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Abstract

The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark
molecules amyloid beta (Ab) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused
by Kinesin-1 dysfunction perturbs levels of both Ab and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1
dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic
stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human
neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and
pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural
rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-
associated neural proteins, including Tau and less secreted Ab, supporting the previously established connection between
KLC1, Tau and Ab. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature
known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is
required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau
and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will
not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and
Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have
important implications for human neurodevelopmental and neurodegenerative diseases.
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Introduction

Normal cellular organization and function requires intracellular

transport driven by molecular motors. Kinesin-1 is a microtubule-

based motor, moving cargos towards the plus end of microtubules

[1,2] in neurons and in other cell types. Kinesin-1 is composed of a

pair of heavy chains (KHCs), which use ATP hydrolysis to power

movement on microtubules, and a pair of light chains (KLCs),

which regulate KHC activity and mediate cargo attachment [3].

Mammalian Kinesin-1 is assembled from three KHC gene

products - Kinesin-1A, -1B or 1C (formerly KIF5A, KIF5B or

KIF5C, respectively) and four KLCs (KLC1, KLC2, KLC3, or

KLC4) [4–8].

In mice, Kinesin-1 subunits have tissue specific expression

patterns: Kinesin-1B and KLC2 are ubiquitously expressed while

Kinesin-1A, Kinesin-1C and KLC1 are enriched in neural tissue

[7–10]. As revealed by animal studies in which various subunits

are altered, Kinesin-1 plays important roles in the nervous system.

For instance, Kinesin-1C and KLC1 mutant mice exhibit

reductions in brain size and/or white matter tracts [9,11] and

cultured primary neurons with reduced Kinesin-1B, Kinesin-1C

or KLC1 subunits have shorter neurites [12–14]. Kinesin-1A,

Kinesin-1C and KLC1 mouse mutants exhibit loss of specific

neuron populations [9,11,15]. Further, mutations in fruit fly KHC,

KLC or mouse Kinesin-1A or KLC1 lead to axonal transport

defects [15–18]. These observations suggest that specific Kinesin-1

subunits may have multiple functions in the nervous system.

Kinesin-1 is a major anterograde motor driving transport into

the axons of neurons and faulty axonal transport may contribute

to neurodegenerative diseases [19]. Alzheimer’s disease (AD) is

characterized pathologically by the presence of brain amyloid

plaques and neurofibrillary tangles, the principle components of

which are the amyloid precursor protein (APP) proteolytic

cleavage product Ab and the axonal microtubule associated

protein Tau. APP is transported to synapses in a Kinesin-1

dependent manner and associates closely with KLC [20–23]. Tau

also interacts with KLC1 and may be transported in the axon by

Kinesin-1 [24]. KLC1 mutant mice have hyperphophorylated
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Tau [11,25] and APP transgenic mice with reduced KLC1

function exhibit earlier and accentuated brain amyloid plaques,

thought to be caused by abnormal APP transport and/or cleavage

[26]. Together these data lead us to suggest that KLC1 can

modulate APP and Tau function but this is challenging to test in

human neurons.

Progress in understanding human development and disease is

limited by a lack of appropriate human model systems. While

model organisms and human immortalized cells will continue to

provide useful information, species or cell type differences restrict

their utility. Human embryonic stem cells (hESC) [27] offer

important benefits for modeling human development and disease

[28,29]. Not only are hESC a potential source of all human cell

types, including neural precursors (NPs) and neurons, but they also

proliferate indefinitely in culture, are genetically malleable, and

express proteins under endogenous transcriptional, translational

and post-translational control. Thus, we used hESC as a source of

neural cells to probe human neural development and possible roles

of transport in neurodegenerative disease pathways in AD. In this

study we engineered hESC to express reduced levels of KLC1

using small hairpin RNA (shRNA) targeted to KLC1 and

examined whether suppression of endogenous KLC1 impairs

human neural differentiation or endogenous human APP

metabolism, which is implicated in AD.

Materials and Methods

Cell culture and subcloning of undifferentiated Hues9
hESC lines

DNA oligonucleotides targeting KLC1 exon 2 (Forward 59-

TGTAATTTGGTGGAGGAGAATTCAAGAGATTCTCCT-

CCACCAAATTACTTTTTTC-39 and Reverse 59-TCGAGA-

AAAAAGTAATTTGGTGGAGGAGAATCTCTTGAATTCT-

CCTCCACCAAATTACA -39were subcloned as described [30]

into pSicoR, or a modified pSico derived plasmid lacking the

CMV-GFP cassette (Figure S1A). Vesicular stomatitis virus G

protein pseudotyped lentivirus was prepared at the University of

California, San Diego Vector Development lab to a titer of 108

colony forming units/ml.

Undifferentiated Hues9 hESC lines were maintained as

described [31]. To derive Hues9 lines with reduced KLC1 Hues9

were exposed to lentivirus encoding KLC1 shRNA and plated at

limiting dilution. Single hESC colonies were expanded and viral

insertion confirmed by PCR. Cells were karyotyped by Cell Line

Genetics (Madison, WI) (Figure S1B).

Neural differentiation
For differentiating hESC using the embryoid body (EB) method

[32], confluent cultures of shKLC1-1, shKLC1-2 and uninfected

parental control hESC were dispase treated (BD; 1:50 in hESC

media), scraped and transferred to bacteriological grade petri

dishes in hESC media lacking FGF2, but containing 1 mM Rho-

associated protein kinase inhibitor (Y27632 or trans-4-[(1R)-1-

Aminoethyl]-N-4-pyridinylcyclohexanecar boxamide dihydrochlo-

ride; Calbiochem). On day five, EBs were plated onto matrigel

(BD) treated tissue culture plate in insulin, transferrin and selenium

(ITS) media (Dulbecco’s minimum essential medium (DMEM)/

F12, penicillin streptomycin (both from Invitrogen) and ITS

supplement (Sigma)). Medium was replenished every other day

thereafter.

For PA6 feeder differentiation, mouse PA6 stromal cells [33]

were cocultured with shKLC1-1, shKLC1-2 and unmodified

parental control hESC as described [34]. In brief, PA6 feeder

cells were plated at 6400 cells/cm2 in growth media (high glucose

DMEM, FBS, glutamine, penicillin and streptomycin). The

following day hESC were seeded onto the PA6 feeder at a density

of 13 cells/cm2 (for control and shKLC1-1) or 50 cells/cm2

(shKLC1-2) in PA6 differentiation media. The medium was

exchanged on day 6 and every other day thereafter.

Neural precursor culture and viral transduction
Sorted Hues9-derived NPs were grown on polyornithine and

laminin coated plates in NP media. Medium was exchanged every

other day and cultures were split every 3–4 days. When nearly

confluent, Hues9 derived NPs were transduced with virus

containing CMV-GFP reporter cassette and U6-shKLC1 or U6-

shLUC control shRNA and centrifuged at 8006 g for 45 min at

room temperature. Following expansion for 1–2 passages, cells

were subjected to fluorescence activated cell sorting to enrich for

GFP+ cells and cultured (Figure S5).

To differentiate NPs to neurons, NPs were plated on

polyornithine and laminin coated plates in NP media and grown

until they reached 70% confluence. FGF was removed and NP

media supplemented with 20 ng/ml BDNF (Peprotech), 20 ng/ml

GDNF (Peprotech) and 0.5 mM dibutyryl cAMP (N6,29-O-

Dibutyryladenosine 39,59-cyclic monophosphate sodium salt;

Sigma). Medium was exchanged every 2–3 days.

Brightfield imaging of cultures
To track morphology of the cells, cultures were imaged using a

Nikon Eclipse TS100 and a Sony Power Shot G3. The camera

was set to landscape mode, manual focus and images were

collected with 5.76zoom. A micrometer was used to calibrate the

images.

Flow cytometry
Pluripotency of undifferentiated Hues9 lines was assessed by

flow cytometric analysis of Oct3/4 and TRA-1-81. Cells were

dissociated with accutase (Invitrogen), fixed in 4% paraformal-

dehyde, permeabilized, incubated with primary antibodies

(direct conjugates from BD) and suspended to 1–26106 cells/

ml in sort buffer (1% FBS, 2.5 mM EDTA, 25 mM HEPES in

PBS).

Differentiated hESC cell derived neural induction cultures were

rinsed with PBS, dissociated with a 1:1 mixture of accutase and

accumax, filtered through 100 um mesh to remove cell clumps

and an aliquot counted on a hemocytometer. Antibodies (BD)

were added to a final cell concentration of 1–56107cells/ml.

Labeled cells were sorted at 2.5–5.06106 cells/ml in neural

precursor (NP) sort media (NP media - DMEM/F12, Glutamax,

B27, N2, penicillin/streptomycin (all from Invitrogen) and 20 ng/

ml bFGF (Peprotech) - supplemented with 10% FBS and 0.5 mM

EDTA). To estimate the fraction of dead cells, separate aliquots of

cells were stained with 750 nM propidium iodide, a membrane

impermeable DNA binding dye, and analyzed by flow cytometry.

Two to three percent of the cells were propidium iodide positive

regardless of the cell line or neural induction method employed.

Cells were analyzed or sorted on a BD Biosciences FACSAria

cytometer using a 100 micron diameter ceramic nozzle and 20

pounds per square inch sheath pressure. Single stained cells or

CompBeads (BD) and FACSDiva software were used to calculate

compensation values prior to analysis. Doublets were excluded

from analysis with gates on forward and side scatter bivariate plots

of pulse height relative to width (Figure S1C and Figure S2B).

Antibody positivity (Figure S1D and Figure S2B) was defined by

comparison to unstained controls. Analysis was conducted offline

using FCS Express (De Novo Software).

Neural Differentiation of KLC1-Suppressed hESC
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Western blot analysis of protein levels
Tissue culture lysates were prepared using PARIS kit (Ambion)

buffer supplemented with protease (cocktail set I, Calbiochem) and

phosphatase (Halt, Pierce) inhibitors. The BCA assay (Pierce) was

used to estimate the protein content. Equal protein amounts were

separated in MES buffer alongside Novex Sharp prestained

markers (Invitrogen) on NUPAGE 4–12% acrylamide precast gels

(Invitrogen) and then transferred to nitrocellulose (0.2 or 0.45 mm

pore size Immobilon Millipore). Membranes were blocked in 5%

BSA in tris buffered saline with 0.1% Tween-20. Primary

antibodies (KLC1 H75 1:500 Santa Cruz Biotechnology; Kine-

sin-1C 1:500 C.H. Xia (unpublished); Actin C4 1:100,000

Millipore; GFAP 1:500 Dako; NSE 1:1000 Millipore; MAP2

AP20 1:1000; a-Tubulin DM1A 1:50,000 Sigma; b-III-Tubulin

TUJ1 1:1000 Covance; phosphorylated neurofilament – heavy

and medium chains (pNF-H and pNF-M, repectively) SMI31

1:1000 Covance; Tau Tau-46.1 1:500 Millipore; pTau PHF1

1:500 Peter Davies; APP N terminus LN27 1:250 Invitrogen; APP

C terminus 1:250 Zymed/Invitrogen; 1:250 SOD1 Santa Cruz

Biotechnology; GAPDH, 1:3000 Ambion; Sox1 N23-844 1:1000,

BD; Nestin 1:1000 Millipore; GFP 11E5 1:1000 Invitrogen) were

prepared in 5% BSA. Fluorescent secondary antibodies (LiCor)

were diluted 1:6000–15,000. LiCor Odyssey infrared imager was

used to measure pixel intensities of bands at detector settings set

the maximum or one half unit below saturation. For each protein

band, background subtracted integrated intensity values were

calculated using the Odyssey software. Since absolute integrated

intensity values vary for the same samples on different blots,

samples within a blot were plotted relative to control and these

normalized values were used to average replicates from separate

blots. Linearity of antibody response was verified over the range of

1–10 mg. To show protein bands in the conventional manner with

dark bands on a light background, grayscale images were inverted

in the figures.

Immunofluorescence
Undifferentiated, shKLC1-1, shKLC1-2 and uninfected parental

control were characterized by immunofluorescence for KLC1,

Oct-4 and TRA-1–81. Cells were fixed in 4% paraformaldehyde/

0.12 M sucrose. For intracellular staining of Oct-4, KLC1, Sox1

and Nestin, cells were permeabilized with 0.1% Triton X-100,

blocked with 10% FBS in PBS, and incubated with KLC1 (H75

rabbit IgG, 1:400, Santa Cruz Biotechnology) Oct-4 (C10 mouse

IgG2b 1:300, Santa Cruz Biotechnology), Sox1 (mouse IgG

1:1000, BD Biosciences) and Nestin (rabbit IgG, 1:2000, Millipore)

primary antibodies. Secondary antibodies Alexa Fluor 568 goat

anti-rabbit IgG (H+L) or Alexa Fluor 568 goat anti-mouse IgG

(H+L) antibodies (both from Invitrogen) were used at 1:750 with

0.1 mg/ml 49,69-diamidino-2-phenylindole (DAPI; Sigma) nuclei

stain prior to mounting on slides with Prolong Gold antifade

reagent (Invitrogen). Specificity of secondary antibody staining was

verified using secondary only controls. For cell surface TRA-1-81

staining cells were fixed and blocked as above and Alexa Fluor 647

conjugated TRA-1-81 primary antibody (BD Biosciences) was

used at 1:10. Fluorescence images were collected using a Zeiss

Axioplan microscope equipped with a Zeiss Plan Neofluor 206/

0.50 NA objective, Texas Red and Cy5 filters, a CoolSNAPcf

camera (Roper Scientific) and MetaMorph (Molecular Devices)

software.

To quantify the percent of Sox1 or Nestin-positive cells in sorted

NP cultures, the Image-based Tool for Counting Nuclei (University

of California – Santa Barbara Center for Bio-Image Informatics)

plug-in of ImageJ (NIH) was used to count the number of Sox1,

Nestin and DAPI-positive cells per image. Care was taken to ensure

that the best possible input parameters were used so that the

algorithm identified cells that would also be manually judged

positive. The proportion of Sox1 and Nestin-positive nuclei was

calculated from a total of 932 DAPI nuclei. Technical replicates

were used to calculate the standard error of the mean.

Ab and soluble APP (sAPP) quantification
To measure secreted Ab and sAPP from hESC derived neural

cultures, cultures were differentiated as described and the media

changed completely 24 hours before harvest. Media was collected

and supplemented with protease inhibitors. Cells were scraped in

homogenization buffer (20 mM Tris pH 7.4, 1 mM EDTA,

1 mM EGTA, 250 mM sucrose, protease and phosphatase

inhibitors) and homogenized. Ab-40, -42 and -38 and sAPP-a
and -b were quantified in media or lysate solubilized in 1% Triton

X-100 using multiplex Meso Scale Discovery electrochemilumi-

nescence immunoassays with human specific antibodies according

to kit instructions. The data were normalized to the total protein in

the lysate. Since the fraction of neurons may differ between

cultures, we normalized the APP cleavage product to neuron-

specific enolase (NSE) lysate levels.

Results

KLC1 suppression does not alter hESC morphology or
pluripotency marker expression

To obtain undifferentiated KLC1-suppressed hESC, we

transduced Hues9 hESCs [31] with two different lentivirus [35]

coding for a KLC1-specific shRNA (referred to here as shKLC1-1

or shKLC1-2; S1A) [30]. Using limiting dilution plating single

colonies were obtained, expanded, screened by PCR for the viral

insertion and one clone of each selected for further analysis. Cell

clusters from these lines exhibited well-bordered colony morphol-

ogy typical of pluripotent stem cells (Figure 1A, arrows). Reduction

of KLC1 protein levels in undifferentiated shKLC1-1 and shKLC1-2

compared to control hESC was confirmed by both immunoflu-

orescence (Figure 1B) and immunoblot (Figure 1C).

Normal karypotypes suggest neither the subcloning process nor

KLC1 reduction caused gross cytogenetic instability (Figure S1B).

Fluorescence micrographs of Octamer-4 (Oct-4) and Tumor

Rejection Antigen 1–81(TRA-1-81) revealed similar cellular

distributions of Oct-4 in the nucleus (Figure 1D) and TRA-1-81

on the cell surface (Figure 1E) of control and KLC1 depleted cells

suggesting depletion of KLC1 has no obvious effect on localization

of these two pluripotency markers. Using flow cytometry, we

found similar proportions of shKLC1-1, shKLC1-2 and control cells

expressing both Oct4 and TRA-1-81 (Figure 1F). From these data

we suggest that undifferentiated pluripotent cells with 70–80%

reduced KLC1 exhibit apparently normal colony morphology,

karypotypes and pluripotency marker expression.

KLC1-suppressed human neural cells exhibit shorter
neurites

Several lines of evidence suggest that neurons with impaired

Kinesin-1 subunits may be smaller. KLC1 mutant mice have

reduced white matter in the brain and spinal cord [11], Kinesin-

1C mutant mice have smaller brains [9] and various dysfunctional

Kinesin-1 subunits leads to reduced neurite lengths [12–14,36,37].

We tested whether human neurons with depleted KLC1 were

similarly impaired. The PA6 feeder method has been shown to

generate mature neuronal cultures [34], so we used it to generate

and compare control and KLC1-suppressed mature neural

cultures by differentiating hESC in vitro for seven weeks. We

examined the morphology over time of control, shKLC1-1 and

Neural Differentiation of KLC1-Suppressed hESC
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shKLC1-2 PA6 feeder differentiation cultures using bright field

imaging. By in vitro differentiation day nine, hESC derived cell

clusters peppered the feeder cell monolayer (Figure 2A, left

panels). Since human neural differentiation from hESC generally

follows human embryonic developmental principles [38], we

observed differentiation cultures eighteen days from the undiffer-

entiated hESC state, during the developmental equivalent of the

neural tube stage. At this stage, control, shKLC1-1 and shKLC1-2

hESC derived day cultures contained ‘rosette’ cell cluster

structures (Figure 2A arrows and insets) which resemble the

Figure 1. Undifferentiated KLC1-suppressed hESC exhibit normal morphology, pluripotency marker expression and karyotypes. (A)
Representative images of control, shKLC1-1 and shKLC1-2 undifferentiated hESC cultures showing bordered colony morphology typical of pluripotent
cells (arrows). Scale bar 200 micrometers. (B) Immunofluorescence staining of KLC1 in undifferentiated hESC control, shKLC1-1 and shKLC1-2 colonies.
Merged images show overlay of KLC1 (red) and DAPI-stained nuclei (blue). Scale bar 50 micrometers. (C) Equal protein from undifferentiated control,
shKLC1-1 and shKLC-2 culture lysates were analyzed by Western blot for KLC1 and Actin. Bar graph shows Actin normalized KLC1 levels relative to
control. n = 3; **p,0.01, ***p,0.001 by 2-tailed t-test compared to control. (D–E) Immunofluorescence imagesof undifferentiated control, shKLC1-1
and shKLC1-2 cultures for pluripotency markers Oct-4 (D) and TRA-1-81 (E). Merged images show overlay of Oct-4 (D; red) or TRA-1-81 (E; red) and
DAPI-stained nuclei (blue). Scale bar 50 micrometers. (F) Bivariate plots show distribution of cells in control, shKLC1-1 and shKLC1-2 undifferentiated
cultures Oct-4+TRA-1-81+ (in blue). Data is representative of three experiments.
doi:10.1371/journal.pone.0029755.g001

Neural Differentiation of KLC1-Suppressed hESC
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neural tube and are typically found in neural induction cultures

[38], suggesting the cultures may contain NP cells. By differen-

tiation day twenty-two these hESC-derived cell clusters had

sprouted axon-like projections, which persisted at least until

differentiation week seven (compare right-most two panels of

Figure 2A). While all lines followed this differentiation progression,

shKLC1-1 and especially shKLC1-2 appeared to exhibit reduced cell

cluster size and overall cell density over the course of the

differentiation (Figure 2A and Figure S2) and less extensive and

shorter projections in polarized cells at the time of harvest

(Figure 2A, arrows in right-most panel and Figure S2). We

wondered if the severity of phenotype correlated with KLC1

knockdown efficiency. Therefore, we used Western blotting to

assess KLC1 protein levels in culture lysates from differentiated

Figure 2. KLC1 and Kinesin-1C subunits are reduced in neural cultures derived from KLC1-suppressed hESC. (A) Control, shKLC1-1 and
shKLC1-2 hESC were differentiated for seven weeks using the PA6 feeder method. Representative bright field images of control, shKLC1-1 and shKLC1-
2 PA6 feeder cocultures collected at nine, eighteen, twenty-two and forty-eight days after plating. Arrows point to rosettes. Insets show close-ups of
indicated rosettes. Arrowheads denote axon-like projections emanating from hESC derived cell clusters. Scale bars: 200 mm for main images, 50 mm
for insets. (B) PA6 neural differentiation cultures were harvested after seven weeks in vitro and equal protein from control, shKLC1-1 and shKLC1-2
cultures analyzed by Western blotting for KLC1, Kinesin-1C and Actin. Bar graphs show relative quantification of KLC1 and Kinesin-1C levels relative to
Actin. Based on n = 7 control and shKLC1-1; n = 3 shKLC1-2, ***p,0.001 by two-tailed Student’s t-test compared to control.
doi:10.1371/journal.pone.0029755.g002

Neural Differentiation of KLC1-Suppressed hESC
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control, shKLC1-1, and shKLC1-2 hESC. We observed that KLC1

levels in shKLC1-1 and shKLC1-2 were reduced to 46% and 2% of

control levels, respectively (Figure 2B), suggesting that knockdown

is maintained for at least seven weeks of PA6 feeder differentiation.

Previous experiments in D. melanogaster and M. musculus suggested

that genetic reductions in KLC can lead to reduction in KHC and

vice versa (unpublished data). We extended these observations to

human neural cultures and found reduced Kinesin-1C in KLC1-

suppressed differentiation cultures - to 47% and 20% of control

(Figure 2B). These data indicated to us that reduced levels of

KLC1 and/or Kinesin-1C may impair neural differentiation in a

dose dependent fashion.

KLC1-suppressed human neural cells have reduced levels
of microtubule-associated proteins and altered APP
metabolism

To discover if KLC1 suppression has gross affects on the cellular

composition of the PA6 differentiation cultures incubated for seven

weeks, we used Western blotting to survey a panel of species-

specific and neuronally enriched markers. Because of limited

shKLC1-2 material we were focused our analysis on the control and

shKLC1-1 lines. Since mouse PA6 feeder cells may linger in hESC

differentiation cultures, we first assessed the relative contribution

of these feeder cells by comparing levels of ‘‘housekeeping’’

proteins Actin, Glyceraldehyde 3-Phosphate Dehydrogenase

(GAPDH) and Superoxide Dismutase (SOD1) in PA6 feeder cells

cultured for seven weeks in the presence or absence of control or

shKLC1-1 hESC. Mouse and human SOD1 and GAPDH proteins

have different electrophoretic mobilities so the presence or absence

of the mouse and human bands can indicate the contribution of

mouse PA6 cell derived compared to human protein. The mouse

SOD1 and GAPDH bands were easily detectable in PA6 feeder

cell lysates, but not in samples derived from PA6 cells cocultured

with either control or shKLC1-1 hESC (Figure 3A), implying to us

minimal PA6 mouse cell contamination within the differentiation

cultures.

Figure 3. Neural cultures derived from KLC1-suppressed hESC have reduced neural microtubule-associated markers. (A) Cultures
were harvested at seven weeks in vitro and equal protein from mouse PA6 feeders cultured with control, shKLC1-1 or no hESC (PA6 feeder cells lane)
were analyzed by Western blotting for actin, GAPDH and SOD1. Note that unlike Actin, mouse and human GAPDH and SOD1 have different
electrophoretic mobilities (arrows). (B–C) Control or shKLC1-1 hESC were cultured for seven weeks with PA6 feeder cells and then harvested. Equal
protein from control and shKLC1-1 cultures was analyzed by Western blotting. (B) Representative immunoblots of Actin, NSE, GFAP, a-Tubulin, b-III-
Tubulin, MAP2, pNF-H, pNF-M, Tau and pTau. (C) Quantification of protein levels relative to control and normalized to Actin. Based on n = 6 wells each
*p,0.05, **p,0.01, ***p,0.001 by 2 tailed t-test compared to control.
doi:10.1371/journal.pone.0029755.g003

Neural Differentiation of KLC1-Suppressed hESC
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We estimated the relative proportion of neurons and glia in

control and shKLC1-1 seven week PA6 feeder differentiation

cultures by assessing relative levels of neuron marker Neuron

Specific Enolase (NSE) and glial marker Glial Fibrillary Acidic

Protein (GFAP) by Western blot. Since these cultures also likely

contained other hESC differentiation progeny, we used the

ubiquitously expressed protein Actin as a normalizer. Although

on average there appeared to be less relative NSE and GFAP

protein in shKLC1-1 compared to control differentiation cultures,

this trend did not reach statistical significance (p = 0.13 and

p = 0.10, respectively; Figure 3B–C), indicating that the propor-

tions of neurons and glia within control and shKLC1-1 PA6

differentiation cultures were not different.

Our imaging data led to us propose that human neuron-like cells

produced in PA6 differentiation cultures from hESC with reduced

KLC1 may have shorter projections than control cells (Figure 2A

right-most panel and Figure S2). To test whether KLC1-suppressed

hESC produce neuron-like cells with normal proportions of the

microtubule components enriched in neurites, we compared levels of

Actin normalized a-Tubulin, b-III-Tubulin, the dendrite marker

microtubule-associated protein 2 (MAP2) and axonal markers (pNF;

heavy –pNF-H and medium - pNF-M chains) and full length Tau

(using both phosphorylation-dependent and -independent antibod-

ies). Interestingly, shKLC1-1 compared to control differentiation

cultures had 25–30% less microtubule subunits a-Tubulin and b-III-

Tubulin (an isoform enriched in neurons) and MAP2 (Figure 3B–C).

Axonal markers pNF-H and pNF-M were also reduced by 25–35%

while Tau was down by .60%, regardless of phosphorylation state

(Figure 3B–C). These observations suggest that while pluripotent

cells with reduced KLC1 are capable of differentiation to neuron-like

progeny, the process is less efficient, producing fewer overall progeny

and neurons with shorter projections and less MT-associated

cytoskeletal components. Because APP metabolism is linked to

AD, it is important to understand how it is regulated in human

neurons at endogenous levels. APP associates closely with KLC1 and

its axonal transport is Kinesin-1 dependent [20–23]. Reduction of

full length murine KLC1 in adult mice expressing transgenic human

familial AD-associated APP perturbs brain Ab levels [26]. Ab is

produced by the sequential cleavage of APP by b-secretase and then

c-secretase, while APP cleavage by the a-secretase prevents

formation of Ab peptides (Figure 4A). To assess whether human

KLC1 depletion alters APP metabolism in human neural cultures,

we measured levels of full length APP and its extracellular

metabolites in control or shKLC1-1 hESC PA6 differentiation

cultures aged seven weeks. To account for possible differences in the

fraction of neurons between cultures we normalized the values to

NSE. While levels of full length APP (Figure 4B–C) or soluble

intracellular Ab (Figure 4E) in control compared to shKLC1-1 PA6

feeder cultures were not significantly different, secreted extracellular

Ab levels were substantially reduced in KLC1-suppressed neural

cultures (Figure 4D). Regardless of KLC1 levels, 99% of the Ab40

detected was found in the extracellular fraction. We also tested if

PA6 differentiation cultures derived from shKLC1-1 compared to

control hESC have similar levels of extracellular sAPPb or sAPPa
fragments. We discovered that KLC1 depletion did not alter levels of

sAPPa, but KLC1 depleted neural cultures had less extracellular

sAPPb than control (Figure 4F). These results suggest that KLC1

suppression in human neurons may perturb APPb, but not APPa
cleavage of endogenous APP.

Neural precursors with reduced KLC1 do not proliferate
normally

To gain insight into why neuronal cultures derived from hESC

with reduced KLC1 are less dense and have reduced microtubule-

associated proteins and APP processing, we examined NPs, the

cells that divide and give rise to neurons and glia. Flow cytometry

is a useful tool for identifying stem cell populations [39] and we

have recently developed a flow cytometry-based method to

identify and sort out NPs derived from either PA6 feeder

differentiation or an alternative neural differentiation method in

which nonadherent floating cell clusters, called EBs, are generated

and plated on in neuralizing media (Figure S3A) [32]. To

determine which method gives the best NP yield, we used both to

generate NPs from control hESC. Like the PA6 method, the EB

method generated rosette cell clusters (Figure 5A; compare to

Figure 2A). Flow cytometric analysis of progeny exhibiting high

levels of CD184 and CD24 and low levels of CD271 and CD44, a

cell surface signature characteristic of cells which differentiate into

neurons and glia (CD184hiCD24hiCD271loCD44lo) [32], revealed

that the EB method generated more than four times more

CD184hiCD24hiCD271loCD44lo NPs than the PA6 method

(Figure 5B and Figure S3B–C). Therefore, we used the more

efficient EB method to ask how reduced KLC1 affects production

of CD184hiCD24hiCD271loCD44lo NPs. Similar to the trend

observed with PA6 feeder cultures (Figure 2A), EB neural

induction cultures from hESC with reduced KLC1 appeared to

have fewer and smaller overall colonies (Figure S4A), suggesting

reduced overall cell densities compared to control. We confirmed

this observation by quantifying day eighteen control, shKLC1-1

and shKLC1-2 neural induction culture cell densities which

revealed that KLC1 suppression lowers overall cell densities in a

KLC1 dose dependent fashion (Figure 5C). To learn whether

KLC1 suppression alters the proportion of NPs within the cultures

we used flow cytometry to quantify the percent of control, shKLC1-

1 and shKLC1-2 PA6 feeder and EB neural induction culture cells

with the CD184hiCD24hiCD271loCD44lo NP signature. PA6

feeder derived shKLC1 neural induction cultures had normal

proportions of NPs (Figure S4B). Interestingly, EB neural

induction cultures derived from KLC1-suppressed hESC had

,50% reduced fraction of CD184hiCD24hiCD271loCD44lo cells

(Figure 5D and Figure S3B), suggesting that reduction in KLC1 in

hESC can lead to lower NP proportions that could reduce

differentiation culture cell densities.

To address whether KLC1 levels affect NP function, we sorted

NPs from EB neural induction cultures derived from hESC with

normal or reduced KLC1. Regardless of KLC1 levels, sorted NP

cells appeared morphologically similar initially (Figure 6A).

However NP cells with reduced KLC1 failed to multiply while

NP cells differentiated from control hESC proliferated, expressed

NP markers Sox1 and Nestin (Figure 6B–C and Figure 6D, control

lane) and differentiated to cultures containing highly polarized

cells resembling neurons (Figure 6E) and containing neuronal

markers (Figure 6F, control lane). Since sorted NP cells expressing

shRNA to KLC1 did not proliferate we were unable to assess their

NP marker expression or neuronal differentiation potential by

Western blot.

To confirm that KLC1 suppression prevents normal NP

propagation in homogeneous NP cultures, we transduced control

hESC derived EB NP cells with lentivirus containing a GFP

reporter and either shRNA to KLC1 (shKLC1) or a control

luciferase shRNA (shLUC) and sorted GFP positive cells (Figure

S5). Like uninfected control NP cells, GFP positive shLUC NP

cells proliferated, expressed NP markers Sox1 and Nestin

(Figure 6D, shLUC lane) and differentiated to cultures containing

neuron markers (Figure 6F, shLUC lane). In contrast, GFP sorted

shKLC1 lentivirus infected NPs did not proliferate and thus we

could not assess their differentiation potential. Taken together we

conclude that cellular defects induced by KLC1 suppression can

Neural Differentiation of KLC1-Suppressed hESC
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affect differentiation to and impair proliferation of CD184hiCD24-
hiCD271loCD44lo NP populations, leading to reduced overall

neural differentiation culture densities.

Discussion

KLC1 suppression affects microtubule associated
proteins

Since KLC1 mutant animals exhibit neural defects, we tested

whether reduced KLC1 impairs the differentiation of hESC to

neural cells. We found that the neural microtubule-associated

markers b-III-Tubulin, MAP2, pNF and Tau are reduced in

KLC1 suppressed compared to control cultures. Intriguingly,

previous studies suggest that Kinesin-1 may transport Tubulin,

thereby regulating cell size and shape [13,40,41]. If KLC1

reduction impairs transport of microtubules into neuronal

projections, it may cause reductions in cell size, neurite length

and levels of microtubule-associated proteins such as MAP2, pNF

and Tau. Indeed several studies report reductions in neurite length

in KHC or KLC-depleted cultured rodent hippocampal neurons

[12–14] and in the dendrites of neurons in C. elegans and D.

melanogaster [36,37]. Reductions in cell size may also partially

account for body size reductions observed in Kinesin-1 mutant

flies and mice and the reduced white matter tracts observed in the

KLC1 mutant mouse [11,15–17]. Alternatively, reduced levels of

neural microtubule-associated proteins in the KLC1 suppressed

Figure 4. Human neural cultures with reduced KLC1 exhibit altered APP metabolism. (A) APP proteolytic processing by either b-and c-
secretases or a- and c-secretases produces sAPPb and Ab (shaded dark grey) or sAPPa and p3 fragments, respectively. (B–C) PA6 feeder neural
differentiation cultures were harvested after seven weeks and equal protein from control and shKLC1-1 cultures were analyzed using Western blots.
(B) Representative immunoblots for full length APP in control and shKLC1-1 neural differentiation lysates. Results for both amino (APP-N; LN27) and
carboxy terminal (APP-C) antibodies are shown. The APP carboxyl terminal cleavage fragments were not reliably detected. (C) Quantification of full
length APP levels relative to NSE. (D) Levels of extracellular human Ab peptides 38, 40 or 42 amino acids in length detected in media conditioned by
control or shKLC1-1 hESC co-cultured with PA6 feeder cells for seven weeks. Human Ab was not detected from PA6 feeder only cultures. (E) Levels of
Triton X-100 soluble intracellular human Ab-40 in control or shKLC1-1 PA6 feeder differentiation cultures aged seven weeks. Intracellular Ab peptides
38 or 42 amino acids long were not detectable. (F) Levels of human extracellular sAPPa and sAPPb were detected in media conditioned by control or
shKLC1-1 PA6 feeder cocultures aged in vitro for seven weeks. Based on n = 6 each line; *p,0.05, **p,0.01 by 2-tailed t-test.
doi:10.1371/journal.pone.0029755.g004
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human neural cultures may be due to fewer neurons derived from

fewer NPs although neither NSE levels nor the fraction of

neuronal (b-III isoform as a fraction of the more widely expressed

a-Tubulin) Tubulin were different in neural cultures derived from

hESC with normal or KLC1-depleted hESC.

Effect of KLC1 suppression on APP metabolism in human
neural cultures

We found that neural cultures derived from KLC1-reduced

hESC have less Ab compared to control, supporting a functional

connection between KLC1 and APP trafficking and/or metabo-

lism. The exact nature of this connection is unknown. However,

evidence suggests that Kinesin-1 may transport APP within axons

of neurons [21,26,42]. The intracellular location of APP is thought

to affect its metabolism with a-secretase cleavage likely occurring

at the plasma membrane and b-secretase cleavage in endosomal

compartments [43]. Once produced, sAPP and Ab peptides are

secreted [44] and Ab may be degraded by proteases, such as

Neprilysin, in the extracellular milieu [45]. Kinesin-1 based axonal

transport defects could disrupt any or all of these processes. Our

data imply no net effect on extracellular levels of sAPPa in neural

cultures derived from hESC with depleted compared to control

KLC1 levels, suggesting this cleavage pathway may be normal.

However, extracellular levels of b-cleavage pathway products

sAPPb and Ab are both reduced in the KLC1-suppressed

compared to control hESC derived neural cultures, suggesting

the APPb cleavage pathway is disrupted by impaired KLC1. The

reduced extracellular Ab from KLC1-reduced hESC derived

human neural cultures agrees with reports of reduced amyloid

plaque loads following mechanical disruptions in axonal transport

in the perforant pathway of APP transgenic mice [46].

Experiments in better defined human neural cultures will be a

first step to understanding the nature of this effect in human

neurons.

Work in transgenic mice expressing a familial AD mutant APP

suggests that axonal transport perturbations arising from reduced

KLC1 function lead to earlier and increased brain Ab production

and plaque deposits [26]. Compared to mice with normal Kinesin-

Figure 5. Neural induction cultures made from KLC1-suppressed hESC have reduced cell densities and proportions of NPs. (A–D)
Control, hESC were subjected to neural induction conditions for eighteen days using PA6 feeder or EB methods as indicated. (A) Bright field image of
control EB neural induction culture (see Figure 2A for image of PA6 differentiation). Arrows point to rosettes. Insets show close-ups of indicated
rosettes. Scale bars: 200 mm for main images, 50 mm for insets. (B) Percent of cells in control EB and control PA6 feeder differentiation cultures with
CD184hiCD24hiCD44loCD271lo NP cell surface marker signature (C) Quantification of cell density in EB control, shKLC1-1 and shKLC1-2 hESC EB neural
induction cultures. EB cultures were dissociated enzymatically and counted using a hemocytometer. (D). Percent of cells within EB control, shKLC1-1
and shKLC1-2 hESC differentiation cultures exhibiting CD184hiCD24hiCD44loCD271lo NP cell surface marker signature after. For (B–C), control n = 9,
shKLC1-1 n = 6, shKLC1-2 n = 3. For (D), n = 3 each line. **p,0.01, ***p,0.001 by 2-tailed t-test compared to control.
doi:10.1371/journal.pone.0029755.g005
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Figure 6. Sorted control but not KLC1-suppressed NPs proliferate and differentiate to neurons. (A) Cells exhibiting the NP cell surface
signature were sorted by flow cytometry. Representative images of EB derived NP bright field morphology one day post-sort. Arrows point to
individual cells with similar morphology. Scale bar 100 mm. (B) Immunofluorescence for NP intracellular markers Sox1 and Nestin in sorted NP cells
from control hESC cultures generated using the EB method. Merged image shows overlay of Sox1 (red), Nestin (green) and DAPI stained nuclei (blue).
(C) Quantification of percent of cells ( = DAPI nuclei) positive for Sox1 or Nestin in control derived NP cells. (D) Hues9 derived NPs sorted from EB
neural induction cultures were infected with virus containing expression cassettes for a GFP selection marker and shRNA targeting luciferase (shLUC),
which is not normally expressed in these cells. Western blotting was used to verify expression of NP markers Nestin and Sox1 in shLUC compared to
uninfected control NPs. Also shown are the loading control Actin and the GFP selection marker. (E) Representative bright field image of control hESC
derived NPs differentiated for a further 10 weeks. Arrowheads show neurites extending from cell clusters. Scale bar 100 mm. (F) Hues9 derived control
or shLUC infected EB derived and flow sorted NPs were differentiated to neurons for five weeks and equal amounts of protein analyzed by Western
blotting for a-Tubulin, neuronal markers b-III-Tubulin, MAP2 and Tau as well as an Actin loading control and GFP selection marker.
doi:10.1371/journal.pone.0029755.g006
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1, animals with reduced KLC1 function also have more Tau in

neural tissues [11,25]. Here we find that human KLC1 depletion

in hESC-derived neural cultures reduces endogenous levels of Tau

and Ab. It is unclear why KLC1 disruption in human neural

cultures reduces Ab and Tau while in mouse brain, these proteins

are increased. Possible explanations include species specific

differences, modes of KLC1 perturbation, neuron type or maturity

or differences in production or turnover. Nonetheless, together our

data support functional connections between KLC1 and levels of

Tau and Ab.

A role for the KLC1 subunit of Kinesin-1 in NP
maintenance?

Previous studies suggest important functions for Kinesin-1

subunits in the development and maintenance of the nervous

system. For example, expression patterns of Kinesin-1 subunits

reveal that Kinesin-1A, Kinesin-1B, Kinesin-1C, KLC1 and

KLC2 are widely expressed in neural tissues [7–10]. In fact,

mouse neurons lacking full length Kinesin-1A, Kinesin-1B,

Kinesin-1C or KLC1, or Drosophila neurons lacking KHC or

KLC, exhibit moderate to severe defects in axonal transport and

other neuronal phenotypes [9,10,15,17,18]. Previous studies in

our lab showed that KLC1 reduction in mice leads to altered

localization and phosphorylation of Tau while KLC1 heterozy-

gous animals also expressing a human APP transgene exhibit

increased brain Ab, two phenotypes associated with AD

[11,25,26]. Other work documenting the absence of significant

phenotypes caused by loss of Kinesin-1 subunits in virtually all

non-neuronal cell types suggest that Kinesin-1, and KLC 1 in

particular, does not have ‘‘housekeeping’’ functions [15,47,48].

Our finding that KLC1-suppressed hESC do not have growth or

other obvious phenotypes is consistent with these previous

studies. However, previous findings that Kinesin-1C mutant

mice have smaller brains and that KLC1 mutant mice have

smaller bodies and reduced white matter compared to wildtype

raise the possibility of cell proliferation defects during nervous

system development [9,11,15]. Therefore, we tested for NP

defects in human neural induction cultures with perturbed

KLC1. Since over-expression of KLC1 leads to non-physiological

cellular aggregation of the protein which is difficult to interpret,

we tested the effect of reduced endogenous KLC1 [14,49]. We

found neural induction cultures derived from KLC1-suppressed

compared to control hESC have reduced overall cell densities.

Our data also show that both NPs sorted from KLC1-suppressed

hESC neural induction cultures and sorted control NPs infected

with lentivurus coding for shRNA to KLC1 fail to proliferate.

These data suggest the hypothesis that KLC1 reduction impairs

NP proliferation capacity. Given the neural expression of other

Kinesin-1 subunits and the growth retardation defects observed

in Kinesin-1A, Kinesin-1B and Kinesin-1C mutant mice, it is

possible these other subunits may also have important functions

in NP maintenance.

Supporting Information

Figure S1 Lentiviral modification, karyotypes and flow
cytometric analysis gating strategies for undifferentiat-
ed hESC. (A) Diagram of shRNA constructs used to produce cells

with reduced KLC1. The sequences for reverse and forward DNA

oligonucleotides with KLC1 exon 2 targeted sequences were:

Forward 59-TGTAATTTGGTGGAGGAGAATTCAAGAGA-

TTCTCCTCCACCAAATTACTTTTTTC-39 and Reverse 59-

TCGAGAAAAAAGTAATTTGGTGGAGGAGAATCTCTT-

GAATTCTCCTCCACCAAATTACA -39 (B) Metaphase chro-

mosome spreads of Hues9 passage 41: 46,XX,inv(9)(p12q13),

shKLC1-1 passage 42: 46,XX,inv(9) and shKLC1-2 passage 44:

46,XX,inv(9)(p12q13). (C) Hues9 percentile contour plots showing

gating strategy to exclude coincident events. (DC) Representative

Hues9 percentile contour plots showing gating for pluripotency

markers TRA-1-81 and Oct-4. (E) Gating hierarchy for events.

(TIF)

Figure S2 Morphology of neural cultures derived from
control and KLC1 suppressed hESC. Control, shKLC1-1

and shKLC1-1 hESC were differentiated for seven weeks using the

PA6 feeder method. Bright field images show control, shKLC1-1

and shKLC1-2 PA6 feeder cocultures at seven weeks since plating.

Scale bar = 200 mm.

(TIF)

Figure S3 Neural induction and neural precursor flow
cytometry gating strategies. (A) Timeline of events for PA6

feeder and EB neural induction cultures. (B) Hues9 control

percentile contour plots showing scatter gates for excluding

coincident events (top panels) and for both positive (CD184 and

CD24) and negative (CD44 and CD271) NP cell markers (bottom

panels). Gating hierarchy shown below contour plots. (C) Back-

gating of CD184hi CD24hi CD271lo CD44lo population (shown in

blue) on CD184 – CD44 & CD271 bivariate dot plots for control,

shKLC1-1 and shKLC1-2 PA6 feeder and EB neural induction

cultures 18 days in vitro.

(TIF)

Figure S4 Additional properties of neural induction
cultures. (A) Control, shKLC1-1 and shKLC1-2 hESC were

subjected to neural induction conditions for eighteen days

using the EB method. Bright field images of neural induction

cultures eighteen days in vitro. Arrowheads point to rosettes.

Insets show close-ups of indicated rosettes. Scale bars: 200 mm

for main images, 50 mm for insets. Note the control image is

also shown in Figure 6A and is reproduced here for ease in

comparison. (B) Percent of cells within PA6 feeder control,

shKLC1-1 and shKLC1-2 hESC derived neural induction

cultures exhibiting CD184hiCD24hiCD44loCD271lo NP cell

surface marker signature.

(TIF)

Figure S5 Scheme for infection and sorting of NPs with
lentivirus expressing shRNA to KLC1 or Luciferase. (A) A

lentiviral vector encoding a GFP expression cassette and either a

shRNA targeted to KLC1 (shKLC1) or Luciferase (shLUC) is

packaged into virus. (B) Dissociated Hues9 derived NP cells are

exposed these virion, (C) GFP positive cells sorted by flow

cytometry and (D) plated for expansion.

(TIF)
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