
GENERAL DERMATOLOGY
BJD

British Journal of Dermatology

Diagnostic accuracy of content-based dermatoscopic image
retrieval with deep classification features*
P. Tschandl iD ,1,2 G. Argenziano,3 M. Razmara4 and J. Yap4

1School of Computing Science, Simon Fraser University, Burnaby, Canada
2Department of Dermatology, Medical University of Vienna, Vienna, Austria
3Department of Dermatology, University of Campania, Naples, Italy
4MetaOptima Technology Inc., Vancouver, BC, Canada

Linked Editorial: Rotemberg and Halpern. Br J Dermatol 2019; 181: 5–6.

Correspondence

Philipp Tschandl.

E-mail: philipp.tschandl@meduniwien.ac.at

Accepted for publication

4 September 2018

Funding sources
MetaOptima Technology Inc.

Conflicts of interest

MetaOptima Technology Inc., where M.R. holds

the position of Chief Technology Officer, provided

access to deep learning hardware, employs J.Y. and

provided an unrestricted research grant to P.T. for

conducting a 1-year post-doc fellowship at Simon

Fraser University. G.A. serves as a medical advisor

to MetaOptima Technology Inc. MetaOptima

Technology offers a content-based image retrieval

(CBIR)-based educational tool to clinicians called

Visual Search that was not part of the presented

experiments.

*Plain language summary available online

DOI 10.1111/bjd.17189

Summary

Background Automated classification of medical images through neural networks
can reach high accuracy rates but lacks interpretability.
Objectives To compare the diagnostic accuracy obtained by using content-based
image retrieval (CBIR) to retrieve visually similar dermatoscopic images with cor-
responding disease labels against predictions made by a neural network.
Methods A neural network was trained to predict disease classes on dermatoscopic
images from three retrospectively collected image datasets containing 888, 2750
and 16 691 images, respectively. Diagnosis predictions were made based on the
most commonly occurring diagnosis in visually similar images, or based on the
top-1 class prediction of the softmax output from the network. Outcome mea-
sures were area under the receiver operating characteristic curve (AUC) for pre-
dicting a malignant lesion, multiclass-accuracy and mean average precision
(mAP), measured on unseen test images of the corresponding dataset.
Results In all three datasets the skin cancer predictions from CBIR (evaluating the
16 most similar images) showed AUC values similar to softmax predictions
(0�842, 0�806 and 0�852 vs. 0�830, 0�810 and 0�847, respectively; P > 0�99 for
all). Similarly, the multiclass-accuracy of CBIR was comparable with softmax pre-
dictions. Compared with softmax predictions, networks trained for detecting only
three classes performed better on a dataset with eight classes when using CBIR
(mAP 0�184 vs. 0�368 and 0�198 vs. 0�403, respectively).
Conclusions Presenting visually similar images based on features from a neural net-
work shows comparable accuracy with the softmax probability-based diagnoses
of convolutional neural networks. CBIR may be more helpful than a softmax clas-
sifier in improving diagnostic accuracy of clinicians in a routine clinical setting.

What’s already known about this topic?

• Convolutional neural networks (CNNs) can detect skin cancer on digital images to

an accuracy comparable with dermatologists’ in experimental settings.

• CNNs may be difficult to implement in practice as they commonly output numeri-

cal disease probabilities only.

• Numerical outputs of intermediate stages of a CNN, referred to as ‘deep features’,

correspond to visual properties on an image.

What does this study add?

• Content-based image retrieval (CBIR) based on deep features can find visually simi-

lar dermatoscopic images.

• Retrieving only 16 similar images can achieve the same accuracy as a CNN classifier.

• CBIR can enable a CNN to recognize unknown disease classes in new datasets.
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Automated analysis of medical images using neural networks

has been used in dermatoscopy for more than a decade,1,2 but

recently gained attention since groups have reported high

accuracy rates with convolutional neural networks (CNNs) for

skin images3,4 and dermatoscopy,5 as well as for other medi-

cal domains such as fundoscopy6 or chest X-rays.7 CNNs, in

brief, are a group of modern and powerful machine learning

models that do not require explicit handcrafted engineering.

Rather, they learn to detect visual elements such as colours,

shapes and edges by themselves, and combine detections of

those internally to a prediction. The only thing needed for

them, apart from computing power, is a large number of

images and labels to train them, where the labels correspond

to the diagnosis in the medical field.

Implementing automated classification models, like a CNN,

that output probabilities of diagnoses, or the most probable

diagnosis, is deemed desirable for a number of reasons within

a healthcare system. Using patient-based methods could ulti-

mately reduce the need for physicians in areas of scarcity and

reduce burden on the healthcare system, but are highly prob-

lematic with regard to regulations and safety. A more realistic

approach is having decision-support systems available to non-

specialized physicians that may be easier to implement and

have the potential to increase their diagnostic accuracy and

decrease referral rates. Integrating classification systems into a

specialists’ clinical workflow may increase efficiency and free

them from spending a large amount of time on easy-to-diag-

nose cases.

Although these effects are undeniably positive, real-world

settings can be problematic for classifiers that output the prob-

ability of a diagnosis. Accuracy rates for specified cut-offs are

commonly reported in experimental settings on digital images

with a verification bias, as mainly pathologically verified diag-

noses are deemed the gold standard for ground-truth labels.8

Even in sets using expert evaluations as ‘labels’, the included

cases may not inherit all or enough representations of com-

mon banal skin diseases.9 Specialized centres may not bother

photodocumenting such common cases because of the addi-

tional time required, and given their obvious diagnosis for an

expert.

Apart from imperfect accuracy rates of neural networks,

unforeseen problems can arise in practical use. This is exem-

plified by an earlier clinical study using an automated skin

lesion classifier where melanomas were missed simply because

they were not photographed by the user.2 Finally, classifica-

tions of CNNs can be prone to adversarial examples10 raising

questions of liability in misdiagnoses of such systems, or fal-

sely vindicating skin lesion removal on insurance funds for

cosmetic or financial incentives.

A solution for these problems is to keep physicians ‘in the

loop’11 for automated diagnoses. Classification systems could

run in the background analysing images to bring the ones of

most concern to a doctor’s attention more quickly. These sys-

tems could also be used to audit previously diagnosed cases

continuously where disagreements between the automated

classifier and physician can be flagged and recommended for

review. For a successful human–machine collaboration it is

key to know why a system makes a specific diagnosis, options

being visual question answering or automated captioning.12

For all these systems it is left to the discretion of the user to

interpret the results and decide whether they are correct.

Herein we explore a different, intuitive and transferrable

approach for ‘explainable’ artificial intelligence, called content-

based image retrieval (CBIR). With CBIR, the user presents an

unknown query image to a system, and cases with similar

visual features are automatically retrieved and displayed from

a database. Example queries and results of automatically

retrieved similar images are shown in Figure 1.

With the increased performance of CNNs in regard to clas-

sification, previous work has found that those networks also

learn filters that correspond to visual elements of an image in

later layers of a CNN.13 In other words, one set of filters in a

CNN could for example respond to whether a brown network

is visible, and another one could respond to a group of blue

clods. With many filters present in a CNN, and many ways to

combine them as an image moves through the network, it is

an active research area to try and understand what set of filters

correspond to an exact given visual structure. However, even

without knowing what exact filter detects which structure,

taken together they can be expressed as row of simple num-

bers (called a ‘feature vector’ or ‘deep features’), representing

all visual elements in an image. By comparing how similar

these collected numbers of two images are, one can match

faces,14 or retrieve visually similar medical data such as

histopathological images.15 Recently, Kawahara et al.16 used

such extracted features of a multimodality network to query a

database for similar images and found it had high sensitivity

(94%) but low specificity (36%) for detecting melanoma

(73% and 79%, respectively for a differential diagnostic

cut-off).

The goals of this study were (i) to evaluate whether CBIR

based on deep features of a neural network, trained for classi-

fication, can provide a comparable diagnostic accuracy as its

softmax probabilities; (ii) to determine how many similar

images may be practically needed; and (c) to determine

whether a CBIR system is transferrable to different datasets.

Materials and methods

Datasets

We compared diagnostic performance of a CBIR system to

neural networks using three datasets: EDRA, International Skin

Imaging Collaboration (ISIC2017) and PRIV (private).

The EDRA is a large collection of dermatoscopic images that

was published alongside the Interactive Atlas of Dermoscopy.17 We

filtered the dataset to contain only diagnoses with more than

50 examples and that were consistent with the ISIC2017 data-

set. A total of 20% of the images, randomized and stratified

by diagnosis of cases, were split as a test-set to evaluate our
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method. Of the remaining cases, 20% were used as validation

during training to fit network training parameters.

The ISIC2017 challenge for melanoma recognition pub-

lished a convenience dataset of dermatoscopic images with

fixed training, validation and test splits.8 The diagnoses

included in the dataset are melanoma (mel), naevus and seb-

orrhoeic keratoses (bkl).

For the PRIV dataset we gathered dermatoscopic images that

were consecutively collected at a single skin cancer centre

between 2001 and 2016 for clinical documentation including

pathological and clinical diagnoses (ethics review board waiver

from Ospedaliera di Reggio Emilia, Protocol No. 2011/

0027989). We excluded diagnoses with less than 150 exam-

ples, which resulted in inclusion of the following diagnoses:

angioma (including angiokeratoma), BCC (basal cell carci-

noma), bkl (seborrhoeic keratoses, solar lentigines and lichen

planus-like keratoses), df (dermatofibromas), inflammatory

lesions (including dermatitis, lichen sclerosus, porokeratosis,

rosacea, psoriasis, lupus erythematosus, bullous pemphigoid,

lichen planus, granulomatous processes and artefacts), mel (all

types of melanomas), naevus (all types of melanocytic naevi)

and SCC (squamous cell carcinomas, actinic keratoses and

Bowen disease). We performed splitting in the same manner

as for the EDRA dataset for cases with a pathological diagnosis.

Cases that had no pathological diagnosis but an expert rating

were included only in the training-set.

For all datasets, the training-set also represents the pool for

images possibly retrieved by the tested CBIR systems. We

avoided same-lesion images spread between training, valida-

tion and test-set. Complete dataset numbers are shown in

Table 1.

Network architecture and training

In all experiments we used a ResNet-50 architecture18 with

network parameters initialized through training on the Ima-

geNet dataset,19 which contains > 1 million images of 1000

different objects of daily life. This pretraining enables the

ResNet-50 architecture to recognize general shape, edge and

colour combinations, and reduces the training time needed to

adapt it to our specialized task of dermatoscopic image classifi-

cation. Depending on the dataset used for a given experiment

we modified the size of the last ‘fully connected layer’ in the

CNN to match the number of classes present respectively, and

fine-tune the network. This ‘fully connected layer’ provides the

probability output for every diagnosis, and because this layer

processes its numerical input with the softmax function, we

refer to its output as ‘softmax prediction’. As compared with

Fig 1. Positive examples of three query images (first column) and corresponding most similar images as found by content-based image retrieval

(CBIR). The results show similar dermatoscopic patterns that in the majority correspond to the correct diagnosis. MEL, melanoma; SCC, squamous

cell carcinoma; BCC, basal cell carcinoma.
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Han et al.4 we did not define diagnosis-specific thresholds, but

rather took the diagnosis with the highest probability value as

the final diagnosis prediction. Further training implementation

details are given in File S1 (see Supporting Information).

Content-based image retrieval

For all images in the retrieval image set we passed them

through the CNN, and collected the output of the deepest

layer (‘pool5’) as the feature vector. This vector consists of

2048 numbers that represent visual features of an image. By

calculating the cosine similarity of two such vectors, we got a

single number ranging between zero and one corresponding

to how ‘similar’ features in two images were. In other words,

the cosine similarity of two images describes in a single num-

ber how similar the visual elements of two images are. There-

fore, to obtain the most visually similar images to a query in

this study, we calculated its cosine similarity to every other

image in a dataset and sorted them by the resulting value.

In order to be able to compare CBIR with softmax predic-

tions, we collected the k most similar lesions for every query

and regarded the frequency of their corresponding disease

labels as their probability. For example, if four of five similar

images were a melanoma and one was a naevus, we regarded

melanoma probability as 0�8 and naevus probability as 0�2.

Metrics and statistics

The following metrics were calculated for evaluating diagnos-

tic accuracy, where all retrieved images had the same weight

during retrieval except for solving ties of specific diagnoses.

Area under the receiver operating characteristic curve for

detecting skin cancer

Here the per cent of malignant retrieval cases (CBIR) or the

sum of probabilities of malignant classes (softmax) was

used to calculate area under the receiver operating charac-

teristic (ROC) curves (AUC). Sensitivity and specificity val-

ues were likewise calculated for detecting skin cancer with

fixed cut-offs of needed malignant examples/probabilities

returned [25% (Sens@0�25 and Spec@0�25) and 50%

(Sens@0�5 and Spec@0�5) of retrievals]. As a result of the

lack of other malignant classes, this value is equal to the

AUC to detect melanoma when testing on the EDRA and

ISIC2017 datasets.

Multiclass accuracy

This is the percentage of all correct specific predictions,

where the prediction was made for the class with the highest

probability (softmax) or most commonly retrieved (CBIR)

examples. To avoid tied predictions with CBIR, a minimal

linear weighting based on retrieval order (1�00–0�99 dis-

tributed evenly along k retrieved images) was applied during

counting.T
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Multiclass mean average precision

For multiclass mean average precision (mAP), briefly, average

precision scores for every test-set class were macro-averaged

as implemented by Pedregosa et al.,20- where prediction scores

were obtained by either the frequency of the query class in

CBIR retrievals or softmax prediction scores. A more detailed

description is given in File S1.

Experiments in addition to raw data computation and visu-

alization were performed with python [PyTorch21 (https://py

torch.org/), sklearn20 (http://scikit-learn.org/stable/) and

matplotlib22 (https://matplotlib.org/)] and R Statistics (R

Foundation, Vienna, Austria).23,24 As testing all combinations

of CBIR cut-offs (restricted to up to 32 images), datasets and

metrics would result in too many comparisons, we restricted

formal statistical tests comparing diagnostic metrics to the

AUC of ROC detecting skin cancer when retrieving 2, 4, 8,

16 and 32 images, which we believe is a clinically meaningful

evaluation. ROC curves were computed using pROC25

(https://web.expasy.org/pROC/) and compared using the

DeLong method.26

Paired t-tests were used to compare cosine similarity values

after checking for approximate normality. In case of a viola-

tion, paired Wilcoxon signed rank test was used instead. A

two-sided P-value of < 0�05 was regarded as statistically sig-

nificant. The 95% confidence interval (CI) values of ROC

curves in addition to sensitivity and specificity at specified cut-

offs were calculated with 2000 bootstrapped replicates. All

P-values are reported adjusted for multiple testing with the

Holm method27 unless otherwise specified. Correction for

multiple testing was stopped after the first nonrejection of the

null hypothesis, and therefore no adjusted P-values reported

for the remaining comparisons.

Results

Same-source content-based image retrieval and

classification

The mean cosine similarities of all retrieval images for all

queries of the same data source were 0�631 (95% CI

0�628–0�634; EDRA), 0�623 (95% CI 0�621–0�625;
ISIC2017) and 0�638 (95% CI 0�635–0�640; PRIV). Retrie-

val images with the same diagnosis had a significantly

higher similarity value to a query image compared with

those of different classes (0�667, 95% CI 0�665–0�669 vs.

0�601, 95% CI 0�600–0�603; P < 0�001). Subgroup analyses

likewise revealed significant differences for every diagnosis

within every dataset (Fig. 2). For accuracy calculations

below, the k most similar retrieval images were collected

for every query, and the most frequently occurring disease

label counted as the prediction.

Fig 4. Receiver operating characteristic curve for detecting melanoma when retrieving 16 similar images with content-based image retrieval

(CBIR) (grey), showing different thresholds of needed malignant retrieval images (‘predict melanoma when x of 16 retrieved images are

melanomas’), in addition to softmax-based probabilities (red). Network training-, query- and retrieval-images are from EDRA. AUC, area under

the receiver operating characteristic curve.
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Using these ranked images for diagnostic predictions it was

able to approximate a classic softmax-based classifier with only

few retrieval cases with regard to multiclass accuracy (Fig. 3

and Table 2). For the two datasets containing only three

classes, CBIR outperformed the softmax-based classification

and had the highest accuracy when retrieving eight (EDRA,

accuracy 0�762) and 16 similar cases (ISIC2017, accuracy

0�759), whereas in the PRIV dataset the best result with 32

retrievals (accuracy 0�629) was still below the corresponding

softmax accuracy of 0�645. As can be seen in Figure 3, using

more than 16 retrieved images did not consistently improve

accuracy of CBIR.

In all three datasets, showing only two retrieved images

resulted in decreased performance in detecting skin cancer as

measured by the AUC, where the difference was significant

for the eight-class dataset (EDRA 0�782 vs. 0�830, P = 1�0;
ISIC2017 0�760 vs. 0�810, P = 0�073; PRIV 0�791 vs. 0�847,
P < 0�001).

Figure 4 shows the ROC curve of the EDRA intra-dataset

evaluation when fixing the CBIR output to 16 images, where

disregarding a small frequency of malignant cases in the

images did not change sensitivity substantially. Fixing the out-

puts to 16 cases, and labelling a query case ‘malignant’ if at

least 25% of retrievals showed a malignant lesion, resulted in

a sensitivity of 84�1% and a specificity of 68�1% in the EDRA

dataset, 70�9% and 77�6% in the ISIC2017 and 87�4% and

63�9% in the PRIV dataset, respectively (Table 2).

New-source classification

Figure 5 and Table 3 show mean average precision values of

networks trained and tested on different datasets, with differ-

ent CBIR resource databases used. In other words, the images

to be diagnosed, the images a CNN retrieves similar cases

from and the images the CNN was trained on can all originate

from different sources. Softmax-based predictions from three-
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Fig 5. Mean average precision (mAP) of a ResNet-50 network trained on EDRA dataset images. Predictions were made either through softmax

probabilities (red line) or class-frequencies of content-based image retrieval (CBIR) (black). Softmax predictions perform worst on predicting PRIV

dataset images, as the networks are not able to predict five of the eight classes in any case (first two columns, bottom row). CBIR retrieving from

EDRA and ISIC2017 suffers from the same shortcomings, but was able to predict better when using PRIV-source retrieval images (bottom right).

In general, CBIR performs best when using retrieval images from the same source as the test images (descending diagonal), and here performed

better on new data than softmax predictions. Re-training the network on those new-source images (blue) in turn outperformed CBIR again.

ISIC2017, International Skin Imaging Collaboration.
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class-trained networks (EDRA and ISIC2017) perform worse

on predicting the eight-class dataset (PRIV) with mAP values

of 0�184 and 0�198, respectively. Using the target source as a

CBIR resource improved mAP to up to 0�368 and 0�403,
respectively. This is because previously ‘unknown’ classes can

still be retrieved as those networks transfer the ability to dis-

tinguish diagnoses through visual similarity (see Fig. 6). The

best CBIR performance is obtained with combinations where

training, testing and resource are from the same source.

Discussion

Current CNN classifiers perform well but commonly behave as

black boxes during inference and preclude meaningful integra-

tion of their findings to a clinical-decision process. Having an

intuitive, ‘explainable’, output of an automated classifier that

complements – rather than overrides – a clinical-decision pro-

cess may be more desirable and can enhance efficient use of

the time of healthcare workers. Compared with other

techniques for explainable artificial intelligence28 such as

image captioning and visual question answering,12 we

hypothesize that showing similar cases with their ground truth

may be even more intuitive. Similar images found by CBIR

further comprehensibly reveal the knowledge base of a net-

work decision and may conceive when not to trust the auto-

mated system. More specifically, if users notice retrieved cases

look nothing like the query image, they could intuitively

decide the CNN cannot help in that case. Herein we show that

CBIR can perform on a par with softmax-based predictions of

a ResNet-50 network on accuracy of skin cancer detection, in

addition to multiclass accuracy and mean average precision

(Table 2).

We describe reasonably good metrics for formal evaluation

of a CBIR system, but more current architectures may be able

to reach even higher accuracy. We hypothesize that, with

increasing accuracy of a network, accuracy of CBIR will rise

accordingly. The true advantage of CBIR may lie in the fact

that a human reader can select the most fitting and relevant

Table 3 Mean average precision between datasetsa

TRAIN TEST CBIR CBIR2 CBIR4 CBIR8 CBIR16 CBIR32 Softmax

EDRA 0�632 0�681 0�702 0�748 0�775
EDRA ISIC2017 0�466 0�507 0�579 0�638 0�662 0�761

PRIV 0�405 0�490 0�520 0�563 0�573
EDRA 0�385 0�417 0�429 0�444 0�444

EDRA ISIC2017 ISIC2017 0�465 0�513 0�576 0�585 0�582 0�456
PRIV 0�388 0�398 0�425 0�438 0�445
EDRA 0�154 0�161 0�165 0�172 0�177

PRIV ISIC2017 0�150 0�163 0�170 0�179 0�188 0�184
PRIV 0�249 0�284 0�310 0�338 0�368
EDRA 0�524 0�591 0�583 0�624 0�604

EDRA ISIC2017 0�410 0�448 0�487 0�488 0�512 0�524
PRIV 0�374 0�416 0�441 0�453 0�459
EDRA 0�376 0�403 0�459 0�504 0�537

ISIC2017 ISIC2017 ISIC2017 0�583 0�654 0�697 0�725 0�734 0�745
PRIV 0�405 0�423 0�439 0�468 0�483
EDRA 0�149 0�158 0�167 0�175 0�182

PRIV ISIC2017 0�159 0�172 0�183 0�191 0�200 0�198
PRIV 0�269 0�316 0�377 0�389 0�403
EDRA 0�514 0�597 0�637 0�647 0�640

EDRA ISIC2017 0�434 0�465 0�498 0�540 0�566 0�641
PRIV 0�543 0�552 0�582 0�597 0�629
EDRA 0�371 0�403 0�434 0�458 0�475

PRIV ISIC2017 ISIC2017 0�543 0�596 0�649 0�667 0�688 0�551
PRIV 0�419 0�446 0�468 0�498 0�528
EDRA 0�152 0�161 0�167 0�171 0�177

PRIV ISIC2017 0�158 0�169 0�181 0�188 0�197 0�598
PRIV 0�405 0�472 0�517 0�545 0�568

aTRAIN denotes dataset the ResNet-50 architecture was trained on, TEST the origin of test images, and content-based image retrieval (CBIR)

origin of retrieval images. While CBIR was able to approximate softmax-based predictions between the three-class datasets (EDRA and

ISIC2017) when using same-source TEST and CBIR sets, it outperformed three-class trained networks on the eight-class PRIV dataset as it is

able to recognize unseen classes through the larger resource dataset. ISIC2017, International Skin Imaging Collaboration.

© 2018 The Authors. British Journal of Dermatology
published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists

British Journal of Dermatology (2019) 181, pp155–165

Diagnostic accuracy of dermatoscopic image retrieval, P. Tschandl et al. 163



examples from the provided image-subset and is not restricted

to the strict counting and weighting used for calculations in

this manuscript. We suspect having such a ‘human-in-the-

loop’ would give a much higher diagnostic precision in prac-

tice, which should be subject to future studies.

Deep learning literature dealing with image classification

commonly presents accuracy metrics measured on the same

dataset-source incorporating the same diagnostic classes.

Relying on those experimental results when implementing an

automated classifier in clinical practice may be precarious, as

an end-user may take images with a different camera, on

patients with different skin types, with different class distri-

butions – and even with disease classes the network has not

encountered before. For these reasons a classifier with a fixed

set of diagnoses may fail in unexpected ways that would go

unnoticed if the output is merely a probability of specific

diagnoses. Neural networks trained for classification by

design are limited to predict classes they have seen during

the training period. Currently, to our knowledge, no avail-

able dataset comes close to encompassing all clinically possi-

ble classes. Further, class definitions of medical entities may

change over time with new biological insights. The CBIR

method described herein shows that classifiers knowing only

three classes are able to generalize better to a new dataset

with eight classes than their softmax-based predictions

(Table 3). The highest accuracy can still be obtained through

fine-tuning a network on the target data source (blue lines

in Fig. 5), but such a re-training period may not be feasible

when retrieval data-sources are not accessible for training

because of data protection regulations or lack of machine

learning resources.

In contrast to decision support systems with a fixed per-

formance and cut-off that needs to undergo clinical test-

ing,29 CBIR as a dynamic and potentially vendor-

independent, decision support system may be easier to

expand and update in practice with growing search datasets

and improved models.

There are some limitations to our study. As the results from

a previous study by Kawahara et al.16 were not public until the

end of our experiments we did not perform a sample size cal-

culation, so this work needs to be regarded as an exploratory

pilot study. We trained the ResNet-50 architecture on the
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Fig 6. Mean cosine similarities of PRIV retrieval images with the same (blue) or different (red) diagnosis for the corresponding PRIV query

images. Cosine similarity is calculated by feature extraction via ResNet-50 networks trained for classification on different training datasets (rows).

Compared with the PRIV-trained network, those trained on different sources (row EDRA and ISIC2017) transfer their ability to distinguish specific

diagnoses through visual similarity except for seborrhoeic keratoses (bkl) cases. Lines are drawn between values for the same query image. W,

paired Wilcoxon signed-rank test was used instead of paired t-test; ISIC2017, International Skin Imaging Collaboration; bcc, basal cell carcinoma;

df, dermatofibromas; mel, melanoma; scc, squamous cell carcinoma. NS, nonsignificant: P > 0�05, **P < 0�01, ***P < 0�001; grey indicators

denote nonadjusted P-values as these comparisons were omitted during correction for multiple testing (see statistics section).
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datasets with reasonable effort on fine-tuning, data augmenta-

tion and hyperparameter tuning, but did not pursue maxi-

mum classification accuracy. Therefore, achievable values may

be higher as shown by Han et al.,4 but we expect a better clas-

sifier using a larger image dataset to improve CBIR in a similar

way. All data herein is suffering from selection bias (images

were found worthwhile to be photographed by a physician)

and verification bias. A user-focused and prospective analysis

of such a decision support will be able to give more insight

into clinical applicability. Document retrieval studies usually

use a different set of metrics where mean average precision is

defined differently. We chose the used metrics and definitions

to reflect clinically meaningful outcomes rather than retrieval

performance.

In conclusion, in this work we show that automated retrie-

val of few visually similar dermatoscopic images approximate

accuracy of softmax-based prediction probabilities. Further,

CBIR may improve performance of trained networks in new

sets and unseen classes when there is no possibility of fine-

tuning of a network on new data.
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