in a body after
a certain period as designed, can obviate the need for post-surgery, which is necessary
for removing implanted devices, after the treatment is complete [85]. Representative
biomedical applications are reviewed in this section.

Lendlein et al. in 2002 demonstrated the feasibility of thermo-responsive BSMP suture
to close an incision as the photo series in Figure 6a [22]. The smart surgical suture is capable
of wound close with proper stress preventing necrosis or scar tissue which is probable when
the stress is too strong or weak [22]. A biodegradable polymer based stent with SME has
eliminated secondary removal surgery and the risk of restenosis [17], in addition to the self-
expanding property that Nitinol facilitates by phase transformation [86], which replaced
the conventional balloon-expandable stainless steels stents. Studies to accelerate the shape
recovery rate to avoid migration from the targeted location are in progress [31,32,87–89].
Tamai et al. investigated the feasibility and safety of PLLA-based stents implanted in
patients [87]. The heat for shape recovery was transferred by a dye heated to 80 ◦C through
a stent delivery balloon with an optimal recovery time of 30 s [87]. It was observed through
the use of bilayered stents comprising PLLA and PLGA that the Tg and thickness of the
outer polymer layer affect the shape recovery rate of the stents [88]. Adding a PLGA
layer reduced the expansion time from 15 days to a few minutes for pure PLLA [88]. A
Tm-based self-expandable stent using a hyperbranched PCL as a switching segment with
polyester, shortened the expansion time to 25 s, unlike certain previously reported Tg-based
stents [32]. Stents made from polymers with nanoparticles enhanced the shape recovery
performance of PU and reduced the complete recovery time [31,89]. The nanoparticle,
Fe3O4, on PU, transforming electromagnetic energy for heating, enables remote activation,
using an alternating magnetic field [31]. Wei et al. demonstrated 4D printed PLA/Fe3O4
SMPs remote actuation by magnetic field and schematics of potential application as the
intravascular stent shown in Figure 6b [90].
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Figure 6. Biomedical applications of BSMPs. (a) The photo series of suture for wound closure from
the animal experiment shows (left to right) the shrinkage of the fiber while temperature increases.
(Adapted with permission [22] © 2002, American Association for the Advancement of Science);
(b) demonstration of the restrictive shape recovery process triggered by a 30 kHz alternating magnetic
field; potential application of the 4D scaffold as an intravascular stent. Here, the deformation
temperature was 80 ◦C. Therefore, SD, and SRr represent for the original, deformed, and recovery
shapes under restrictive conditions, respectively (adapted with permission [90] ©2017, American
Chemical Society); (c) self-fitting behavior of a polydopamine-coated PCL SMP scaffold (adapted
and reproduced with permission [60] © 2014, Elsevier); (d) concept of programming, shape recovery,
and drug release of drug loaded SMP devices (adapted with permission [91] ©2009, Elsevier B.V.).

The structural integrity of biodegradable polymer stents is another actively discussed
topic, considering that the primary goal of stent implantation is to achieve structural
maintenance under external pressure, induced by vessel walls [30,31,92–95]. Laser-etched
polyurethane-based stents in several geometries showed collapse pressures comparable to
those of commercialized steel stents [92]. Another PU-based stent that adopted a solution-
mixing fabrication method provided an increased elastic modulus, radial stiffness, and
force recovery [30]. Mechanical performance and structural stability have been studied
using numerical methods [94,95]. Stents fabricated by 3D printing are an attractive future
solution for patient-personalized designs that optimize mechanical behavior in combination
with finite element analysis (FEA) studies [31,93].

BSMPs for drug delivery have been studied using SME or biodegradability to control
drug release rates. Loaded drugs can be released by a conduit that opens as the programed
shape is recovered [44,45,91] as shown in Figure 6d, or by removing a coated surface by
degradation [17] in the physiological environment. Many studies have been conducted
to control drug release rates by enhancing drug solubility in water [17], providing mul-
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tiple intermediate shapes [45], changing drug-loading concentrations [96] or molecular
weights [97] and introducing nanoparticles [24,31,89,96]. Incorporating the drug-eluting
function with a stent has been proposed as a highly desirable way to prevent restenosis
and inflammation. The influence of drug containment on mechanical properties [91], shape
memory performance [24], and biodegradation rate [91,98] has been investigated. The
breaking stress and strain of a stent prepared by Jaworska et al. containing 7 wt% of a
drug decreased to approximately 70% of the stent without the drug because the aggre-
gated drug particles induced notch effects; this study showed that drug incorporation can
change stent hydrophilicity and thus, the hydrolysis degradation rate [91,98]. Kashif et al.
examined the change in shape memory performance with drug content for stents made
of PCL/trisilanolphenyl polyhedral oligomeric silsequioxane (TSP-POSS) nanocomposite
films [24]. Shape memory performance decreased (Rf: 85–81 and Rr: 94–85) with an increas-
ing drug content from 0 to 10 wt%. Yang et al. fabricated a dual drug-eluting stent using
two different drug-loading methods, one by chemical crosslinking conjugation and the
other by physical absorption through the formation of a gelation layer [17]. The physically
absorbed drug was released within 14 days, whereas the chemically conjugated drug was
released sustainably over 60 days [17].

SMP-based tissue engineering applications have been reported with various targets,
encouraging the repair and regeneration of patients’ tissues, which will substitute the
implanted materials [9,33–35]. Hiebl et al. implanted a multiblock copolymer comprising
poly (p-dioxanone) and PCL to induce blood vessel formation [19]. The properties of poly
(1,10-decanediol-co-citrate) (PDC), which encourage blood vessel formation and produce
small degradation particles, are speculated to provide good tissue integration ability [19].

Polymers with enhanced mechanical properties are facilitating the substitution of met-
als in hard-tissue applications such as bone and tendon repair, with the potential to resolve
limitations of metal implantation such as inflammatory response and insufficient biocom-
patibility [99]. Many strategies to enhance the mechanical properties for polyurethane-
based bone tissue engineering have been reported [100–103]. PU with enhanced tensile and
compressive strength approximates bone and tendon tissues by increasing the crosslinks
by changing the ratio of monomers or longer UV exposure [101]. Poly-ether-urethane
foam with porosity over 70% showed good mechanical stability under cyclic compression,
mimicking trabecular bone structure [102]. Introduction of nanocomposites as bone tissue
scaffolds has been widely reported to enhance mechanical properties [20,33,60,73,81,104].
Zhang et al. developed a self-fitting SMP scaffold for bone-defect treatment using PCL,
including fused salt particles, as shown in Figure 6c [60]. Wang et al. presented a water-
responsive shape-memory bone scaffold using a 3D-printed PU containing supermagnetic
iron oxide nanoparticles [104]. The nanoparticles encourage osteogenic induction and
enhance shape fixity. Zhai et al. introduced a nanoclay into poly (N-acryloyl glycinamide)
to enhance osteogenic differentiation [20]. Y. Zhang et al. modified polyurethane-based
SMPs with hydroxyapatite (HA) nanofiller, an inorganic component of natural bone tissue,
for enhanced tensile properties [99].

5. Conclusions

BSMPs contribute to minimally invasive surgery and eliminate the inconvenience
of secondary surgery, resulting in a reduced risk for excessive bleeding and infection.
Additionally, their shape deformation and degradation in the body are excellent and can
be used as an actuating strategy in biomedical devices. A wide range of thermomechanical
properties and degradation rates can be achieved by combining different biodegradable
polymers. Complete and rapid shape recovery can be achieved by adjusting crystallinity
and adding nanoparticles. The mechanical properties and shape-memory performance
show time-dependent changes because of accelerated degradation in the form of surface or
bulk erosion. BSMPs are appropriately designed by considering the required properties and
performance and are utilized for various biomedical devices such as stents, drug-delivery,
and tissue-engineering applications. BSMPs have the potential to be used to build electronic
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systems with functions that can be tuned according to shape transitions. The performance
and applicability of BSMPs may be expanded by integration with transient electronic
devices and soft robotics, and this is expected to provide new opportunities for ecofriendly
probiotic robots and device technologies. The expansion of biodegradable-polymer-based
SMPs may lead to ecofriendly soft-robotic-based technologies that minimize robotic waste.
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