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Abstract
Purpose of Review Global malaria elimination has little chance of success without an effective vaccine. The first malaria vaccine,
RTS,S/AS01e, demonstrated moderate efficacy against clinical malaria in phase III trials and is undergoing large-scale effec-
tiveness trials in Africa. Importantly, the vaccine did not perform equally well between phase III study sites. Though reasons for
the moderate efficacy and this variation are unclear, various mechanisms have been suggested. This review summarizes the
recent literature on suchmechanisms, with a focus on those involving landscape ecology, parasite antigenic variation, and human
host genetic differences.
Recent Findings Transmission intensity may have a role pre- and post-vaccination in modulating immune responses to the
vaccine. Furthermore, malaria incidence may “rebound” in vaccinated populations living in high transmission intensity settings.
There is growing evidence that both genetic variation in the parasite circumsporozoite protein and variation of human host genetic
factors affect RTS,S vaccine efficacy. These genetic factors may be interacting in complex ways to produce variation in the
natural and vaccine-induced immune responses that protect against malaria.
Summary Due to the modest efficacy of RTS,S/AS01e, the combinations of factors (ecological, parasite, human host) impacting its
effectiveness must be clearly understood, as this information will be critical for implementation policy and future vaccine designs.
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Introduction

Optimism abounded in 2010 as great strides were being made
to control malaria. Over the prior decade, global malaria-
related deaths had declined by 20.7% and global malaria cases
had declined by 7.8% in just the previous 5 years [1]. A total
of 23 countries in the World Health Organization (WHO)

African Region (42 in other WHO Regions) had agreed to
provide insecticide-treated bed nets (ITNs) to all people at risk
for malaria compared to only 2% coverage of sub-Saharan
Africans in 2000. Similarly, access to indoor residual spraying
(IRS) in sub-Saharan Africa had increased from 13 million
people in 2005 to 75 million in 2009 [1, 2]. Supporting these
interventions was a significant expansion in funding for
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malaria control: from US$ 200 million in 2004 to US$ 1.5
billion in 2009 [1]. This concerted effort and marked improve-
ment triggered high-profile discussions envisioning the possi-
bility of global malaria elimination [3–5]. However, this tra-
jectory of improved control and elimination from endemic
regions has not continued. From 2015 to 2018, estimated
yearly malaria cases increased by 7 million (3.3%) even while
funding for malaria elimination remained relatively constant:
US$ 2.9 billion in 2015 to US$ 2.8 billion in 2018 [6]. In the
2010WorldMalaria Report, theWHO anticipated this plateau
in control and predicted that interruption of transmission in
areas of moderate to high transmission intensity would likely
require new tools [1]. Now that this plateau has been reached,
evidence continues to mount that our current tools—chemo-
therapy, ITNs, and IRS—will likely fail to achieve the goal of
malaria elimination, especially in high incidence countries
[7–9].

An effective vaccine against malaria would greatly aid con-
trol and elimination efforts. However, the challenge of devel-
oping a malaria vaccine should not be underestimated. In en-
demic regions, repeated infection of individuals usually re-
sults in the acquisition of partial immunity to clinical malaria
but does not completely prevent infection. Furthermore, this
partial response appears to quickly wane without continued
exposure [10]. Consequently, the goal in developing a malaria
vaccine is to generate an immune response that is more effec-
tive and longer lasting than is the natural response in the typ-
ical individual. Generating a vaccine response beyond the
natural response is notoriously difficult: researchers have
struggled for decades to address similar problems in HIV
and tuberculosis [11, 12]. It is also particularly difficult to
understand and leverage the components of partial immunity
as they cannot be easily separated from the ineffective re-
sponses that arise over time simply due to repeated exposure.

At present, there is only one approved vaccine for malaria:
RTS,S/AS01e [13]. It is a monovalent, pre-erythrocytic vac-
cine targeting key portions of the Plasmodium falciparum
circumsporozoite protein (CSP), which is the major surface
protein densely coating the sporozoite that is injected by the
infecting mosquito bite. The vaccine aims to block liver infec-
tion thereby preventing any blood stage parasites and disease.
In and of itself, CSP is a complex protein in terms of both its
structure and antigenic variation. Its biology is multifaceted
with key roles in sporozoite development within the
mosquito gut, migration to the mosquito salivary glands,
travel from the skin to the liver through the human
bloodstream, and then finally traversal of hepatocytes
and eventual hepatocyte invasion where it is still
expressed within the infected hepatocytes [14].

The vaccine does not incorporate the complete CSP se-
quence. It lacks the conserved N-terminal region but includes
19 NANP amino acid repeats (R in RTS,S) along with the C-
terminal region representing a thrombospondin-like domain

with T cell epitopes (T in RTS,S). The T cell epitopes are
thought to elicit increased antibody responses which were
lower when only the repeat was included. These portions of
CSP are fused to the hepatitis B surface antigen (S in RTS,S).
The RTS construct and a free hepatitis B surface antigen S
(RTS,S) can self-assemble into a larger viral-like particle with
increased immunogenicity. The vaccine also includes a highly
optimized and potent adjuvant (AS01e), which consists of two
immunostimulants (3-O-desacyl-4′-monophosphoryl lipid A
and QS-21) that synergistically enhance humoral and cellular
immune responses [15]. Overall, RTS,S has been optimized to
generate high levels of anti-NANP antibodies capable of com-
plement fixation [16, 17•]. Anti-CSP antibody titers are posi-
tively correlated with protection and, though no threshold for
protection was found, an antibody titer of 121 EU/mL (95%
CI: 98–153) was estimated to prevent 50% of infections [18•].
In one study, the fourth dose resulted in increased IgG1, IgG3,
and IgG4 levels against all vaccine antigens after 1 month, but
it did not increase IgG2 or IgM levels [19]. The complement
response was most strongly correlated with IgG1 and, to a
lesser extent, IgG3. IgG subclasses waned quickly over the
first 18 months after vaccination, while complement fixation
waned within the first 6 months [17•].

The approved RTS,S/AS01e vaccine is administered in
three monthly doses around the age of 6 months, with a fourth
dose recommended 18 months later [20]. This was based on
the best (albeit moderate) efficacy observed in phase III clin-
ical trials of 36.3% over the full 4 years. That a vaccine with
this level of efficacy still won approval from the European
Medicines Agency [21], and WHO [22] attests to the large
burden of morbidity and mortality due to falciparum malaria.
Currently, the vaccine is undergoing WHO-sponsored pilot
implementation in Ghana, Malawi, and Kenya, which began
in 2019 [20, 23]. The pilot implementation expects to vacci-
nate 120,000 children per year in each country and will further
examine effectiveness and safety when integrated into routine
vaccination schedules, although this has been disrupted by the
COVID-19 pandemic. Importantly, in phase III trials, the vac-
cine had differential levels of efficacy in different populations;
efficacy ranged from 22% in Manhiça, Mozambique, to
74.6% in Kilifi, Kenya, with efficacies below 50% in 9 of
the 11 sites [20]. Furthermore, the efficacy of RTS,S wanes
over time. Modeling of anti-circumsporozoite antibody dy-
namics and the natural acquisition of protective immunity
over time indicated the half-life of the short-lived and long-
lived antibody responses to be 45 days (95% CI: 42 to 48) and
591 days (95% CI: 557 to 632), respectively [18•].
Unfortunately, this long-lived response represents only 12%
of the immune response after initial vaccination and 30% of
the response after vaccination with the fourth dose.

The exact mechanisms behind the observed efficacy and its
variation between sites and individuals are still poorly under-
stood. Dissecting these mechanisms and determining factors
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impacting them are daunting tasks due to the complexity and
heterogeneity of malaria epidemiology, the multifaceted biol-
ogy and variant nature of the CSP, and the convolution of
natural and vaccine-induced immune responses. Recent work
provides growing evidence that environmental, parasite, and
human variation all play a role in determining RTS,S/AS01e
vaccine efficacy in various settings. Figure 1 displays theoret-
ical mechanisms through which these factors might impact
vaccine efficacy over time. Some mechanisms impact the
quality of the host immune responses to the vaccination (ma-
ternal antibodies, antibodies from previous infections, HLA
type), while others determine the protection the vaccine af-
fords when a vaccinated individual is challenged with malaria
exposure during follow-up (antibodies from previous infec-
tions, parasite antigenic variation). One mechanism even
operates through the immune response of those who are un-
vaccinated. Rebound malaria occurs when the protection of
the vaccine falls below the level of naturally acquired immu-
nity to clinical malaria in the unvaccinated population (deter-
mined by transmission intensity), essentially increasing the
relative likelihood of infection and severe disease. This paper
expands upon these mechanisms using recent literature, sum-
marizing the current knowledge and evidence for the use of
RTS,S/AS01e in different contexts.

Ecology

In vaccine trials, an ecological perspective is seldom
employed. However, previous analyses have shown that ecol-
ogy can play a key role in determining the impact of vaccine
interventions. For example, analysis of a cholera vaccine in
Bangladesh found spatial heterogeneity in vaccine coverage,
leading to varying levels of herd protection in the population

and thus differing neighborhood vaccine efficacies [24, 25].
Environmental and demographic characteristics were correlat-
ed with vaccine efficacy, after controlling for neighborhood
vaccine coverage [24, 25]. The ecological vaccine approach
altered the scientific consensus on the efficacy of the oral
cholera vaccine and was key in gaining support for the imple-
mentation of the vaccine [26, 27].

Falciparum malaria is inextricably linked to the environ-
ment due to the behavior of the Anophelesmosquito [28, 29].
The ideal larval habitat for these mosquitoes is clean water
with vegetation which is most common in rural areas [30,
31]. Thus, those residing in certain ecologies experience
higher rates of malaria than in others. Importantly, studies of
phase II and III data have suggested potential differences in
vaccine efficacy by transmission intensity, most suggesting
efficacy to be higher in lower transmission intensity settings
[32–37]. It is important to note that efficacy is a ratio measure
and, thus, a vaccine with homogenous efficacy will have a
greater absolute impact (in terms of cases averted) in high
transmission settings. Even though the vaccine seemed to
have a lower efficacy in high transmission settings during
the trials, most analyses found that the impact of the vaccine
over the full follow-up period (~4 years) was overall protec-
tive in high transmission areas and that more cases were
prevented than in low transmission areas.

There are several mechanisms through which malaria
transmission intensity might impact the efficacy of the vac-
cine. One mechanism is through antibodies present pre-vacci-
nation. Antibodies can be acquired throughmaternal transmis-
sion or from early-life infections, both of which will occur
more often in higher transmission intensity settings. In one
study, higher malaria exposure was associated with a poorer
induction of functional antibodies, meaning that the vaccine
might be less effective in these populations [17•]. In infants

Fig. 1 Impacts of ecology,
parasite antigenic variation, and
human genetics on RTS,S/AS01e
malaria vaccine efficacy
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aged 6–12 weeks in the phase III trial, higher baseline anti-
CSP antibodies were associated with lower antibodies post-
vaccination, suggesting that maternal antibodies may dampen
the response to the vaccine [18•].

Additionally, natural infections post-vaccination may alter
the vaccine response through multiple mechanisms. For in-
stance, previous exposure to malaria may result in innate train-
ing altering subsequent responses [38•]. Also, natural infec-
tion post-vaccination was found to induce antibodies to other
falciparum proteins which are not vaccine-induced but are
correlated with protection [39•]. This suggests that such anti-
gens should be considered in subsequent multivalent vaccines
and that increased exposure to malaria might increase the ef-
ficacy of the vaccine. This mechanism is also impacted by
landscape ecology, as ecology will determine (through trans-
mission intensity) the frequency of malaria infections post-
vaccination. In line with malaria exposure affecting response,
the timing and dosage of the vaccine itself may affect re-
sponse: initial controlled human challenge studies suggest that
vaccination with smaller (fractional) doses and larger time
intervals may improve efficacy [40–42] and such modified
schedules are currently undergoing clinical trials in malaria-
endemic regions.

Another potential mechanism through which transmission
intensity might impact vaccine efficacy is the phenomenon of
“rebound malaria” [43]. This mechanism is unique because it
acts through the immune response of those unvaccinated. In
high transmission intensity areas, vaccinated individuals are
initially afforded partial protection against malaria, while un-
vaccinated individuals remain susceptible. As vaccinated in-
dividuals gradually lose protection because vaccine-induced
immunity wanes, unvaccinated individuals are repeatedly ex-
posed tomalaria and develop partial immunity through natural
infection [44]. Thus, after a certain period, vaccinated individ-
uals are more susceptible to infection than unvaccinated
individuals—identified through estimates of negative efficacy
[36, 43]. The fourth dose of the vaccine, administered around
18 months after the third dose, provides a temporary boost to
immunity, but this effect wanes as well, only delaying the
rebound effect [20]. In low transmission intensity areas, the
vaccine response still wanes, but the build-up of natural im-
munity in the unvaccinated group is minor. Thus, when esti-
mating the efficacy of the RTS,S/AS01e vaccine, this effect
will be dependent on the background transmission intensity of
the study site and the length of follow-up considered. For
example, a 7-year extended phase II trial in Kenya and
Tanzania found that vaccine efficacy waned quicker in high
transmission intensity areas, to the point of a negative efficacy
point estimate beginning around the third year of follow-up
[34••]. The authors further examined within-site variation by
estimating, through active surveillance, malaria prevalence
within a 1-km buffer of each participant. They found that
individuals with high background prevalence estimates

experienced a rebound in malaria infections while those with
low prevalence estimates did not [34••, 45]. An analysis of
three-phase III trial sites in Burkina Faso and Kenya found
similar results. In the last 3 of 7 years, negative efficacy was
observed for both the three- and four-dose groups in the
highest incidence site and for only the three-dose group in
the second-highest incidence site, while efficacy remained
positive in the lowest incidence site [35••].

Though the fourth dose of RTS,S/AS01e delays the re-
bound of malaria infections, it is not clear that it will reliably
do so. Since the fourth dose is meant to be given at a time
when children do not have a scheduled interaction with the
healthcare system, there is concern that many children will not
receive it [46]. Malaria has a higher incidence in rural areas,
where children will also likely have to travel further to receive
the fourth dose of the vaccine, which may decrease the chance
that they receive it. Future analyses should investigate the
spatial distribution of the receipt of the fourth dose during
implementation, relative to the distribution of malaria inci-
dence. High transmission intensity areas could be targeted
with education campaigns, stressing the importance of
returning on time for a fourth dose, or providing monetary
compensation for doing so. Additionally, pairing vaccination
with other interventions, like ITNs and IRS, could help cost-
effectively reduce the rebound effect [43, 47].

The three mechanisms that connect ecological factors to
vaccine efficacy are all mediated through transmission inten-
sity. Further research is needed to identify the ecological var-
iables that might modify the impact of RTS,S through these
mechanisms. In Lilongwe, Malawi, proximity to wetlands,
identified using satellite imagery, was found to be related to
RTS,S/AS01e efficacy, possibly because there was rebound
malaria in higher transmission intensity areas [37]. The envi-
ronmental context of householdsmust be analyzed in conjunc-
tion with household ecological variables such as ITN and IRS
use as well as household socioeconomic context. Each partic-
ipant’s household roof type (metal versus grass), which is a
socioeconomic indicator, was measured in the Malawi phase
III trial site but was not found to be related to vaccine efficacy
[37]. However, a recent analysis from Kintampo, Ghana,
found that vaccine efficacy was higher in high-SES house-
holds, partially determined by household construction mate-
rials [48]. For these ecological variables and for others, a care-
ful analysis that considers all three potential mechanisms of
ecological modification is needed. Drivers of transmission
intensity in Lilongwe, a peri-urban setting, or Kintampo, a
more rural setting, might differ from drivers of transmission
intensity elsewhere, so future analyses in other settings should
identify locally important variables to transmission intensity
and determine whether they impact the efficacy of the vaccine.

It is unclear whether temporally or seasonally varying var-
iables modify vaccine efficacy. Within the pre- and post-
vaccination exposure mechanisms, the season of vaccination
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and follow-up could play a role. Considering seasonal trans-
mission within the rebound malaria mechanism, it may be that
the magnitude of the rebound effect is impacted by the degree
of seasonality of malaria in a particular setting. However, it is
less clear whether seasonality would cause vaccine efficacy to
change over time within one study area. One analysis found
that RTS,S/AS01e efficacy in Malawi did not vary by the
amount of recent rainfall, which is a seasonally varying envi-
ronmental driver of malaria in that setting [49]. This absence
of effect could be consistent with the rebound malaria theory,
as the process of acquiring natural immunity takes time and
the impact of the period of increased malaria incidence on
efficacy would likely occur in the span of months and years,
rather than weeks. However, it presents an issue for the theory
that exposure to malaria post-infection should increase vac-
cine efficacy. An interesting follow-up to this analysis would
be to investigate the amount of rainfall in the period between
birth and vaccination and its impact on vaccine efficacy.

It is also unclear the degree to which herd protection will
play a role in the impact of RTS,S. A small proportion of the
population will be vaccinated since only children under 5
(representing ~15% of the population in sub-Saharan Africa)
are being vaccinated during implementation and other age
groups account for the majority of malaria infections [50].
Since efficacy wanes quickly, these older groups will not be
protected by a vaccine received at 6 months of age.
Additionally, vaccination may only protect against clinical
disease rather than infection, implying that even with 100%
vaccine coverage, transmission may remain high due to
asymptomatic infections.

Parasite Antigenic Variation

P. falciparum is a complex eukaryotic organism with a 22
megabase genome containing over 5000 proteins [51]. The
genome is also notable for a high AT content and abundant
repetitive seqeunce between genes as well as marked numbers
of tandem amino acid repeats within proteins. Over 10% of
the genome represents duplicated highly polymorphic gene
families (e.g., var, rifin, stevor). It is a recent human pathogen
having jumped from gorillas into the human population ap-
proximately 10,000 years ago [52]. The jump resulted in a
severe population bottleneck essentially erasing the vast ma-
jority of standing neutral sequence variation. Thus, currently
observed highly variant regions in P. falciparum likely exist
because of strong selection due to adaptive advantages since
the bottleneck rather than just by chance.

In this light, both the variation in the NANP repeat and the
marked amino acid polymorphism in the C-terminal TH2R
and TH3R are likely of functional consequence. Supporting
this, the TH2R and TH3R are remarkable in that virtually all
observed DNA variation is nonsynonymous mutations

leading to amino acid substitutions. Most strains differ from
each other by 5–10 amino acids [53–56]. This suggests strong
balancing frequency-dependent selection, which is often a
signature of immune evasion. This is of particular concern
for RTS,S efficacy as the vaccine only represents one strain,
and given the number of differences, this may result in poor
response to non-vaccine-like strains. Indeed, based on a sieve
analysis, RTS,S efficacy appears to be dependent on the in-
fecting strain’s TH2R-TH3R amino acid haplotype [55••]. In
this analysis of initial clinical malaria episodes across all 11
sites of the phase III trial, the vaccine was 50.3% (95%CI: 34.
6 to 62.3) effective in protecting against vaccine matching
TH2R-TH3R haplotype over the course of 1 year while it
was 33.4% (95% CI: 29.3 to 37.2) effective against non-
vaccine haplotype strains. Breaking this down separately to
TH2R and TH3R matching yielded similar results [55••].
Importantly, efficacy declined as the number of TH2R-
TH3R amino acid differences from 3D7 increased and de-
clined particularly with 4 or more amino acid differences
[55••]. A secondary analysis better accounting for multi-
strain infections found an overall higher efficacy of 60% vs
44% for 3D7 matching and nonmatching strains [57]. On the
other hand, analysis of the NANP region was reassuring as
there was no detectable difference in efficacy related to the
number of repeats which varied from 34 to 42 [55••].

How this C-terminal variation plays a role in differential
efficacy is still unknown. The traditional view is that the vast
majority of vaccine efficacy is attributed to the high levels of
anti-NANP antibodies that are already present when a patient
is faced with an infective mosquito bite and invading sporo-
zoites. In this scenario, the role of the C-terminal region is
inducing prior CD4 helper T cell support to drive more potent
and longer-lived anti-NANP antibodies [58, 59]. Given that
antibody levels at the time of invasion are fait accompli and
directed to the NANP repeat, there is no reason that there
should be differences in efficacy due to TH2R-TH3R
relatedness.

This suggests that TH2R-TH3R amino acid variation is
affecting a separate response apart from the development of
preformed anti-NANP antibodies. One possible mechanism is
that TH2R-TH3R strain specific cytotoxic T cells (C8+) are
engendered by the vaccine and contribute to efficacy by kill-
ing infected hepatocytes. Cytotoxic CD8 T cells are known to
be key effectors in mouse models of attenuated sporozoite and
in human whole sporozoite responses [60]. RTS,S is not for-
mulated to drive a cytotoxic response, and measures of CD8
have been absent or low and thought to be relatively inconse-
quential [61].

Another more likely mechanism may be that the boosts
from TH2R-TH3R-specific CD4+ T cells are orchestrating a
more efficacious response indirectly through cytokine produc-
tion apart from antibody production. Increased frequency of
RTS,S-induced IFN-gamma-secreting CD4 T cells has been
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correlated with protection [62–64]. A broad panel of cytokine
responses confirms the central role for IFN-gamma as well as
IL-15, whereas IL-5 and RANTES were associated with ma-
laria susceptibility [65]. Combined with the high antibody
levels, these associated specific T cell and cytokine responses
may be mainly providing protection by activating and driving
antibody-dependent killing mechanisms of neutrophils, mac-
rophages and NK cells. Recent functional studies of controlled
human challenges of RTS,S find that the functional role is
important [66–68]. In fact, a comprehensive systems
immunomics approach found that the key factors that are most
correlated with protection in human challenge trials were the
functional ability of the antibodies. The study measured close
to 100 different factors, and lasso analysis revealed two key
features that best accounted for protection: anti-NANP
antibody–dependent cellular phagocytosis and anti-NANP
binding to Fc Gamma receptor 3A that is key to NK
antibody–dependent killing [67••]. Importantly, there was no
appreciable predictive contribution of the overall levels of the
anti-NANP antibodies which has been the best correlate until
now [67••].

Finally, antibodies directed at TH2R-TH3R could play a
role in protection. The crystal structure of the C-terminal do-
main revealed an unexpected fold (or pocket) suggestive of
functional activity [69]. While the function of the pocket is
unknown, it may be related to hepatocyte invasion. This pock-
et is surrounded by the variation in the TH2R and TH3R and
further analysis demonstrated that the majority of changes
were charge changes potentially more consistent with
protein-protein interactions, such as an antibody or receptor
[53]. While this is an intriguing hypothesis, there is minimal
supporting evidence as functional antibodies from RTS,S- or
sporozoite-vaccinated individuals have not been recovered in
appreciable amounts, nor have these antibodies demonstrated
significant neutralization [70]. It is interesting that there ap-
pears to be a relatively greater antibody response to the C-
terminal region in natural infections [71].

The TH2R-TH3R sequence included in RTS,S was based
simply on the standard lab strain (3D7) for which a subclone
had been qualified for human trials (NF54). Interestingly, al-
though 3D7 originates from Africa, it is by no means highly
representative [72]. Site-specific studies in Malawi and
Zambia both found that only 5% of samples had the same
TH2R-TH3R haplotype as 3D7 [54, 56]. In Zambia, the
3D7-matched haplotype was the 5th most common, and the
vast majority of mismatched haplotypes differed by 5 and 8
different amino acids. A more extensive examination of 2635
CSP sequences derived from publicly available whole ge-
nomes (Pf3k Project), and representing nine East and West
African countries, found the 3D7 haplotype represented
5.3% of sequences [56]. For the phase III trial, the prevalence
of 3D7-matching strain was 6.7% in unvaccinated controls
with only 3 of the sites (Agogo, Ghana; Kintampo, Ghana;

and Lambarene, Gabon) having a prevalence above 10%
[55••]. This low frequency within the parasite population has
obvious ramifications. First, it suggests that including or
switching to more prevalent strains could significantly in-
crease efficacy. It also suggests that the vaccine may not be
rapidly susceptible to vaccine escape since it in essence is
already in place given the vast majority of strains already
differ significantly from the vaccine strain. However, this does
not alleviate concern for the potential further escape long term
due to newmutations in TH2R-TH3R or repeat. While groups
are monitoring for vaccine escape, it is unclear even with the
pilot implementation vaccinating numerous children whether
this will result in significant selective pressure given they rep-
resent only a small proportion of the overall population har-
boring parasites [50].

Human Genetics and Immunology

Human genetic variation is another source of variability af-
fecting immune responses. In general, vaccine responses have
been shown to be highly heritable [73] and association studies
have identified variants across not only immune-related genes
but also pathways related to pathogen biology and entry [74,
75]. The most common association across vaccines is with
human leukocyte antigen (HLA) genes on chromosome 6
[76, 77]. This is not surprising given HLA genes are central
to the immune response. The proteins in the HLA complex are
highly polymorphic, and the polymorphism lies in the grove
of the HLA proteins where short peptide fragments are pre-
sented to T cells allowing for the recognition of self and non-
self (pathogen) [78]. Key HLA genes central to adaptive re-
sponses are class I proteins that are present on every cell and
aid in internal antigen presentation for the destruction of in-
fected cells by CD8 T cells predominantly, and class II pro-
teins that present extracellular antigens to promote CD4 T cell
activation and B cell proliferation. The polymorphism in HLA
genes is the result of balancing selection called overdomi-
nance whereby selection acts towards having two different
alleles at every gene to better allow recognition and response
to a broad array of pathogens or strain variation responses. In
terms of vaccines, variations in class I HLA-A and HLA-B
and class II HLA-DRB1 have been most often associated with
differential responses [74].

In natural infections, HLA variation in class II genes has
been shown to affect antibody responses to P. falciparum pro-
teins, including other liver stage antigens [79–86]. In natural
infections, there is evidence that variant epitopes of CSP may
be selected by HLA-restricted CTL responses and that
responses to such variants may be mutually antagonistic as
has been reported in a study conducted in Gambia [81]. This
conforms with previous associations of class I and class II
alleles with protection from severe malaria [87]. Recent
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computational binding studies of class II HLA-DRB1 and
CSP variation found relatively weak and restricted responses
consistent with selection for TH2-TH3 variants that particu-
larly escape binding to common HLA-DRB1 alleles in Africa
[88•]. To date, the only HLA association study with RTS,S
efficacy has been a combined analysis of 222 subjects from
ten phase II control human infection trials to the vaccine strain
[89•]. Specifically, the analysis was limited to 37 different
serotypes relating to two MHC class I genes (HLA-A, HLA-
B) and one MHC class II gene (HLA-DRB1). Three (HLA-
A*01, HLA-B*08, and HLA DRB1*15/16) of the 37 broader
serogroups assessed had statistically significant protective ef-
fects, while three others (HLA-A*03, HLA-B*53, and HLA
DRB1*07) were associated with decreased efficacy [89•]. The
study was relatively underpowered and likely at least a few of
the associations were false positives. While class II associa-
tions could be expected, it is interesting that associations of
class I variation were found as well and potentially suggestive
of variation in C8 T cell responses. If the differential response
is due to protective alleles better presenting peptides derived
from TH2R-TH3R, then future work could aim to determine
additional parasite TH2R-TH3R haplotypes that could be in-
corporated into a vaccine in order to engender better protective
response across individuals.

To date, there have not been any genome-wide association
studies of efficacy nor studies in the African context where the
vaccine is planned to be most broadly delivered. Such large-
scale studies in Africa are certainly warranted to more fully
understand the impact of variation on the vaccine response. In
future studies, it will be important to try to disentangle what
may be part of the hepatitis B surface antigen upon which
RTS,S is built. The genetics of the response to hepatitis B
have been extensively studied [74]. Associations have been
identified across the genome (ITGAL, FOXP1, variants in
class II DRB1, DQB1, and DPQ1) [74]. Such studies should
also incorporate ecologic and parasite variables, which ulti-
mately need to be analyzed in concert to truly disentangle their
impact on efficacy.

Conclusion

Global malaria elimination has little chance of success without
an effective vaccine. The first malaria vaccine, RTS,S/AS01e,
is now undergoing implementation in three African countries.
The vaccine demonstrated moderate efficacy against clinical
malaria in phase III trials; however, the vaccine did not per-
form equally well in different populations, with efficacy rang-
ing between 22 and 74.6% between sites. This variability may
be due to environmental, parasite, or host factors. Therefore,
understanding combinations of these factors that modulate
vaccine efficacy is critical for guiding vaccine use. Research
must uncover these mechanisms and evaluate their relative

importance in order for vaccine implementation to fully con-
tribute towards the goal of malaria elimination. Furthermore,
any malaria vaccine will not be used in isolation, but rather as
part of an integrated program leveraging other control mea-
sures. Due to the modest efficacy of RTS,S/AS01e, it will be
crucial to understand how to best integrate vaccination into
specific control programs, as this information will be critical
for policy decisions concerning vaccine implementation.
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