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Introduction
Colorectal cancer (CRC) is one of the most preva-
lent malignant tumors worldwide. During the ini-
tiation and progression of CRC, the gut microbiota 

affects the host bowel environment to interfere 
with tumor growth, and engages in cross-talk with 
the host immune system.1–3 Fusobacterium nuclea
tum is a carcinogenic bacterium that exhibits 
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Abstract
Background: FOLFOX treatment is a method used widely to reduce tumor size in low-set 
rectal cancer, with variable clinical results. FOLFOX agents comprise a mixture of oxaliplatin 
and 5-fluorouracil, the efficacy of which might be modulated by the gut microbiome in 
humans. This study aimed to determine whether the bowel microbiota is a factor that 
influences FOLFOX treatment.
Methods: To investigate the role of gut microbiota during FOLFOX treatment, we carried 
out comprehensive metagenomic and metabolomic analyses on 62 fecal samples collected 
from 37 low-set rectal cancer patients. A set of 31 samples was collected before the patients 
underwent treatment; another 31 samples were obtained after the treatment was completed. 
Among these samples, 50 were paired samples collected before and after FOLFOX treatment. 
The patients were divided into responder and nonresponder groups according to the treatment 
outcome. Metagenomic sequencing was performed on these fecal samples. Diverse bacterial 
taxa were identified by MetaGeneMark, Soapaligner, and DIAMOND; microbiotal data analyses 
were carried out in the R environment. Differences in microbial taxa and metagenomic linkage 
groups were observed in multiple comparative analyses.
Results: The gut microbiota was altered after treatment. Compared with before treatment, 
the changes in bacterial diversity and microbiotal composition after treatment were more 
apparent in the responder group than in the nonresponder group. Bacterial species analysis 
revealed a group of gut bacteria in multiple comparisons, with a group of eight specific species 
being associated with the outcome of FOLFOX treatment. Responders and nonresponders 
before treatment were clearly separated based on this bacterial subset. Finally, the 
metagenomic linkage group network and metabolomic analyses based on the genomic data 
confirmed a more significant change in the gut microbiota during FOLFOX treatment in the 
responder group than in the nonresponder group.
Conclusions: Overall, our results describe a dynamic process of gut microbiotal changes from 
the start to the end of FOLFOX treatment, and verified a close relationship between microbiota 
and treatment outcome. Recognition of the significance of microbiotal intervention before 
FOLFOX treatment for low-set rectal cancer may improve the effects of these agents.
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increasing abundance in the polyp-to-tumor 
transformation.4,5 Another group has recently 
shown that a combination of F. nucleatum, 
Bacteroides clarus, Roseburia intestinalis, Clostridium 
hathewayi, and one undefined species (labeled as 
m7) might serve as a novel noninvasive diagnostic 
biomarker for CRC.6

The most effective strategy for CRC treatment, 
which is widely approved for both clinical and 
general settings, is surgical excision and chemo-
therapy before metastasis. However, for low-set 
rectal cancer, which is located in the lower part of 
the bowel at 6 cm (2 inches) from the anus,7 the 
likely consequence of surgical treatment is prob-
lem with bowel function over the remaining lifes-
pan of the patient. The clinical use of FOLFOX, a 
type of neoadjuvant chemotherapy (NC) recom-
mended by the National Comprehensive Cancer 
Network (NCCN) Guidelines (2018),8 has been 
beneficial for these patients, who otherwise might 
have to undergo anus removal. In contrast to 
adjuvant chemotherapy, FOLFOX involves drug 
treatment before surgical excision of a tumor.

In clinical settings, the FOLFOX agents used for 
rectal cancer are oxaliplatin (Oxp) and 5-fluoro-
uracil (5-FU).8 The efficacy of these two agents 
has been confirmed to be modulated by the gut 
microbiome.9,10 Oxp, which is a platinum-based 
chemical therapy, is widely used to treat several 
malignancies in clinical settings. Studies have ver-
ified that the anticarcinogenic effects of Oxp rely 
on gram-negative (G–) bacteria in the host intesti-
nal tract. Lipopolysaccharide (LPS), the main 
component of G– bacterial cell walls, induces 
myeloid cells to produce high levels of reactive 
oxygen species (ROS). Under oxidative stress, 
the DNA damage caused by Oxp is enhanced in 
the tumor, triggering cancer cell death.9 5-FU, 
the other component of FOLFOX, has been 
defined as a first-line drug for NC, and has been 
used extensively in CRC.11,12 As an analogue of 
uracil, 5-FU and its prodrugs block nucleotide 
biosynthesis and induce cell division, in addition 
to being converted to thymidine-5’-monophos-
phoric acid by thymidylate synthase.13 Based on 
clinical feedback and previous studies, there is a 
clear difference in drug potency among 
patients.14–16 The observed variation in 5-FU effi-
cacy may be due to the different genetic back-
grounds of each patient,17 though it is difficult to 
explain the widespread 5-FU tolerance among 

different races.18 Such variation suggests that the 
bowel microflora environment is a key factor in 
the action of NC.

To better understand the role of the microbiome 
and its interaction with chemical therapy, we col-
lected 62 microbiome samples from 37 low-set 
rectal cancer patients undergoing NC treatment, 
including 21 responders with 35 stool samples, 
and 16 nonresponders with 27 stool samples.19 In 
each group, patient characteristics were moni-
tored during the treatment process, and stool 
samples were collected both before and after 
treatment. We performed deep metagenomics 
sequencing of all stool samples, and metabolomic 
analyses of their metabolic profiles; we further 
built a classification system for the responders 
and nonresponders based on gut microbiota and 
metabolites. Our results provide evidence that 
chemical therapy may affect the composition of 
the gut microbiota. Additionally, the gut micro-
biota might be a factor used to improve the effects 
of FOLFOX agents before treatment for low-set 
rectal cancer.

Material and methods

Sample collection and DNA preparation
We recruited, from the China-Japan Friendship 
Hospital, 37 low-set rectal cancer patients with-
out tumor metastases who were diagnosed on the 
basis of clinical criteria according to a previous 
study (Supplementary Table S1).7 The partici-
pants, who were not treated with any antineoplas-
tic agent or antibiotic treatment before NC, all 
underwent FOLFOX therapy. The dose was 
based on body surface area. After treatment, the 
patients were divided into responder and nonre-
sponder groups according to NCCN criteria.

In total, 62 fecal samples, including 50 paired 
samples collected before and after FOLFOX 
treatment (Table 1), were available for metagen-
omic analysis. Based on the group information, 
the fecal samples, which were collected before 
therapy, were classified into subgroups labeled 
responders before treatment (RB, n = 16) and 
nonresponders before treatment (NRB, n = 19). 
Correspondingly, the samples collected at the end 
of FOLFOX treatment were labelled responders 
after treatment (RA, n = 15) and nonresponders 
after treatment (NRA, n = 12). This study was 
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approved by local ethics committees (Institute of 
Microbiology, Chinese Academy of Sciences, 
IRB No. APIMCAS2016003), and informed 
consent was obtained from all participants.

Stool samples were collected from each patient at 
the hospital before colonoscopy, and immediately 
frozen at −80°C until analysis. Total DNA extrac-
tion was performed according to the manufactur-
er’s guidelines for bacterial DNA enrichment, 
with minor modifications, using QIAamp® FAST 
DNA Stool Mini Kit (cat. No.51604, Qiagen, 
Hilden, Germany). To improve the efficiency of 
gram-positive bacteria cell disruption, fecal sam-
ples were disrupted in InhibitEX Buffer, and 
homogenized with 100 mg of zirconium beads 
(0.1 mm) using a Mini-Beadbeater-1 (Biospec 
Products Inc., Bartlesville, OK, USA) at a rate of 
4800 rpm/min four times for 30 s at room tem-
perature (15–25°C), with a 10 s interval each 
time. The mixture was heated at 95°C for 5 min 
in a metal bath to further increase the amount of 
total bacterial DNA extracted. Ensuing steps 
were carried out according to the manufacturer’s 
recommendations.

Metagenomic sequencing and gene catalogue 
construction
The Illumina HiSeq platform (insert size 250–
450 bp, read length 150 bp) was used for the anal-
ysis of all fecal samples. Raw reads were quality 
controlled to remove certain sequences, including 
bases with low quality, with more than 10 bp N or 
with more than a 15 bp overlap with the adapter, 
and were aligned to the human genome (align-
ment with SOAP2, parameters: identity ⩾90%, 
–l 30, –v 10, –M 4, –m 200, –x 400). The remain-
ing clean data (Supplementary Table S2) were 
used to assemble scaffolds with SOAP denovo 

(Version 2.04, parameters: –d 1, –M 3, –R, –u, 
–F). For each sample, the scaffolds were cut off at 
N bases. Fragments without N bases were called 
scaftigs. The clean data agonist scaftigs were 
mapped using SOAP2 (parameters: –u, –2, –m 
200), and we obtained the unused reads of each 
sample. All unused reads were assembled as scaft-
igs using the same method and parameters as 
mentioned above.

Scaftigs longer than 500 bp were used to predict 
open reading frames (ORFs) in MetaGeneMark 
(prokaryotic GeneMark.hmm version 2.10), and 
scaftigs with a length of less than 100 nt were 
deleted. After redundancies were removed by 
CD-HIT, a primitive gene catalogue was con-
structed (parameters: identity ⩾95%, converge 
⩾90%, –c 0.95, –G 0, –aS 0.9, –g 1, –d 0). 
Finally, only genes with at least two mapped 
reads were used to calculate abundance using 
SoapAligner (parameters: identity ⩾95%, –m 
200, –x 400).

Generating gene profiles, constructing metagen-
omic linkage groups (MLGs), creating a Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
ortholog, module, and pathway, were all accom-
plished according to previously published meth-
ods.20 Reads were quality controlled and 
assembled in the same way as the scaftigs used to 
predict ORFs. Finally, each ORFs was aligned to 
the nonresponder database of NCBI and distin-
guished taxonomic groups.

Raw Illumina read data for all samples were 
deposited in the National Center for Biotechnology 
Information GenBank Sequence Read Archive 
under BioProject accession PRJNA484031.

α diversity and rarefaction curve
Within a sample, α diversity (within-sample diver-
sity) was used to represent genus richness 
(Supplementary Table S3): the higher is the rich-
ness of a sample, the greater the diversity. The α 
diversity value was calculated according to the 
Chao 1 index as described previously.21,22

To assess the gene richness in all groups, we per-
formed sampling 100 times randomly in the 
cohort, and counted the total number of genes 
that could be classified from these samples in the 
R environment.

Table 1. Sample collection table.

Before After Total

Responder 16a (14)b 19 (14) 35 (28)/21c

Nonresponder 15 (11) 12 (11) 27 (22)/15

aThe number presents the number of samples.
bThe number in brackets represent the number of paired 
samples.
cThe number after the slash represents the number of 
patients.
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Taxonomic annotation and abundance 
calculation
According to the gene sequence information we 
obtained based on the above analyses, each gene 
was aligned to the NR database of NCBI using 
DIAMOND (default parameter: e-value ⩽10−5). 
For each gene, only reads with an e-value 
⩽10 × minimal e-value were used to distinguish 
taxonomic groups. The lowest common ancestor-
based algorithm (LCA) was employed to define 
the gene’s taxonomical level in the MEGAN envi-
ronment. The relative abundance of a taxonomic 
group was summed up by the abundance of its 
matching genes.

Metagenome-wide association study and co-
occurrence network of MLGs
According to the gene clustering results, we con-
structed a gene set that included 1,048,574 genes. 
In total, 201,136 genes showed statistically sig-
nificant differences (Wilcoxon rank sum test, 
p < 0.05) in multiple relative abundance compari-
sons and were considered marker genes, includ-
ing 50,886 genes for RB versus NRB, 49,553 
genes for RB versus RA, 15,177 genes for NRB 
versus NRA, and 93,718 genes for RA versus 
NRA.

To determine the relationships between these 
marker genes, we created MLGs to cluster genes 
according to their variation in abundance, as pre-
viously described.20 The MLGs that included less 
than 50 genes were removed. The remaining 237 
MLGs were assigned to taxonomic groups, and 
abundance was profiled according to the relative 
abundance of the constituent genes, as previously 
described.20 Briefly, assignment to a species 
required more than 90% of the genes in an MLG 
to be aligned with a species’ genome at 95% iden-
tity and 70% overlap with the query sequence. 
Similarly, assignment to a genus required at least 
80% of the genes in an MLG to align to the 
genome at 85% identity for both DNA and pro-
tein sequences.

According to the MLG abundance, we calculated 
Spearman’s correlations for all samples to further 
cluster the MLGs. Enrichment of MLGs was 
identified according to the OR value, which was 
calculated according to the abundance of the 
compared samples of each group as previously 
described.23 The computing formula of an MLG, 

k, was calculated as OR(k)= [∑s=group 1 Ask/∑s=group 1 
(∑i≠k Asi)]/ [∑s=group 2 Ask/∑s=group 2 (∑i≠k Asi)], 
where Ask is the abundance of MLG k in sample 
s. For the comparative analysis between two 
groups, MLGs were classified according to the 
OR values, where OR > 2 belongs to group 1, and 
OR < 0.5 to another group. The co-occurrence 
network of MLGs was visualized with Cytoscape 
3.5.1.

Functional annotation
All genes in our catalogue were translated into 
putative amino acid sequences, and then aligned 
against the proteins or domains in KEGG data-
bases (release 59.0, without animal and plant 
genes) using DIAMOND software (version 
0.7.9.58, default parameter except that –k 50 
–sensitive –e 0.00001). According to the highest 
scoring annotated hit(s), each protein was 
assigned to a KEGG orthology group in which at 
least one of the high-scoring segment pair (HSP) 
scores was over 60 bits.24 The abundance of 
KEGG orthology groups was the sum of the 
annotated gene abundance.

Statistical analyses
The Shannon index, Chao 1 index, and Bray-
Curtis distance were all calculated in R (Version 
3.4.0 by vegan package). Principal component 
analysis (PCA) and principal coordinate analysis 
PCoA were performed and displayed by the clus-
ter package, clusterSim package, and ade4 pack-
age. Spearman’s correlation was calculated for all 
samples using R (Version 3.4.0, psych package), 
as previously described.25,26 The ggplot2 package 
was applied to construct plots. Significant differ-
ences in the relative abundance of gut microbes 
or MLGs between two compared groups were 
identified by two-tailed Wilcoxon rank sum tests 
with p < 0.05. Enrichment in any group was 
determined according to the higher rank sum

Results

Bacterial diversity is influenced by FOLFOX 
treatment
To identify whether gut microbial diversity 
changes are associated with FOLFOX treatment, 
we performed shotgun metagenomics sequencing 
of stool samples from our cohort, and used the 
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Chao 1 index27 to reveal the bacterial diversity 
present in the samples. First, we compared Chao 
1 values in different groups according to clinical 
outcomes. Before treatment, bacterial diversity 
did not differ significantly between responders 
and nonresponders (p = 0.5394), but a significant 
difference was found (p = 0.01052) after the 
groups received identical NC (Figure 1a). Next, 
we compared Chao 1 values to display the 
dynamic change in bacterial diversity with treat-
ment. After treatment, Chao 1 values decreased 
significantly (p = 0.02631) in the responder group, 
but there was no significant difference in the non-
responder group (p = 0.3531), with an increasing 
trend in all samples and paired samples (Figure 
1a). The results suggest that the composition of 
gut microbes changed to a considerably greater 
degree in the responder group than in the nonre-
sponder group.

To verify the extent of the change to the gut 
microbiota, we employed Bray-Curtis distances,28 
which indicate the different degree of bacterial 
composition between two random samples. We 
calculated distances within two samples of the 
same group. When comparing Bray-Curtis dis-
tances between responders before treatment (RB) 
and nonresponders before treatment (NRB), the 
difference was very significant, both in paired 
samples (p = 1.655e−3, Figure 1) and in all sam-
ples (p = 2.68e−3, Figure S1b). However, no sig-
nificant differences between responders after 
treatment (RA) and nonresponders after treat-
ment (NRA) were observed (p = 0.6932, Figure 
1b; p = 0.1758, Figure S1). Next, we examined 
the dynamic change in Bray-Curtis distances in 
each FOLFOX outcome group. In the responder 
group, the distance between two samples dropped 
sharply after treatment (p = 8.123e−9, Figure 1b; 
p = 0.06675, Figure S1); in the nonresponder 
group, although the p value was less than 0.05, 
the trend was flatter (p = 0.03265, Figure 1b). In 
a comparison of the total NRB and NRA sam-
ples, the p value was almost 1 (p = 0.9633, Figure 
S1). These results suggest that NC increased the 
degree of change in gut microbial composition 
only in the responder group.

To further explain the differences in gut microbial 
composition, we again employed the Bray-Curtis 
distance to cross-compare samples in different 
groups. We calculated the distance between every 
two samples: one was RB, and the other was NRB, 
labelled as RB versus NRB. The same calculation 

method was applied between other groups with 
similar labels. When we then performed multiple 
comparisons of the RB versus NRB and RA versus 
NRA separately, the distance clearly decreased 
(p = 0.01758, Figure 1c); when multiple compari-
sons of RB versus RA and NRB versus NRA were 
performed separately, the distance decreased 
more significantly (p = 3.824e−4, Figure 1c; 
p = 5.767e−5, Figure S1). These results support 
the view that, during FOLFOX treatment, the gut 
microbiotal composition of responders underwent 
a sharper change than that of nonresponders.

Finally, we calculated the distance of paired sam-
ples with cross-comparison before and after treat-
ment. There was a clear trend towards a higher 
average distance in the responder group, though 
the difference was not significant (p = 0.1341, 
Figure 1d).

This finding indicated that the difference in com-
position of the low-set rectal cancer patients’ gut 
microbes was present before chemotherapy, and 
that this difference might influence the effective-
ness of NC. Moreover, gut microbial composition 
changed during FOLFOX treatment, and the 
range of variation was shown to be closely associ-
ated with treatment outcome.

Changes in relative abundance of taxa post-
FOLFOX treatment
To describe the features of FOLFOX treatment-
associated gut microbiota, genes were aligned as 
scaftigs, which were added to gene catalogues by 
MetaGeneMark. The gene catalogues were used 
to annotate and calculate the abundance of taxo-
nomic groups by MetaPhlAn2 (Supplementary 
Table S3). When comparing genus abundances 
before and after treatment, only seven genera 
showed significant changes. Porphyromonas, 
Peptostreptococcus, and Veillonella decreased after 
therapy, whereas Gemella, Parvimonas, 
Solobacterium, and Pyramidobacter increased 
(Supplementary Table S3). Next, we compared 
genus groups by multiple comparison and labelled 
them according to comparison groups, including 
RB versus NRB, RA versus NRA, RB versus RA, 
and NRB versus NRA. Based on these multiple 
comparisons, we found a key sensitive genus in 
the different comparison groups.

To further explore FOLFOX treatment-associ-
ated gut microbes, we assessed species abundance 
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Figure 1. (Continued)

https://journals.sagepub.com/home/taj


J Li, J Li et al.

journals.sagepub.com/home/taj 7

difference in each comparison group. The spe-
cies’ relative abundances were more than 10−4, as 
shown in Figure 2 (Wilcoxon rank sum test, 
p < 0.05). When comparing differences in abun-
dance between the responder and nonresponder 
groups before and after treatment, only Clostridium 
species were significantly more abundant in the 
responder group both before and after treatment. 
As shown in Figure 2, before NC, Clostridium 
ramosum (labelled with light purple) was detected 
in the responder group but could not be found in 
more than 90% of nonresponders. After treat-
ment, Clostridiales bacterium 1.7.47 FAA (labelled 
with dark purple) was at a higher level in the 
responder group. In contrast, Megamonas rupel
lensis and Coprobacter fastidiosus (labelled with 
light green) were enriched in NRB, and Parvimonas 
micra, Bacteroides clarus, Porphyromonas uenonis, 

Solobacterium moorei, and Coprobacter fastidiosus 
(labelled with dark green) were enriched in NRA.

When comparing the changes in dynamic abun-
dance in the responder and nonresponder groups, 
the statistical results verified our hypothesis, with 
the differences between before and after chemo-
therapy being larger in the former than in the lat-
ter (Figure 2). After treatment, Lactobacillus 
fermentum, Pyramidobacter piscolens, and Dialister 
invisus (labelled with light purple), which were 
almost undetectable before chemotherapy in the 
responder group, were detected. Conversely, 
Campylobacter ureolyticus, Prevotella timonensis, and 
Solobacterium moorei (labelled with dark purple) 
nearly disappeared in the responder group after 
NC. However, in the nonresponder group, only 
Veillonella atypica and Akkermansia muciniphila 

Figure 1. Change in diversity and sample distance under FOLFOX treatment. (a) Comparison of the microbial 
gene count and α diversity (as assessed by the Chao 1 index) by cross-comparisons at the genus level. The 
first line represents the comparison without considering the paired samples; the second line presents the 
comparison considering the paired samples. (b) Distance between two paired samples (as assessed by the 
Bray-Counts distance index) by cross-comparisons. (c) Count of the distances of two different group samples 
and then their cross-comparison assessed by the Bray-Counts distance index. (d) Count of the distances 
before and after treatment of the paired samples using the Bray-Counts distance index.
NRA, nonresponders after treatment; NRB, nonresponders before treatment; RA, responders after treatment; RB, 
responders before treatment.

Figure 2. Species are strikingly different across groups. Species with an average relative abundance greater 
than 10e−5 are displayed based on p values (top grey area) <0.05 according to the Wilcoxon rank sum test. The 
points show the relative abundance of each sample. The colors represent the four groups: responders before 
treatment (light purple), responders after treatment (dark purple), nonresponders before treatment (light 
green), and nonresponders of after treatment (dark green). The species with corresponding group color are 
mentioned in the text.
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(labelled with dark green) showed a change in 
abundance after FOLFOX treatment.

Bacterial subset as marker for outcome of 
FOLFOX treatment
To illustrate the microbial signature of responders 
and nonresponders before FOLFOX treatment, 
and to further exploit the potential biomarker in 
the gut microbiome, a random forest disease clas-
sifier was employed to explain the variables of the 
two groups. We defined the different species of RB 
versus NRB as a set that contained eight species 
(Supplementary Table S4); we then extracted two 
to eight species from the set randomly as a subset, 
with 247 subsets in total. For each subset, we cal-
culated the area under the receiver operating curve 
(AUC) (Supplementary Table S4). The subset 
including Coprobacter fastidiosus, Alistipes finegoldii, 
Gemella unclassified, Granulicatella adiacens, 
Parvimonas micra, and Clostridium ramosum had the 
highest AUC of 0.9708 (Figure 3a, Supplementary 
Table S4). Based on this subset, samples from RB 
and NRB were obviously separated by constrained 
PCoA (Figure 3b). This subset might be used as a 
biomarker to predict the results of NC.

Metagenomic linkage groups enriched in 
responder and nonresponder groups before and 
after treatment
To describe the features of chemical-therapy-
associated gut microbiota, we compared genes 

using multiple comparisons, including RB versus 
NRB, RA versus NRA, RB versus RA, and NRB 
versus NRA. In total, we identified 201,136 gene 
markers that were differentially enriched in the 
multiple comparisons (Wilcoxon rank sum test, 
Supplementary Table S5); there were 50,886, 
93,718, 49,553, and 15,177 gene markers in each 
comparison (Supplementary Table S5). These 
genes were then separately clustered into metagen-
omic linkage groups (MLGs) based on correlated 
abundance variation among samples. MLGs con-
taining more than 50 genes, 235 MLGs in total, 
were used for network analysis. There were 64, 
91, 62, and 18 MLGs in each comparison, and 
the Simpson correlation value, more than 0.6, was 
51, 136, 97, and 9, respectively. Among all com-
parison groups, the most complex network was 
RA versus NRA, and the simplest was NRB versus 
NRA. This result suggests that the degree of dif-
ference in these comparison groups can be esti-
mated by the complexity of the network.

Moreover, the parameters of the networks showed 
a similar tendency as the gut microbe analysis, in 
that the numbers of nodes and edges in the RA 
versus NRA network were much larger than those 
in the NRB versus NRA network. Furthermore, 
enrichment of the species exhibiting a significant 
difference showed similar trends. For example, in 
the microbe composition analysis, enrichment of 
Alistipes finegoldii in RB, and Parvimonas micra in 
NRB showed the same result in the network study 
(Figure 4).

Figure 3. ROC curve and constrained PCoA. (a) ROC of the random forest classifier using species relative 
abundance of the highest AUC subset based on the identified bacteria between responder and nonresponder 
groups before FOLFOX treatment; and (b) Constrained PCoA of the responder (purple) and nonresponder 
(green) groups based on this subset.
AUC, area under the curve; PCoA, principal coordinate analysis; ROC, receiver operating characteristic.
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Functional alteration in responder and 
nonresponder groups before and after FOLFOX 
treatment
To understand gut microbial function during the 
course of FOLFOX treatment in our study cohort, 
we used the KEGG and Carbohydrate-Active 
EnZymes (CAZy) databases to align all genes and 
to assign KEGG orthology and CAZy families as 
proteins (Supplementary Table S6). Based on 
KEGG orthology, PCA revealed striking differ-
ences in microbial functions. A set of 31 (n = 31) 
KEGG modules were differentially enriched in 
different groups in the cross-comparisons 
(adjusted p < 0.05, Wilcoxon rank sum test, 
Figure 5, Supplementary Table S6). With regard 
to FOLFOX treatment, the degree of functional 
alteration was similar to the microbiotal composi-
tion and MLGs, and the number of different 
modules was greatest in the RB and RA compari-
son. During this process, the modules involving 
essential amino acid and polyamine biosynthesis 
increased, and modules of some nonessential 
amino acids and fucose decreased; only the pyru-
vate fermentation function was increased in NRB. 
In previous studies, metabolic functional altera-
tions in CRC patient fecal samples included 
iron, phosphate, and amino acid transport, short-
chain acid biosynthesis, and methanogenesis.29–31 
However, in our study, these microbiota pathways 
did not change during the NC treatment. More-
over, the result was unexpected when comparing 
the different modules between the responder and 
nonresponder groups before and after treatment. 
There were 21 (n = 21) differential modules when 
RB was compared with NRB, but only 4 (n = 4) 
when RA was compared with NRA. When com-
paring the microbial composition and MLGs, the 
range of divergence was consistent. Nonetheless, 
the functional analytical results were conflicting. 
Before NC treatment, the modules involving 
aromatic amino acid and deoxyribonucleotide 
biosynthesis were enriched in NRB, whereas tetra-
hydrofolate, ornithine, and ubiquinol biosynthesis 
and degradation pathways, which might produce 
short-chain fatty acids, were enriched in RB. After 
NC treatment, only four (n = 4) modules displayed 
differences, and these involved in petroselinate 
biosynthesis, glycolysis, and ester metabolism. 
Considering the contribution rate of the microbes 
(Supplementary Table S7), although there were 
fewer different microbes between RB and NRB, 
they are polyfunctional during metabolism; in 
contrast, microbes that displayed abundance 

differences between RA and NRA have a similar 
metabolic function.

Discussion
In recent years, many studies have focused on  
the modulating role of gut microbiota in drug  
efficacy,9,32–34 and a series of gut microbes have 
been confirmed to increase or decrease the efficacy 
of some agents.32,33,35,36 To explain the relationship 
between gut microbes and NC agents, stool sam-
ples were collected, and the composition of microbes 
was analyzed. In almost all studies, stool samples 
were collected at the end of the treatment when the 
outcomes were known. According to these out-
comes, the patients were separated into responder 
and nonresponder groups.36–38 However, in this 
approach, the gut microbial composition at the 
beginning of therapy remained unknown. Many 
changes, especially in the immune system and gut 
microbiota, occur during the use of antineoplastics 
because of the effects of these drugs within the 
body.9,32–34 To address these limitations, we assem-
bled a cohort of 37 Chinese low-set rectal cancer 
patients among patients at the China-Japan 
Friendship Hospital in Beijing, China, and carried 
out genomic sequencing technology. Based on the 
genetic information, we applied metagenomic and 
metabolomic analyses, and observed a dynamic 
process of the gut microbiota during FOLFOX 
treatment.

Metasequencing detected bacterial signals from 
fecal samples, combined with the patients’ clini-
cal outcomes and analysis of α diversity and 
Bray-Curtis distances. In our analysis, α diver-
sity was reduced after FOLFOX treatment, 
which was consistent with previous studies.39 
Additionally, after treatment, α diversity was 
lower in responders than in nonresponders. This 
result was different from our general awareness 
that microbial diversity loss is always associated 
with chronic health conditions,40–42 including 
cancer,3,43,44 and low diversity was usually related 
to poor outcomes of some therapeutic regimen, 
such as stem cell transplant and antiprogrammed 
cell death protein 1 (PD-1) immunotherapy.36,45 
However, some authors have also reported that 
stool microbial diversity was higher in CRC 
patients than in healthy controls.39 In murine 
studies, reduced gut microbiome diversity using 
antibiotics was able to reduce ischemic brain 
injury.46 As few results were similar to ours, 
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Figure 4. (Continued)
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Figure 4. Comparative analysis of GM enrichment across groups of MLGs. Each MLG involves at least 
50 linked genes, and the correlation network of MLGs differently enriched in each group is based on the 
abundance based on Spearman’s correlation. MLGs are colored by the taxonomic assignment at the phylum 
level, including Bacteroidetes (red), Firmicutes (green), Proteobacteria (yellow), Actinobacteria (purple), 
Fusobacteria (blue), Verrucomicrobia (orange) and others (grey). The node size is scaled to the number of 
genes within the MLG. Edges connected with nodes denote Spearman correlation >0.8 (blue) or between 0.7 
and 0.8 (grey).
GM, gut microbiota; MLG, metagenomic linkage group.

Figure 5. Microbial gene function annotation in each group. The heat map shows the abundance of KEGG 
modules differentially enriched in each sample gut microbiome. The criterion used was a p value <0.05 
determined by the Wilcoxon rank sum test. The bars on the top of each heat map represent the four groups: 
responders before treatment (light purple), responders after treatment (dark purple), nonresponders before 
treatment (light green), and nonresponders after treatment (dark green).
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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there may not be a unified tendency for gut flora 
diversity, which is unique in some cases.

We next employed Bray-Curtis distances to 
describe the degree of change in the gut bacterial 
composition. The results revealed that the gut 
microbiota changed during FOLFOX treatment, 
to a higher degree in the responder group than in 
the nonresponder group. Although we did not 
verify this result, it suggests that the gut microbio-
tal composition is closely associated with chemi-
cal agent usage, and might be linked to treatment 
outcomes.

In our analysis of gut microbial relative abun-
dance, a group of species displayed significant dif-
ferences in their comparison groups. Clostridium 
ramosum was the only species with a higher abun-
dance in RB than in NRB (Figure 2). C. ramosum 
participates in the metabolism of glucose and 
insulin,47 with the ability to increase insulin sensi-
tivity via transfer of lean donor fecal samples in 
animal models.7 CRC has a high correlation with 
fat and red meat intake, and glucose metabolism 
may benefit from the avoidance of these foods. In 
our function analysis, there was a higher level  
of degradation of these molecules in RB than  
in NRB.

Megamonas rupellensis, Parvimonas micra, and 
Coprobacter fastidiosus were enriched in the NRB. 
Previous studies rarely report on the relationship 
between M. rupellensis or C. fastidiosus and CRC. 
In our work, these microbes were scarce in the 
responder group. Conversely, several studies sup-
ported the notion that P. micra has a close asso-
ciation with CRC,35,48–50 and is involved in tumor 
growth.51 Moreover, the high prevalence of  
P. micra in NRA suggests that this species might 
be an important element affecting NC results. 
This hypothesis should be verified in the future.

Bacteroides clarus, Porphyromonas uenonis, Solo
bacterium moorei, and Coprobacter fastidiosus are 
other species that were enriched in NRA. B. cla
rus is another candidate microbe that might be 
used to identify CRC. According to a large cohort 
network research study, the combination of 
Fusobacterium nucleatum, B. clarus, Roseburia intes
tinalis, and Clostridium hathewayi was verified as 
being a sensitive and specific marker for CRC.6 In 
our data, a significant difference for R. intestinalis 
was found between RB and NRB, whereby abun-
dance was higher in the former than in the latter. 

A significant difference in B. clarus was only found 
after NC. Conversely, differences in F. nucleatum 
and C. hathewayi were observed in our study, 
which might have been caused by the sample size 
in this analysis. S. moorei, an anaerobic gram-pos-
itive bacterium first isolated from human feces,52 
and has a strong relationship with gut microbiotal 
disturbance diseases, such as CRC, adenoma, 
and acute proctitis.53–55 S. moorei also colonizes 
wounds or lesion tissues to induce thrombophle-
bitis and septic pulmonary embolism,56,57 and 
affects the intestinal microbiota and immune 
development.58 P. uenonis was originally isolated 
from patients with serious infection, and from 
stool samples from children,59 but there are few 
reports on the role of this species in CRC. There 
are also few reports on the relationship between 
C. fastidiosus and CRC outcomes.

After NC, only Veillonella atypica and Akkermansia 
muciniphila displayed differences in the nonre-
sponder group. V. atypica is a gastrointestinal 
bacterium with a high detection rate in dysbacte-
riosis and samples from patients with celiac dis-
eases.60 It also has a high detection rate in human 
oral, gastric juice and gastric mucosa samples.61 
Moreover, V. atypica can multiply on oral cancer 
lesion surfaces and constitutes the oral mucosal 
core bacteriome of oral cell carcinoma.62,63 This 
suggests that V. atypica has a strong association 
with intestinal mucosa or tissue lesions, which 
might worsen the outcomes of tumor treatment. 
A. muciniphila is an intestinal mucin-degrading 
bacterium (phylum Verrucomicrobia) that is 
widespread in humans and animals.64 Recent 
studies have shown its beneficial roles in re-estab-
lishing gut barrier function, maintaining gut 
microbial balance, reducing obesity, and relieving 
metabolic disturbance.65–67 This bacterium may 
also enhance the effects of antiprogrammed cell 
death protein/ligand 1 (anti-PD-1/anti-PD-L1) 
during treatment for epithelial tumors.38 
Nonetheless, some studies have reported that this 
bacterium has a higher abundance in mucosal 
samples from CRC patients than from healthy 
controls.68,69 In animal studies, A. muciniphila 
colonization was found to exacerbate intestinal 
inflammation, which is induced by Salmonella 
typhimurium, or increase the tumor burden in Apc 
gene-mutation mouse models.64,70 This suggests 
that A. muciniphila may have a dual effect on host 
health that is dependent on the host and environ-
mental conditions. In our study, intestinal mucosa 
lesions were worse in the nonresponder group 
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after treatment, and the level of disturbance in the 
gut was more severe. This condition might accel-
erate the growth of A. muciniphila.

Regarding biomarkers, our result applies a new 
standard to predicting the result of the FOLFOX. 
Some members of the biomarker group, such as 
Granulicatella adiacens, were in low abundance, 
which may be difficult to detect, and Gemella 
unclassified could not be identified at the species 
level. Although further investigation is needed to 
verify these findings, the results will inspirit the 
development of a novel noninvasive diagnostic 
method for patients before chemotherapy and 
help them to avoid unnecessary treatment.

Assessment of the differences in species indicated 
that most of bacteria were enriched in the nonre-
sponder group both before and after treatment. 
Similar outcomes were observed in the MLG 
analysis. As in previous studies,71–73 we built a co-
occurrence network to investigate the concord-
ance of microbes between each comparison group, 
and distinguishing the co-occurrence networks 
according to their components and topographies 
was very successful. The MLG assembly method 
was different from taxonomic annotation, but the 
most notable differential bacteria were also signifi-
cantly different in the relative abundance analysis. 
According to these results, consistency of gut 
microbiotal variation occurred not only across the 
FOLFOX but also between different outcomes in 
bacterial relative abundance and in their interac-
tive relationship. At the end of our study, we per-
formed functional alteration analysis according to 
the microbiotal pathways, with unexpected results. 
When checked for their contribution, some of the 
bacteria were found to be involved in more than 
one pathway, which was always a significantly dif-
ferent species in the comparison group. Perhaps in 
future research, these species will help in our 
understanding of the ways in which drugs modu-
late the gut microbiome.

In addition to the results reported here, we per-
formed an analysis of enterotypes,74 which repre-
sent a classification of the human gut microbiome 
based on the relative abundances of different 
microbial groups in the individual’s gut microbi-
ota at the genus level. In our cohort, 62 samples 
were clustered into two distinct enterotypes,75 
with Bacteroides and Prevotella as dominate bacte-
ria (Figure S2, supplementary Table S7). After 
FOLFOX treatment, eight of the paired samples’ 

enterotypes shifted, including five responders and 
three nonresponders. Notably, in the responder 
group, the change occurred consistently from 
enterotype II to enterotype I. Moreover, accord-
ing to clinical records, three patients showed sig-
nificant treatment efficacy, as their tumors had 
almost disappeared and their carcinoembryonic 
antigen (CEA) levels were almost normal at 
5–10 ng/ml after the entire course of treatment 
(supplementary Table S1). Nevertheless, it was 
difficult to identify the underlying principle with 
regard to these three nonresponder group sam-
ples, with some changes from enterotype I to 
enterotype II and some in the other direction. 
Although this result is not very convincing, it sug-
gests a relationship between enterotype and NC 
efficacy as well as the significance of gut microbes 
in the course of chemical therapy (Figure S3).

In this study, we unfortunately could not recruit 
as many patients with FOLFOX as intended. 
Most patients choose surgery as the first treat-
ment option, though some patients accepted NC 
as their first treatment. However, during the 
2 months of therapy, patients experienced serious 
side effects due to the chemical agents, and some 
could not tolerate the therapy and opted to receive 
excision surgery. Therefore, it is very difficult to 
build a large cohort to obtain more information 
on the association between the gut microbiota 
and agent efficacy or to construct a model to pre-
dict treatment results. Although our cohort size 
was limited, we were able to demonstrate dynamic 
trends in the gut microbiota during the therapeu-
tic process. Regardless, we could not explain the 
role of these bacteria in the efficacy of FOLFOX 
in this study, which did not report on the relation-
ship between bacteria and CRC or gut tumors.

Conclusion
Taken together, our results clearly described the 
profiles of the gut microbiota in low-set rectal 
cancer patients before and after FOLFOX treat-
ment in responder and nonresponder groups. We 
also revealed a dynamic process of gut bacterial 
composition change during treatment, and estab-
lished a relationship between gut bacterial and 
FOLFOX outcomes. Although we could not 
explain the role of the differential bacteria before 
FOLFOX, our findings highlight an opportunity 
to improve the effects of chemical therapy with 
bacterial intervention before treatment of low-set 
rectal cancer.
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