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Abstract: Tin oxide (SnO2) nanomaterials are of great interest in many fields such as catalytic,
electrochemical, and biomedical applications, due to their low cost, suitable stability characteristics,
high photosensitivity, etc. In this contribution, SnO2 NPs were facilely fabricated by calcination of
tin (II) oxalate in air, followed by a liquid-phase exfoliation (LPE) method. Size-selected SnO2 NPs
were easily obtained using a liquid cascade centrifugation (LCC) technique. The as-obtained SnO2

NPs displayed strong absorption in the UV region (~300 nm) and exhibited narrower absorption
characteristics with a decrease in NP size. The as-fabricated SnO2 NPs were, for the first time, directly
deposited onto a poly(ethylene terephthalate) (PET) film with a regular Ag lattice to fabricate a flexible
working electrode for a photoelectrochemical (PEC)-type photodetector. The results demonstrated
that the SnO2-NP-based electrode showed the strongest photoresponse signal in an alkaline electrolyte
compared with those in neutral and acidic electrolytes. The maximum photocurrent density reached
14.0 µA cm−2, significantly outperforming black phosphorus nanosheets and black phosphorus
analogue nanomaterials such as tin (II) sulfide nanosheets and tellurene. The as-fabricated SnO2

NPs with relatively larger size had better self-powered photoresponse performance. In addition,
the as-fabricated SnO2-NP-based PEC photodetector exhibited strong cycling stability for on/off
switching behavior under ambient conditions. It is anticipated that SnO2 nanostructures, as building
blocks, can offer diverse availabilities for high-performance self-powered optoelectronic devices to
realize a carbon-neutral or carbon-free environment.

Keywords: tin oxide; metal oxide; nanomaterials; calcination; photodetection

1. Introduction

A variety of strategies have been proposed over the last three decades to address
critical global issues such as energy shortages and the impacts of a carbon-free envi-
ronment [1–5]. Optoelectronic devices based on semiconducting materials have shown
promising potential for utilizing abundant solar energy [6–9]. To date, a great deal of
research has focused on the rational fabrication of high-performance semiconducting nano-
materials such as two-dimensional (2D) black phosphorus (BP) and its analogues [10,11],
2D tellurene [12], 0D or 2D selenium (Se) nanomaterials [13,14], etc., for their excellent
optoelectronic device performances. For example, in 2017, Zhang et al. [11] successfully
fabricated large-sized BP nanosheets (NSs) using a facile liquid-phase exfoliation (LPE)
method, and these were employed as electrode materials to fabricate self-powered photode-
tectors displaying comparable photoresponse activity and environmental robustness under
light illumination. In 2018, Ye et al. [15] successfully synthesized large-area, high-quality
2D tellurene NSs, with tunable thickness from a monolayer to tens of nanometers, and
with lateral sizes of up to 100 µm, by a hydrothermal method. These exhibited high on/off
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ratios (106), environmentally excellent stability, and carrier mobilities of about 700 cm2

V−1 s−1. Furthermore, in 2019, our group [6] rationally synthesized telluride–selenium
(Te–Se) roll-to-roll nanotubes with different Se contents by epitaxial growth of Se on pre-
cursor Te nanotubes. These not only demonstrated a significantly improved capacity for
self-powered photodetection but also remarkably enhanced the photocurrent density and
stability in various aqueous electrolytes such as HCl, NaCl, and KOH solutions. However,
the environmental instability of nanostructures (e.g., BP NSs and Se NSs) upon exposure to
air, and the complex, time-consuming, and high-cost synthetic process make it difficult for
them to satisfy the growing requirements of modern devices. Therefore, the exploitation of
high-quality, cost-effective, and stable self-powered nanostructures is of great value for the
performance optimization of optoelectronic devices.

It is well known that a standard photodetector should meet the “5S” requirement:
high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high
stability [16,17]. Self-powered UV photodetectors play a vital role in many commercial and
scientific applications including flame sensing, optical communication, satellite launching,
biological and chemical analysis, and astronomical studies [18–20]. SnO2, a IV–VI semi-
conductor, is used as a UV detection material due to a variety of merits such as its suitable
bandgap (3.6–4.0 eV) [7,21], high chemical stability, high electron mobility [22], etc. These
characteristics make it suitable for many intriguing applications such as in batteries [23,24],
sensors [25,26], catalysis [27,28], solar cells [22,29], water purification [7,30,31], and biomed-
ical applications [32,33]. Moreover, the bandgap energy of SnO2 has great potential for
bridging the bandgap space between BP (0.3–2.0 eV) [1,11], and hexagonal boron nitride
(5.0–6.0 eV) [34]. These features of SnO2 make it a promising semiconducting material for
practical application in self-powered UV photodetectors under ambient conditions, and it
holds great promise in the field of renewable energy and renewable energy consumption
for the achievement of carbon neutrality targets.

In this contribution, SnO2 nanostructures were facilely synthesized by calcination of
tin (II) oxalate at 700 ◦C in air, and a combination of liquid-phase exfoliation (LPE) and
liquid cascade centrifugation (LCC) was carried out to prepare size-selected SnO2 NPs.
The as-prepared SnO2 NPs had an average diameter of 92 nm, 78 nm, and 56 nm as the
centrifugation speed in the LCC process was increased. All the SnO2 NPs displayed strong
absorptionn in the UV region (~300 nm) with relatively narrower absorption characteristics
with a decrease in NP size. The as-fabricated SnO2 NPs were, for the first time, directly de-
posited onto a poly(ethylene terephthalate) (PET) film with a regular Ag lattice, to fabricate
a flexible electrode for a photoelectrochemical (PEC)-type photodetector. The photore-
sponse results for this PEC-type photodetector demonstrated that it not only showed the
strongest photoresponse signal in an alkaline electrolyte compared with those in neutral
and acidic electrolytes, with maximum photocurrent density of 14.0 µA cm−2, but also
displayed excellent self-powered photoresponse performance, as well as high stability
in an alkaline electrolyte. Due to the facile fabrication, tunable UV absorption, excellent
self-powered response and high environmental stability, it is expected that the present work
can provide fundamental guidance on self-powered PEC photodetectors based on SnO2
nanostructures and inspire more research interest in next-generation devices, to achieve
carbon neutrality targets.

2. Experimental Section
2.1. Materials

Tin (II) oxalate powder (99.9%), isopropyl alcohol (IPA, 99.9%), dimethyl formamide
(DMF, 99.9%), poly(vinylidene fluoride) (PVDF, Mn = 71,000 g mol−1), and dimethyl
formamide (DMF, 99.9%)were purchased from Sigma-Aldrich, Shanghai, China and used
as received. PET film with a regular Ag lattice was purchased from IVTech-Jiangsu Co., Ltd.,
Nantong, Jiangsu, China. Hydrochloric acid (HCl, 38%), potassium chloride (KCl, 99.9%),
and potassium hydroxide (KOH, 99.9%) were purchased from Alfa Aesar, Haverhill, MA,
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USA and used as received. Double-distilled deionized water was used for the preparation
of the aqueous electrolyte.

2.2. Fabrication of SnO2 NPs

SnO2 nanostructures were facilely synthesized by calcination of tin (II) oxalate powder
in air at 600 ◦C and 700 ◦C for a predetermined time (4 h and 8 h). Then, the as-obtained
SnO2 nanostructures were dispersed into IPA solvent with a concentration of 12 mg mL−1

for sonication overnight at room temperature. An LCC technique was employed to collect
different sizes of SnO2 NPs. For convenience, the SnO2 NPs collected at the centrifugation
speed ranges of 2000–3000 rps, 5000–6000 rps, and 9000–10,000 rps were abbreviated as
SnO2 NPs-1, SnO2 NPs-2, and SnO2 NPs-3. If not specified, SnO2 NPs denotes that they
were obtained at a centrifugation speed range of 2–10 k.

2.3. Characterization

X-ray diffraction (XRD) patterns were obtained using a D8 Discover 25 X-ray diffrac-
tometer (Bruker) with a Cu K (k = 1.54056 Å) radiation source at room temperature collected
from 5◦ to 85◦. The morphology and dimension of the SnO2 nanostructures were deter-
mined by scanning electron microscopy (SEM, JSM-6701F, JEOL) and transmission electron
microscopy (TEM, FEI F30, 300 kV) at an acceleration voltage of 5.0 kV with sample sput-
tering applied before analysis. The atomic arrangement of the as-fabricated SnO2 NPs was
determined by high-resolution TEM (HRTEM). The SnO2 NPs sample was loaded onto
ultrathin carbon-coated holey copper support films with 300-mesh copper grids for TEM
measurements. UV–Vis absorbance spectrometry (Cary 60, Agilent, Santa Clara, CA, USA)
with a spectral range of 200–1100 nm was performed to record UV–Vis–NIR absorption
spectra of all the fabricated SnO2 NPs at room temperature. A typical photoresponse
behavior was studied using a PEC measurement system [35,36]. The three-electrode system
consisted of a working electrode (SnO2 NPs deposited on a clean PET film with a regular
Ag lattice, photoanode), a counter electrode (platinum wire, photocathode), and a refer-
ence electrode (a saturated calomel electrode), together with aqueous electrolytes (0.05 M
HCl, 0.05 M KCl, and 0.05 M, 0.10 M, and 0.50 M KOH). Amperometric current–time (I–t)
curves were recorded at bias voltages of −0.4 V, −0.2 V, and 0 V under laser irradiation
with different power densities (Table S1). Electrochemical impedance spectra (EIS) were
collected at an amplitude of 0.005 V in the frequency range from 1 to 105 Hz.

3. Results and Discussion

In this work, SnO2 nanostructures were fabricated by facile calcination on a large
scale at relatively high temperature. The XRD results in Figure 1a show that only a high
calcination temperature and a long calcination time, e.g., 700 ◦C for 8 h, could efficiently
facilitate the formation of pure SnO2 structures. However, low calcination temperature or
a short calcination time, e.g., calcination at 700 ◦C for 4 h or 600 ◦C for 8 h could lead to
the formation of SnO structures to some extent, as shown by the appearance of the peak
at ~30◦ caused by the insufficient decomposition of tin (II) oxalate powder, which can be
indexed to the characteristic peak of SnO (Figure 1a) [37,38]. It can be observed from the
SEM image that relatively uniform SnO2 nanostructures were obtained (Figure 1b), with
diameters ranging from ~20 nm to ~150 nm (Figure 1c).

In order to obtain size-selected SnO2 NPs, a combination of LPE and LCC techniques
was used. The LPE technique was used to exfoliate the SnO2 nanostructures calcined at
700 ◦C for 8 h, and the LCC technique was used to collect the as-exfoliated SnO2 NPs with
a more uniform size. As shown in Figure 2, the TEM image shows that the SnO2 NPs
obtained by a combination of LPE and LCC techniques displayed clear size selection, i.e.,
SnO2 NPs-1 collected at a centrifugation speed range from 2000 rps to 3000 rps had an
average diameter of ~92 nm (Figure 2a); SnO2 NPs-2 collected at a centrifugation speed
range from 5000 rps to 6000 rps had an average diameter of ~78 nm (Figure 2b); and
SnO2 NPs-3 collected at a centrifugation speed range from 9000 rps to 10,000 rps had an
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average diameter of ~56 nm (Figure 2c). The HRTEM image shows clear lattice fringes of
0.25 nm and 0.34 nm (Figure 2d), which can be assigned to the (101) and (110) planes of the
SnO2 crystals, respectively [29,39]. The selected-area electron diffraction (SAED) pattern
(Figure 2d, inset) further confirms the formation of the SnO2 nanostructures.
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prepared by calcination of SnC2O4 at different temperatures for a predetermined time in air. (b) SEM
image of SnO2 nanostructures obtained by calcination of SnC2O4 at 700 ◦C for 8 h in air and (c) the
enlarged area corresponding to the region surrounded by a green box in (b).
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Figure 2. TEM characterization of the SnO2 NPs with different sizes: (a) SnO2 NPs-1, (b) SnO2 NPs-2,
(c) SnO2 NPs-3. (d) HRTEM image; inset shows its SAED pattern.

UV–Vis–NIR absorption spectroscopy was employed to characterize the optical re-
sponse of the size-selected SnO2 NPs, as shown in Figure 3a. It can be seen that all the
three samples displayed a relatively narrow optical absorption, but with an increase in
size of the SnO2 NPs the absorption became wider and stronger, in good agreement with
the results reported for tin (II) sulfide (SnS) nanosheets [40] and tungsten disulfide (WS2)
nanosheets [41]. Moreover, simulated light (SL, 300–2000 nm, Table S1) was employed as
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incident light to illuminate the SnO2-NP-based electrode for electricity detection. As shown
in Figure 3b,c, except for the acidic electrolyte condition, the electrode always exhibited a
gradually increasing photoresponse signal with an increase in the power density (Pλ) of
SL in alkaline or neutral electrolyte, indicating that the performance optimization of this
SnO2-NP-based photodetector can be easily realized. The influence of the electrolyte on
the photoresponse behavior was also studied, as shown in Figure 3b,c. It can be observed
that the alkaline electrolyte was the most competitive electrolyte in this SnO2-NP-based
photodetector, because the highest photocurrent density (I = (Ion − Ioff)/S) was delivered
in 0.05 M KOH compared with those delivered in 0.05 M KCl and 0.05 M KCl. Here, Ion and
Ioff denote the photocurrent with and without irradiation, respectively, and S represents the
effective area of the SnO2 NPs under irradiation. This could be mainly attributable to the
different functionalities of the SnO2 NPs on the surface and the electrolytes, due to the simi-
lar resistance interface (R) between the SnO2 NPs and the electrolytes (R0.05M KOH = 17.6 Ω,
R0.05M KCl = 18.3 Ω, and R0.05M HCl = 17.6 Ω), as seen in Figure 3d. It is noted that the
highest I in this work reached 14.0 µA cm−2, significantly outperforming black phosphorus
nanosheets (0.382 µA cm−2) [11] and black phosphorus analogue nanomaterials such as tin
(II) sulfide nanosheets (1.59 µA cm−2) [40] and tellurene (0.365 µA cm−2) [12] (Table S2).
Furthermore, the electrolyte concentration also played an important role in the photore-
sponse behavior. It can be observed from Figure 3b,c that the lower the KOH concentration,
the higher the value of I, which could be mainly ascribed to the R (R0.50M KOH = 5.5 Ω,
R0.10M KOH = 8.7 Ω, and R0.05M KOH = 17.6 Ω), as seen in Figure 3d, indicating that at
the studied electrolyte concentrations, high electrolyte concentration severely suppressed
the efficient separation of hole (h+)–electron (e−) pairs. In addition, unlike for I, larger
photoresponsivity (R = I/Pλ) was usually obtained under relatively low Pλ, especially
in KOH electrolytes (0.05 M, 0.10 M, and 0.50 M), as seen in Figure 3e. The highest R
value reached 0.10 µA W−1, which is comparable to those of black phosphorus nanosheets
(2.2 µA W−1) [11] and tellurene (3.0 µA W−1) [12]. It should be noted that the much larger
Pλ of SL employed in this work leads to low values of R compared to those reported in
other studies [6,42].

In order to emphasize the specific response behavior in the UV region, incident lasers
with different wavelengths (300, 334, 380, and 420 nm) were used to irradiate the SnO2-
NP-based electrodes. As shown in Figure 4a, the as-prepared SnO2-NP-based electrode
displayed significantly the largest I under the 334 nm laser, compared with the values under
300, 380, or 420 nm lasers under the same conditions, verifying that this SnO2-NP-based
photodetector has a specific UV photodetection performance. The largest I and R values,
observed under the 334 nm laser at an external voltage of −0.2 V, were 5.35 µA cm−2 and
4.61 µA W−1, respectively. Note that this specific UV photodetection performance under
a 300 nm or 334 nm laser does not dramatically deteriorate when the external voltage
changes remarkably (see Figure S1). The response time (tres) and recovery time (trec) are
usually assigned to the time interval for the rise and decay from 10% to 90% and from
90% to 10% of the peak value, respectively [40]. It can be seen in Figure 4b and Figure S2
that the tres/trec of the as-fabricated SnO2-NP-1-based electrode was 2.7 s/3.8 s, close to
those of the SnO2-NP-2-based electrode (3.6 s/3.9 s) and the SnO2-NP-3-based electrode
(3.5 s/3.8 s), all of which are comparable to those of SnSe nanosheets (1.2 s/2.2 s) [43] and
bismuth selenide nanosheets (5.3 s/9.5 s) [44].

Due to the size-dependent absorption of the SnO2 NPs as mentioned above and seen in
Figure 2a, the photoresponse behavior and self-powered photoresponse performance (zero
external voltage) were also studied, as shown in Figure 5. It can be seen from Figure 5a and
Figure S3 that the photocurrent densities of SnO2 NPs-2 and SnO2 NPs-3 irradiated by SL
(Figure 5a) and the 334 nm laser (Figure S3) at an applied exteral voltage were almost the
same under the same conditions, while they were evidently superior to that of SnO2 NPs-1,
indicating that relatively smaller SnO2 NPs were more beneficial for strengthening the
PEC signal. Similarly, at zero external voltage, the self-powered photoresponse signal had
the same trend as at −0.2 V (Figure 5b), and the largest self-powered I was 2.25 µA cm−2,
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which is also better than that of black phosphorus nanosheets (0.265 µA cm−2) [11] and
selenium quantum dots (0.0385 µA cm−2) [14]. In addition, the reduction in I after one
month was calculated to be only 27.6% (Table S2 and Figure S4), and the observed on/off
switching behavior was unchanged from the beginning. This, combined with almost the
same color before and after measurement (Figure S5), confirmed that the as-prepared
SnO2-NP-based electrode shows excellent photoresponse stability and holds great potential
for practical applications in optoelectronic devices.
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Figure 3. Photoresponse behavior. (a) UV–Vis–NIR spectra of the size-selected SnO2 NPs; (b) on/off
switching behavior of the SnO2-NPs-1-based electrode in different electrolytes under SL at −0.2 V;
(c) current density of the SnO2-NPs-1-based electrode as a function of power density; (d) interface
resistances between the SnO2-NPs-1-based electrode and different electrolytes; (e) photoresponsivity
of the SnO2-NPs-1-based electrode as a function of power density.
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Figure 5. Effect of SnO2 NPs with different sizes on the photoresponse behavior at external voltages
of (a) −0.2 V and (b) 0 V, under SL.

4. Conclusions

In this contribution, SnO2 NPs were facilely fabricated by calcination of tin (II) oxalate
in air, followed by a combination of LPE and LCC techniques. The XRD patterns showed
that the SnO2 nanostructures could be successfully obtained after sufficient calcination for
8 h at 700 ◦C. The SEM image showed that the as-fabricated SnO2 NPs had a particle size
ranging from ~20 nm to ~150 nm. The PEC result demonstrated that the SnO2-NP-based
electrode not only had a strong electrolyte-dependent PEC performance (i.e., the best
performance in a low-concentration alkaline electrolyte), but also exhibited size-modulated
photoresponse behavior, i.e., the smaller the size, the better the PEC performance. Moreover,
the SnO2-NP-based photodetector showed a much stronger and more stable PEC signal
in the UV region (300 nm and 334 nm), compared to that in the visible region (420 nm),
indicating that it has great potential as a building block in UV photodetectors. In addition,
the excellent PEC stability even for a one-month PEC measurement makes the SnO2-NP-
based electrode a promising candidate for practical applications. It is anticipated that the
present work can provide fundamental guidance on the performance of a PEC-type SnO2-
NP-based photodetector and offer extensive availabilities for high-performance SnO2-based
heterostructures for constructing next-generation optoelectronic devices.
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