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Abstract

Grain yield is a trait of paramount importance in the breeding of all cereals. In wheat (Triti-

cum aestivum L.), yield has steadily increased since the Green Revolution, though the cur-

rent rate of increase is not forecasted to keep pace with demand due to growing world

population and increasing affluence. While several genome-wide association studies

(GWAS) on yield and related component traits have been performed in wheat, the previous

lack of a reference genome has made comparisons between studies difficult. In this study, a

GWAS for yield and yield-related traits was carried out on a population of 322 soft red winter

wheat lines across a total of four rain-fed environments in the state of Virginia using single-

nucleotide polymorphism (SNP) marker data generated by a genotyping-by-sequencing

(GBS) protocol. Two separate mixed linear models were used to identify significant marker-

trait associations (MTAs). The first was a single-locus model utilizing a leave-one-chromo-

some-out approach to estimating kinship. The second was a sub-setting kinship estimation

multi-locus method (FarmCPU). The single-locus model identified nine significant MTAs for

various yield-related traits, while the FarmCPU model identified 74 significant MTAs. The

availability of the wheat reference genome allowed for the description of MTAs in terms of

both genetic and physical positions, and enabled more extensive post-GWAS characteriza-

tion of significant MTAs. The results indicate a number of promising candidate genes con-

tributing to grain yield, including an ortholog of the rice aberrant panicle organization (APO1)

protein and a gibberellin oxidase protein (GA2ox-A1) affecting the trait grains per square

meter, an ortholog of the Arabidopsis thaliana mother of flowering time and terminal flower-

ing 1 (MFT) gene affecting the trait seeds per square meter, and a B2 heat stress response

protein affecting the trait seeds per head.
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Introduction

Worldwide, wheat has the fourth-highest production of all crops, with a net production value

that is second-highest of any crop [1]. In addition, wheat maintains the highest global har-

vested acreage of any crop [2]. To keep pace with an increasing world population and changes

in diets due to increasing affluence, worldwide cereal production will have to increase by an

estimated 50% over the period ending in 2050, requiring continuing genetic gains in yield

potential of approximately 1.1% per year [3]. Sharma, et al. [4] estimated a historical average

increase in grain yields in spring wheat of 0.65% per year when analyzing data across 15 years

and 919 environments, while a recent study involving winter wheat in the Eastern United

States estimated yearly increases in grain yield between 0.56% and 1.41%, depending upon

environment [5].

Improvements to yield via direct selection are hampered by its highly quantitative and poly-

genic nature. Selection based on different yield component traits and crop physiology theory

may offer additional avenues for increasing genetic gain in yield while avoiding yield plateaus

[6]. However, relationships between traits must be taken into account, as there are many nega-

tive correlations between related traits, such as the well-documented negative correlation

between the number of grains m-2 and average grain size [7]. A wide body of literature suggests

that wheat is primarily sink-limited with respect to production of photosynthetic assimilates

(reviewed in [8]). Supporting this theory, several studies have suggested that maximizing the

number of seeds per unit area is critical for avoiding assimilate sink limitations and maximiz-

ing yield (reviewed in [9]). The two possible routes for increasing seeds per unit area are to: 1)

increase the average number of seeds per head, and/or 2) increase the number of heads per

unit area. Increases in yield will require both the production of greater numbers of grains, and

an increase in the availability of photosynthates to prevent a corresponding drop in kernel

sizes due to the compensation between these two traits [10]. Several previous studies have

focused on increasing photosynthate availability via alterations to canopy light interception.

Reynolds et al. [9] note that the amount of light interception is already nearly maximized in

many wheat cultivars during the period after canopy closure and prior to leaf senescence. This

leaves traits increasing the duration of light interception, e.g. faster canopy establishment

through increased early-season vigor or later senescence via the “stay-green” trait [11], as

appealing avenues for increasing photosynthate production.

In winter wheat, several genes are known to exert major effects on traits involved with seed

production per unit area and photosynthesis duration. The time required for plants to flower

and ultimately reach maturation is affected by multiple homeologous copies of the VRN ver-

nalization requirement genes and the PPD photoperiod response genes [12]. Multiple major-

effect quantitative trait loci (QTLs) affecting grain weight have also been identified, including

TaSus2-2B [13], the TaGW2 homeologous genes [14], and cell wall invertase (Cwi) genes [15].

However, it is likely that many genes affecting yield-related traits have yet to be identified.

Genome-wide association studies (GWAS) and linkage mapping are the two predominate

methods employed in plant breeding for associating phenotypic variation with underlying

genetic variation. GWAS offers higher resolution due to many more ancestral gene recombi-

nations within the testing panel, as opposed to only one or a few meiotic recombinations in a

linkage mapping population. However, allele frequency is a primary factor limiting power in

GWAS studies; marker-trait associations (MTAs) will be difficult or impossible to detect if

causal variants are rare within the testing population [16]. GWAS methods utilizing mixed lin-

ear models have become standard methodology for their ability to guard against false positives

due to population structure or kinship among genotypes [17]. Subsequent mixed model imple-

mentations have utilized multiple methods to increase power to detect loci of smaller effect.
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The multi-locus mixed model fits loci of large effect as covariates, allowing for the detection of

more marker trait associations with smaller effects [18]. Recent methods including FaS-

T-LMM-Select [19] and SUPER [20] have been developed which increase power by first per-

forming a preliminary GWAS to identify the SNPs which are highly associated with the trait of

interest, and subsequently using only this subset of SNPs when estimating kinship among lines

in a second GWAS. Finally, the programs FarmCPU [21] and BLINK [22] combine the advan-

tages of multi-locus mixed models with subsetting kinship estimation.

Relatively few GWAS analyses for yield and yield-related traits have been conducted in

wheat, and of these, fewer still have been conducted in winter wheat germplasm [23–30]. Asso-

ciation studies have been more common in spring wheat, though the majority of these have

been candidate-gene studies, with genome-wide studies being more limited [31]. Finally, it has

been more common to perform GWAS in crop species using assembled diversity panels,

rather than elite germplasm in current use by breeding programs [32]. GWAS in elite germ-

plasm is typically limited to the identification of smaller-effect MTAs, as MTAs of major effect

will have likely already become fixed within the mapping population [33]. Nevertheless,

GWAS using panels of elite germplasm remain useful due to their higher relevance to the pro-

cess of cultivar development [32]. One limitation of previous wheat GWAS studies was the

lack of a reference genome, making comparisons between studies’ findings difficult. The recent

publication of a full chromosome-anchored wheat genome assembly should allow for better

curation of MTAs uncovered by GWAS and linkage mapping studies.

The present study sought to perform GWAS in a panel of elite soft winter wheat lines

sourced from breeding programs in the Eastern and Midwestern United States. Genotyping

was performed via genotyping-by-sequencing (GBS), using genetic maps and anchoring SNPs

to the Chinese Spring reference sequence International Wheat Genome Sequencing Consor-

tium (IWGSC) RefSeq v1.0 [34], allowing for determination of both physical and genetic posi-

tions for identified MTAs. In addition, targeted genotypic assays were used to interrogate loci

which are known to exert major effects on many traits of agronomic importance.

Materials and methods

Germplasm selection

Germplasm selection was performed as detailed in Ward et al., 2019 [35]. The study was con-

ducted over two years, and included a total of 329 genotypes (S1 Table). Of these, 41 genotypes

were tested across both years. Of the remaining genotypes, half (144) were tested only in the

first year, and the other half (144) were tested only in the second year. Within each year, geno-

types were sourced from breeding programs in Illinois (31), Kentucky (30), Missouri (2), and

Virginia (122). Five checks were included in the study: ‘Bess’, ‘Branson’, IL00-8530, ‘Roane’,

and ‘Shirley’. With the exception of checks and several older cultivars, the majority of geno-

types were either F4 or F5 filial generation.

Phenotyping

Experimental design and data collection. Experimental design, field management prac-

tices, and phenotypic data collection were performed as detailed in Ward et al., 2019 [35].

Briefly, the experiment was planted in a total of four environments (two locations in two

years) in the 2013–14 and 2014–15 winter wheat growing seasons. Within each year, trials

were planted at Kentland Farm near Blacksburg, Virginia (Guernsey/Hayter silt loams,

37.1965˚ N, 80.5718˚ W, 531 m elevation) and the Eastern Virginia Agricultural Research and

Extension Center in Warsaw, Virginia (Kempsville sandy loam, 37.9879˚ N, 76.7770˚ W, 40 m

elevation). A generalized randomized complete block design (GRCBD) with two replications
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was used in each environment. Data was collected on 14 traits, including flag leaf stay green

duration (FLSG), grains per square meter (GSQM), grain weight (GW), heading date (HD),

plant height (HT), physiological maturity date (MAT), normalized-difference vegetation index

(NDVI) at Zadok’s growth stage 25 [36], whole-grain protein content (PROT), seeds per head

(SPH); spikes per square meter (SSQM), whole-grain starch content (STARCH), thousand

kernel weight (TKW), test weight (TWT), and grain yield (YLD). S2 Table summarizes all phe-

notypic traits, and lists their abbreviations, units of measure, and trait ontologies.

Spatial corrections. For each individual trait/environment combination, an ad-hoc cor-

rection for field heterogeneity was performed using two-dimensional tensor product penalized

B-splines [37], implemented in a mixed model framework in the R [38] package ‘SpATS’ [39].

The package default parameters were used to fit cubic splines with quadratic penalization func-

tions in both row and column dimensions. For a particular environment with plots arranged

in m rows and n columns, the number of knots used to fit splines was set to (bmc/2) − 1 and

(bnc/2) − 1, respectively. Fitted values generated by the SpATS model were used for subsequent

modeling of phenotypes across environments, as described in the section below.

Heritability for each trait/environment combination was estimated using the method of

Cullis, et al. [40]:

h2
g ¼ 1 �

Att

2s2
G

ð1Þ

Where the generalized heritability (h2
g) is a function of the average pairwise prediction error

between pairs of genotypes within an environment (Att), and the genotypic variance (s2
G). Her-

itability estimates were calculated from the models fit by the SpATS package, and were com-

pared against the heritability estimates generated by a baseline model:

Yi ¼ mþ Gi þ εi ð2Þ

Where phenotypic response (Yi) is a function of the within-environment mean (μ), the fixed

effect of the ith genotype (Gi), and residual error (εi).
Modelling of phenotypes across environments. Each location/year combination was

considered as a unique environment in order to model phenotypic response across environ-

ments. For each trait, the following random effects ANOVA model was fit in R using the

‘lme4’ package [41]:

Yijk ¼ mþ Gi þ Ej þ RkðEjÞ þ GEij þ εijk# ð3Þ

Where the phenotypic response (Yijk) is a function of the overall mean (μ) and the random

effects of the ith genotype (Gi), the kth replication (Rk) nested within the jth environment (Ej),
the genotype-environment interaction (GEij) and the residual error (εijk). Genotypic best-lin-

ear unbiased predictors (BLUPs) were calculated for use as the phenotypic input for the subse-

quent GWAS analyses.

Genotyping

Genotyping-by-sequencing. Genomic DNA was isolated from fresh green seedling leaf

tissue using an LGC Genomics Oktopure robotic extraction platform with sbeadex magnetic

microparticle reagent kits. Genotyping-by-sequencing was performed using an Illumina

HiSeq 2500 following a double digest of genomic DNA using the restriction enzymes PstI and

MseI, using the protocol of Poland et al., 2012 [42]. SNP calling was performed using TAS-

SEL-GBS v5.2.43 [43,44]. The Burrows-Wheeler Aligner [45] v0.7.17-r1188 was used to align

Illumina-generated short reads to the Chinese Spring IWGSC RefSeq v1.0 wheat reference
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sequence. The raw genotypic data was filtered to retain only biallelic SNPs, and to remove

SNPs with missing data frequencies > 50%, mean sequencing depth < 2, heterozygous call

frequencies > 15%, or minor allele frequency < 5%. SNPs that aligned to unmapped contigs

were removed. Genotypes containing > 85% missing data were removed. Missing data was

then imputed using Beagle v4.1 with default settings [46]. After imputation, the genotypic data

was filtered a second time to remove SNPs with minor allele frequency< 5% or heterozygous

call frequency< 15%. PLINK 1.9 [47] was used to remove all but one SNP in groups of SNPs

in perfect linkage disequilibrium (LD; r2 = 1). After filtering, 29,949 SNPs and 322 genotypes

remained for further analysis.

Assays for polymorphisms of major effect. Several genes and polymorphisms of major

effect were assayed using LGC Genomics KASPar SNP assays. All included assays are listed

with primer sequences in S3A Table. Briefly, they included assays for the 1RS:1AL and

1RS:1BL translocations from rye (Secale cereal L.), polymorphisms within the Ppd-A1, Ppd-B1,

and Ppd-D1 photoperiod sensitivity genes located on chromosomes 2A, 2B, and 2B respec-

tively, the Rht-B1 and Rht-D1 dwarfing genes located on chromosomes 4B and 4D respectively,

and polymorphisms of the Vrn-A1 and Vrn-B1 genes located on chromosomes 5A and 5B.

KASP assays for polymorphisms within exon 4 and exon 7 of Vrn-A1 were included in this

study. The molecular mechanism behind Vrn-A1’s effects on vernalization requirement

remains contested. Chen et al. [48] proposed that a SNP occurring in exon 4 of Vrn-A1 was

the causal locus differentiating between the Vrn-A1a short vernalization requirement allele

present in the cultivar Jagger and the Vrn-A1b long vernalization requirement allele present in

the cultivar ‘2174’. Dı́az et al. [49] later proposed that the differences between Vrn-A1a and

Vrn-A1b vernalization requirements are due to Vrn-A1 copy number variations. Li et al. [50]

subsequently reported that although Jagger contains two copies of Vrn-A1, whereas ‘2174’ con-

tains three copies of the gene, differences in vernalization requirements between the two culti-

vars are in fact due to structural differences, particularly due to a SNP located in exon 7,

converting the 180th amino acid residue from alanine in Vrn-A1a to valine in Vrn-A1b. Finally,

Kippes et al. [51] proposed that the effects of Vrn-A1 arise from the product of gene VRN-D4
disrupting the binding of the RNA-binding repressor TaGRP2 to Vrn-A1. The KASP assays

for Vrn-A1 used in this study have been shown to be suggestive, but not perfect predictors of

vernalization requirement due to Vrn-A1 alleles.

In addition, assays for the Sr36 stem rust (Puccinia graminis Pers.) resistance gene, and the

sucrose-synthase gene TaSus2-2B, which affects kernel weight, were included. Gene Sr36 is

located on a 2G:2B alien translocation originating from Triticum timopheevi [Zhuk.] Zhuk.

(AmAmGG) [52,53]. Gene TaSus2-2B is located on the short arm of chromosome 2B, and is

one of the three sucrose synthase Sus2 orthologs located on chromosomes 2A, 2B, and 2D.

Two common haplotypes for TaSus2-2B include Hap-H (high seed weight) residing on the

2G:2B translocation, and Hap-L (low seed weight) [13]. While there is no evidence to suggest

that TaSus2-2B was inherited from T. timopheevi, Cabrera et al. found that TaSus2-2B alleles

were in perfect LD with alleles of the microsatellite marker Xwmc477 [54], which itself was pre-

viously found to be in perfect LD with Sr36 [55].

Population structure and linkage disequilibrium

Prior to performing GWAS, population structure was examined via principle component anal-

ysis (PCA) of the filtered and imputed genotypic data using the SNPRelate package [56] in R.

Linkage disequilibrium (r2) was estimated between all intrachromosomal pairs of SNPs up to a

physical distance of 10Mb using PLINK 1.9. The pairwise r2 estimates were then sorted into

bins from 102 to 107 base pairs, with an exponent interval size of 0.1. The mean r2 value was
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calculated for each bin, and then plotted against physical distance, with a second-degree

locally-weighted scatterplot smoothing (LOESS) curve fit to the data [57]. Separate LOESS

curves were fit to LD data from each genome, and from each chromosome. Mean r2 values

equal to or greater than 0.2 were considered significant LD. In addition, LD was calculated

between the KASP Sr36 assay and all other SNPs present on chromosome 2B. Finally, the fixa-

tion index (FST) was calculated for each SNP using Weir and Cockerham’s estimator [58], with

two subpopulations defined by the presence or absence of Sr36 as defined by the KASP assay

results. All FST-related calculations were performed using VCFtools v0.1.17 [59].

Genome-wide association analysis

For each trait, single-locus mixed linear model genome-wide association analyses were per-

formed with the Genome-Wide Complex Trait Analysis (GCTA) software [60], using a leave-

one-chromosome-out (LOCO) method in which a separate genetic relationship matrix (GRM)

is estimated from SNP data for each chromosome. Specifically, the LOCO approach entails

excluding all SNPs located on the chromosome of the SNP undergoing testing when estimat-

ing the GRM. Adjusted p-values for each SNP were calculated using the method of Benjamini

and Hochberg [61], and SNPs with adjusted p-values below 0.05 were considered significant.

In addition, GWAS was performed for each trait using the Fixed and Random Model Cir-

culating Probability Unification (FarmCPU) model [21], using the R package ‘FarmCPUpp’

[62]. The same significance threshold applied in the single-locus tests was used for the Farm-

CPU results. To enhance our confidence in significant MTAs identified by FarmCPU, we

implemented a bootstrapping method utilized by Wallace, et al. [63], in which 10% of the phe-

notypic observations were randomly replaced with missing data for a total of 100 runs of the

model. Subsequently, for each trait the resample model inclusion probability (RMIP) [64] was

calculated for each SNP by determining the fraction of bootstraps in which its adjusted p-value

exceeded the significance threshold. The value 0.1 was chosen as a lower threshold for the

RMIP as it coincided with the point of inflection in the RMIP density curves (data not shown).

For each model, the first four principal components were included to model population struc-

ture, based upon visual examination of the scree plot and cumulative sum plots for variance

explained by each PC (S1 Fig). Approximate genetic positions were calculated for each MTA

using a set of PstI-MspI GBS markers generated from 88 doubled haploid lines derived from

the synthetic W7894 × Opata M85 (SynOp) cross [65], aligned to the Chinese Spring IWGSC

RefSeq v1.0 wheat reference sequence [34]. The R package ‘MonoPoly’ [66] was used to fit a

monotonically increasing spline to each chromosome of the SynOp genetic map, allowing for

the estimation of genetic positions corresponding to MTA physical positions.

Candidate genes and translation effects

Haplotype blocks surrounding each significant MTA were identified using the method of

Gabriel et al. [67] by running the—blocks command in PLINK 1.9. Some significant MTAs

did not reside within any larger haplotype block, while some haplotype blocks contained mul-

tiple significant MTAs. Subsequently, all genes overlapping significant MTAs and associated

haplotype blocks were identified using the IWGSC v1.1 RefSeq annotation [34] with functional

annotations from the IWGSC v1.0 annotation. In addition, Ensembl identifiers were retrieved

for all genes overlapping with significant SNPs or haplotype blocks. A table of wheat genes

with trEMBL or Swissprot-generated protein annotations in UniProt was downloaded and

used to identify all wheat genes with predicted functions located within 1Mb of each signifi-

cant MTA. The Ensembl Variant Effect Predictor [68] was then used to classify significant

SNPs as being either intergenic, intronic, exonic, or upstream/downstream proximal variants.
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The predicted allele substitution effects of exonic SNPs on protein translation were classified

as synonymous, missense, or nonsense. For gene-proximal SNPs, the distance to the closest

gene was recorded.

Results

Trait heritability and correlations

The use of spatially-corrected data tended to drastically increase generalized heritability

within each environment. The trait GW had the lowest mean generalized heritability, averag-

ing 0.2 across environments for raw, uncorrected data, and 0.33 after performing spatial cor-

rections (Table 1). The trait TKW had the highest mean generalized heritability when using

uncorrected data ðh2
G ¼ 0:95Þ, though heritability was slightly decreased when using spatially-

corrected data ðh2
G ¼ 0:9Þ. When spatially-corrected data was used, TWT had the highest aver-

age heritability ðh2
G ¼ 0:95Þ. YLD had a moderate mean, across-environment heritability of

0.57 when calculated using uncorrected data, though this increased to 0.81 when using spa-

tially-corrected data. Pearson correlation coefficients were calculated for each pair of traits

using the phenotypic BLUPs (Table 2). Phenological traits (HD, FLSG, and MAT) all displayed

a high degree of intercorrelation. This was also generally the case for traits relating to grain

size and density per unit area (TKW, GSQM, SSQM, and SPH). For instance, the traits GSQM

and TKW demonstrated a strong negative correlation (-0.66), as predicted due to trait com-

pensation effects. Of these four traits, the weakest correlation was between TKW and SPH

(-0.24). Critically, only weak correlation was observed between traits relating to grain size/

density and phenological traits, suggesting that these two classes of traits could be improved

independently. YLD was most highly correlated with the traits GW and MAT (positive), and

Table 1. Trait descriptive statistics and generalized heritability estimates calculated using raw plot values and spatially-adjusted values.

Descriptive Statistics Generalized Heritability

Raw Plot Values Spatially-Adjusted Values

Trait a Units min mean max SD 14Bb 14War 15Bb 15War mean 14Bb 14War 15Bb 15War mean

FLSG days 21.0 28.7 38.0 2.76 0.26 0.80 0.75 0.55 0.59 0.55 0.83 0.76 0.75 0.72

GSQM Grains m-2 8460 1.85E+04 3.13E+04 3277 0.62 0.50 0.51 0.58 0.55 0.71 0.51 0.54 0.67 0.61

GW g dwt m-1 row 47.68 96.64 157.9 16.53 0.19 0.14 0.44 0.05 0.20 0.43 0.16 0.47 0.25 0.33

HD Julian days (Jan1) 121 128 136 3.21 0.75 0.94 0.95 0.96 0.90 0.82 0.95 0.96 0.97 0.92

HT cm 59 85 119 9.3 0.85 0.85 0.84 0.86 0.85 0.92 0.88 0.88 0.87 0.89

MAT Julian days (Jan1) 151 159 171 4.72 0.83 0.87 0.86 0.76 0.83 0.89 0.91 0.89 0.9 0.90

NDVI - 0.26 0.54 0.75 0.08 0.06 0.39 0.41 0.41 0.32 0.70 0.75 0.68 0.64 0.69

PROT % 9.67 12.3 16.0 1.01 0.66 0.38 0.63 0.74 0.60 0.67 0.40 0.71 0.78 0.64

SPH count 8.54 21.9 33.3 3.04 0.86 0.82 0.77 0.81 0.82 0.85 0.82 0.75 0.84 0.82

SSQM Spikes m-2 459.3 853.0 1485 161.2 0.60 0.62 0.45 0.52 0.55 0.65 0.63 0.50 0.63 0.60

STARCH % 46.88 52.51 56.49 1.410 0.46 0.71 0.19 0.69 0.51 0.80 0.72 0.73 0.83 0.77

TKW grams 24.1 34.6 91.6 3.98 0.96 0.97 0.94 0.93 0.95 0.97 0.98 0.69 0.97 0.90

TWT g L-1 652.6 759.0 810.9 19.70 0.96 0.92 0.91 0.93 0.93 0.98 0.96 0.90 0.95 0.95

YLD kg ha-1 3579 6627 9053 1027 0.63 0.45 0.73 0.46 0.57 0.84 0.81 0.78 0.81 0.81

14Bb Blacksburg, VA 2014; 14War Warsaw, VA 2014; 15Bb Blacksburg, VA 2015; 15War Warsaw, VA 2015
a FLSG flag leaf stay green; GSQM grains per square meter; GW grain weight; HD heading date; HT plant height; MAT physiological maturity date; NDVI normalized-

difference vegetation index at Zadok’s GS25; PROT wet chemistry-validated whole-grain protein content; SPH seeds per head; SSQM spikes per square meter; STARCH

whole-grain starch content; TKW thousand kernel weight; TWT test weight; YLD grain yield

https://doi.org/10.1371/journal.pone.0208217.t001
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grain protein (negative). The negative correlation between yield and grain protein content has

been well documented in the past (e.g. [69–71]).

Polymorphisms of major effect

An estimation of allele effects for the KASP markers assaying genes of known function

revealed that the stem rust resistance gene Sr36 and the sucrose-synthase gene TaSus2-2B pro-

duced many significant differences among genotypes for multiple traits (S3B Table). These

two genes also consistently produced significant differences of similar magnitudes for the

same traits. The presence of the Rht-B1b and Rht-D1b dwarfing alleles produced significant

effects of opposite signs for many traits, including SSQM, TKW, and TWT. Effects were also

of opposite signs for HT and YLD, though in both of these cases the effects of Rht-B1b were

not significant. The Vrn-A1 exon 4 polymorphism and Vrn-B1 polymorphism each exerted

significant effects on six traits, while the Vrn-A1 exon 7 polymorphism produced significant

effects on three traits. However, these polymorphisms occurred at low frequencies (0.14, 0.03,

and 0.07 for Vrn-A1 exon 4, Vrn-A1 exon7, and Vrn-B1 respectively). Of the three Ppd photo-

period response genes assayed, Ppd-D1 produced significant effects on five traits, while also

occurring at a high frequency (0.69), while Ppd-B1 produced significant effects on four traits,

occurring at a lower frequency (0.26). Ppd-A1 occurred at a high frequency, but only produced

a significant effect on the trait GW. Finally, the 1RS:1AL and 1RS:1BL translocations produced

significant effects on five and four traits, respectively, but occurred at relatively low frequencies

of 0.07 and 0.19. Despite these significant effects on phenotype, none of the loci of major effect

assayed with KASP markers were classified as significant in the GWAS. Some potential reasons

for these findings will be discussed below.

Table 2. Phenotypic correlations among traits calculated using the across-environment genotype BLUPs.

FLSG GSQM GW HD HT MAT NDVI PROT SPH SSQM STARCH TKW TWT YLD

FLSG 1

GSQM 0.01 1

GW 0.27� 0.64� 1

HD -0.43� 0.14� -0.06 1

HT -0.18� -0.16� -0.21� 0.15� 1

MAT 0.18� 0.26� 0.19� 0.71� -0.07 1

NDVI 0.05 0.05 0.08 0.12 0.13 0.10 1

PROT 0.07 -0.41� -0.39� -0.15� 0.11 -0.21� 0.15� 1

SPH 0 0.48� 0.40� 0.12 0.02 0.21� -0.20� -0.39� 1

SSQM 0.02 0.53� 0.24� 0.02 -0.18� 0.05 0.25� -0.01 -0.48� 1

STARCH 0.20� 0.30� 0.32� -0.04 -0.23� 0.19� -0.12 -0.62� 0.29� 0.01 1

TKW 0.25� -0.66� 0.14 -0.24� -0.01 -0.13 0.01 0.15� -0.24� -0.43� -0.07 1

TWT 0.04 -0.22� -0.19� -0.28� 0.18� -0.31� -0.08 0.25� -0.20� -0.02 -0.25� 0.10 1

YLD 0.32� 0.36� 0.58� 0.18� -0.08 0.48� 0.13 -0.45� 0.33� 0.03 0.41� 0.11 -0.20� 1

FLSG flag leaf stay green; GSQM grains per square meter; GW grain weight; HD heading date; HT plant height; MAT physiological maturity date; NDVI normalized-

difference vegetation index at Zadok’s GS25; PROT wet chemistry-validated whole-grain protein content; SPH seeds per head; SSQM spikes per square meter; STARCH

whole-grain starch content; TKW thousand kernel weight; TWT test weight; YLD grain yield

� Correlation significant at the 0.01 level

https://doi.org/10.1371/journal.pone.0208217.t002
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Population structure and linkage disequilibrium

Principle component analysis of the processed GBS SNP data revealed substantial admixture

among genotypes, with the first principle component only explaining 7.84% of the total geno-

typic variance (S1 Fig). Lines included in the panel formed two distinct clusters in the biplot of

the first two principle components. These two clusters were largely delineated by the presence

or absence of the 2G:2B translocation as determined by the Sr36 KASP assay (Fig 1A; similar

results for TaSus2-2B not shown). In contrast, neither the 1BL:1RS nor the 1AL:1RS alien

translocations produced any discernable clustering of genotypes (data not shown). When the

SNP data was thinned to remove SNPs in high LD with each other (i.e. limiting the maximum

pairwise LD between SNPs to r2 = 0.2), the population stratifying effects of Sr36 and the under-

lying 2G:2B translocation were removed, and the first principle component explained 3.68% of

variation (Fig 1B).

Linkage disequilibrium decay plots demonstrated that LD decayed below significant levels

(r2 < 0.2) at distances of approximately 1Mb (Fig 2). LD decay was highly similar between

chromosomes, with the exception of chromosomes located on the D genome, which exhibited

greater variation in LD decay patterns. This may simply be due to differences in SNP density

among the genomes. As SNP density was much lower in the D genome (S2 Fig), many D

genome chromosomes had far fewer pairs of SNPs in close proximity to each other. This likely

inflated the variance of LD estimates at short distances. The genome-wide FST scan following

the splitting of the overall panel based on the result of the Sr36 KASP assay demonstrated that

the 2G:2B translocation formed a large block of high-FST SNPs spanning almost all of chromo-

some 2B (Fig 3). In addition, an enrichment of high-FST SNPs on chromosomes 2A and 2D

suggested misalignment of SNPs among the group 2 homeologous chromosomes. Further

examination of FST values on chromosome 2B indicated a general linear relationship between

FST and the value of r2 measured against the Sr36 KASP marker for most SNPs, with a minority

of SNPs exhibiting high FST with little or no corresponding LD with the Sr36 KASP marker

(Fig 4A). These SNPs were distributed throughout the chromosome, though SNP density

Fig 1. Biplots of genotypic principal components. The first and second principal components of the SNP matrix

were plotted against each other, using (A) all SNPs that passed initial filtering parameters, and (B) a thinned subset of

SNPs selected to be in approximate linkage equilibrium, so that no pair of SNPs displayed significant LD (r2 > 0.2).

The percent of the total genotypic variance explained is listed on each axis. Genotypes are divided into two groups

based on the presence of absence of the Sr36 stem rust resistance gene and underlying 2G:2B translocation as

determined by KASP assay.

https://doi.org/10.1371/journal.pone.0208217.g001
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tended to be higher in telomeric regions. In addition, SNPs with T. timopheevi private alleles

were far more abundant than SNPs with shared alleles. (Fig 4B).

Genome-wide association studies

In general, the single-locus model implemented in GCTA identified far fewer significant

MTAs than FarmCPU. In total, GCTA identified 44 significant MTAs at the 0.05 FDR signifi-

cance threshold. However, many of these were located within high-LD blocks and, therefore,

clustered at the same putative underlying QTLs. Discounting those SNPs believed to co-local-

ize to identical QTLs yielded nine unique MTAs for HD, MAT, SSQM, TKW, and TWT

(Table 3). One SNP, located at 58,633,321bp on chromosome 7D, was pleiotropic for the traits

HD and MAT, and hence the nine significant MTAs represented eight putative QTLs. In con-

trast, FarmCPU identified 108 MTAs at the same significance threshold. Removing those

SNPs with RMIPs below 0.1 yielded a total of 74 significant MTAs for the traits FLSG, GSQM,

GW, HD, HT, MAT, NDVI, PROT, SPH, SSQM, STARCH, TKW, TWT, and YLD (Table 4).

After filtering by the RMIP threshold, the remaining significant FarmCPU MTAs exhibited an

approximate uniform distribution for RMIP values. A significant MTA affecting the trait

TWT located on the long arm of 6A had the highest RMIP value of 0.99. Since FarmCPU fits

significant MTAs as covariates based partially upon LD estimates, the MTAs identified by this

model for a given trait all reside within different putative QTLs. However, several MTAs did

Fig 2. Linkage disequilibrium by genome and chromosome. LOESS regressions of mean r2 between pairs of SNPs vs. physical distance, pooled for each genome (top

row), and for each of the seven chromosomes present in the A, B, and D genomes (bottom row).

https://doi.org/10.1371/journal.pone.0208217.g002
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Fig 3. Genome-wide FST scan. FST values were estimated for each SNP in the A genome (top row), B genome (middle row), and D genome (bottom row). The dashed

line signifies the 99th percentile of FST values for all SNPs.

https://doi.org/10.1371/journal.pone.0208217.g003

Fig 4. Triticum timopheevi private and shared alleles on chromosome 2B. (A) FST plotted against r2 with the KASP

Sr36 assay for all SNPs on chromosome 2B. Two clusters of SNPs were manually differentiated—those with putative

Triticum timopheevi private alleles for which FST and r2 values show a general linear relationship (blue), and those with

putative Triticum timopheevi/Triticum aestivum shared alleles for which FST shows no relationship with r2 (red).

Horizontal dashed line represents the 99th percentile of genome-wide FST values, excluding SNPs on chromosomes 2A,

2B, and 2D. (B) Density plots of both classes of SNPs across chromosome 2B.

https://doi.org/10.1371/journal.pone.0208217.g004
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occur for different traits associated with the same SNP, or else clustered in high-LD regions

with pleiotropic effects, and hence the 74 total MTAs are represented by 67 putative QTLs,

with five QTLs affecting multiple traits. Of the eight putative QTLs identified by GCTA, four

were also identified by FarmCPU. Examination of the Manhattan plots and uniform quantile-

quantile plots of the p-values produced by the single-locus model (S1 File) and FarmCPU (S2

File) demonstrated adequate control of p-value inflation for most traits, with FarmCPU prop-

erly detecting and correcting for LD between SNPs co-located on QTLs.

MTAs identified by GCTA and FarmCPU were distributed sparsely among traits and chro-

mosomes (Fig 5). The 1D, 3D, 4B, and 5D chromosomes did not contain significant MTAs for

any trait. Chromosomes with high numbers of identified MTAs included: 1A, with two and

nine MTAs identified by GCTA and FarmCPU, respectively; 6A, with two and six MTAs iden-

tified by GCTA and FarmCPU; 7A, with nine MTAs identified by FarmCPU; and 7D, with

two and seven MTAs identified by GCTA and FarmCPU. Traits with high numbers of MTAs

identified included: FLSG, with seven MTAs identified by FarmCPU; HD, with four and seven

MTAs identified by GCTA and FarmCPU respectively; and TKW, with one and nine MTAs

identified by GCTA and FarmCPU. The trait with the lowest number of identified MTAs was

NDVI, with two MTAs identified by FarmCPU. We attempted to compare our results against

those of recent GWAS studies performed in wheat (references column in Tables 3 and 4).

However, the lack of a reference genome in previous studies means that QTLs can only be

compared based upon genetic positions. The use of multiple marker types and genetic maps

across studies makes comparisons of QTLs difficult; while we were able to compare results

based on approximate genetic positions, the evidence of prior discovery in Tables 3 and 4

should be regarded as tenuous. Nevertheless, after surveying past GWAS studies of yield, yield

components, and phenological traits, we categorized 4 (44%) of the MTAs detected by GCTA

and 20 (26%) of the MTAs detected by FarmCPU as previously-discovered. The traits with the

most previously-identified MTAs were HD, MAT, HT, and TKW; the individual MTA that

was most consistently identified in prior studies was located at 44,983,849bp (79.0cM) on

chromosome 2B, affecting the trait TKW.

Table 3. Significant marker-trait associations identified by the GCTA leave-one-chromosome-out method.

Traita Chr Posb cMc Alleles MAF P-value Effect Units References

HD 1B 50989662 52.8 G\A 0.29 1.00E-06 0.533 Julian days [72,73]

HD 6A 150099119 109.5 A\T 0.17 1.52E-05 -0.507 Julian days [72]

HD 6A 542256574 128.5 T\C 0.34 3.39E-05 -0.417 Julian days [74,75]

HD 7D 58633321A 84.6 A\G 0.33 3.70E-10 -0.634 Julian days

MAT 2B 3266917 0 C\A 0.15 2.35E-05 -0.527 Julian days

MAT 7D 58633321A 84.6 A\G 0.33 5.71E-07 -0.495 Julian days

SSQM 3A 6788503 12.5 C\T 0.46 1.56E-06 16.0 Spikes m-2

TKW 1A 40498783 68.0 G\T 0.09 1.62E-06 1.25 grams [75,76]

TWT 1A 583992305 218.8 T\C 0.23 9.33E-07 -3.39 g L-1

Chr chromosome; Pos physical position; cM genetic position in centiMorgans; Alleles major allele listed first, minor allele second, favorable allele (if any) underlined;

MAF minor allele frequency; Effect mean difference in trait value caused by substituting minor allele for major allele
a HD heading date; MAT physiological maturity date; SSQM spikes per square meter; TKW thousand-kernel weight; TWT test weight
b Superscript letters indicate QTLs with pleiotropic effects
c Genetic position estimated from synthetic W7894 × Opata M85 GBS genetic map aligned to Chinese Spring IWGSC RefSeq v1.0 wheat reference sequence

https://doi.org/10.1371/journal.pone.0208217.t003
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Table 4. Significant marker-trait associations identified by the FarmCPU algorithm.

Traita Chr Posb cMc Alleles MAF P-value Effect Units RMIP References

FLSG 2A 664114222 101.7 G\C 0.26 4.30E-06 0.198 days 0.12

FLSG 3A 660434027 145.9 T\C 0.07 6.09E-09 0.553 days 0.61

FLSG 4D 389572522 82.9 G\A 0.12 3.37E-07 -0.278 days 0.19

FLSG 6A 13888173 26.4 A\C 0.06 3.16E-07 0.487 days 0.33

FLSG 7A 727690323 222.7 G\A 0.16 3.65E-06 -0.217 days 0.14

FLSG 7B 59821499 61.8 C\T 0.37 3.84E-07 0.229 days 0.12

FLSG 7B 64138826 62.4 A\G 0.17 7.28E-06 0.235 days 0.37

GSQM 1A 103223278 85.0 A\T 0.43 1.25E-08 -309 Grains m-2 0.37

GSQM 5B 396479359 104.4 C\T 0.46 5.71E-06 -246 Grains m-2 0.14

GSQM 7A 673460466A 151.6 C\T 0.46 1.89E-07 256 Grains m-2 0.72

GSQM 7B 444463299B 82.4 A\G 0.06 2.03E-06 -650 Grains m-2 0.25

GSQM 7D 117245582 131.0 T\G 0.08 3.38E-06 450 Grains m-2 0.17

GW 2A 768420387 162.2 G\C 0.38 9.84E-06 0.467 g dwt m-1 row 0.22

GW 3A 704973519 192.7 A\G 0.12 4.29E-06 0.441 g dwt m-1 row 0.16

GW 5B 34551165 61.2 C\T 0.38 7.62E-08 -0.494 g dwt m-1 row 0.31

GW 7A 55399749 61.5 A\G 0.17 8.56E-08 0.651 g dwt m-1 row 0.23

HD 1B 50989662 52.8 A\G 0.29 1.04E-09 0.438 Julian days 0.31 [72,73]

HD 2D 35084672 46.8 G\A 0.12 1.30E-07 -0.415 Julian days 0.66

HD 5B 710175294 312.9 A\C 0.05 9.92E-07 0.797 Julian days 0.16

HD 6A 449693253C 112.4 C\T 0.34 2.01E-06 0.317 Julian days 0.58 [72]

HD 7B 97678492 65.4 G\A 0.05 1.43E-06 -0.862 Julian days 0.38 [30]

HD 7D 58633321D 84.6 A\G 0.32 3.00E-13 -0.517 Julian days 0.78 [72]

HD 7D 553154931 173.3 C\T 0.4 1.57E-06 -0.314 Julian days 0.22 [73]

HT 1A 13666754 29.4 T\G 0.06 4.91E-08 -1.83 cm 0.38 [77]

HT 2A 764324892 158.4 T\A 0.22 5.36E-06 -1.05 cm 0.40 [78]

HT 2D 181663205 100.4 C\A 0.49 1.13E-07 2.21 cm 0.58

HT 6B 706327428 160.6 A\G 0.07 5.73E-07 1.53 cm 0.31 [78]

MAT 2A 7231537 3.0 G\C 0.4 2.92E-10 0.460 Julian days 0.36

MAT 2B 4475209 1.8 T\A 0.48 3.55E-08 -0.315 Julian days 0.25

MAT 3B 737436815 178.2 G\A 0.38 2.77E-09 -0.380 Julian days 0.73

MAT 7B 232267370 75.5 G\A 0.11 3.52E-07 -0.486 Julian days 0.17

MAT 7D 58633321D 84.6 A\G 0.32 1.27E-07 -0.364 Julian days 0.47 [72]

NDVI 1A 251018060 88.4 C\T 0.07 8.85E-07 -0.00799 - 0.79

NDVI 7A 127596189 104.1 T\C 0.11 7.94E-08 -0.00481 - 0.11

PROT 1A 465502281 103.5 A\G 0.36 1.13E-06 0.0641 % 0.31

PROT 5A 594957276 119.2 A\G 0.11 1.13E-06 0.109 % 0.14

PROT 6A 72549494 92.2 G\A 0.34 3.83E-07 -0.0932 % 0.21

PROT 7A 169622110 111.9 C\A 0.07 8.50E-06 -0.114 % 0.12

SPH 1A 52268667E 75.1 G\A 0.2 4.53E-06 -0.449 count 0.31

SPH 1A 507879685 130.6 G\A 0.1 2.33E-06 0.571 count 0.20

SPH 3B 189122341 118.9 T\A 0.07 1.18E-05 0.715 count 0.34 [79]

SPH 4A 672693794 151.3 A\C 0.22 8.87E-14 -0.830 count 0.32

SPH 4D 217349774 81.6 T\G 0.06 3.67E-09 -1.05 count 0.68

SPH 5B 617822981 227.0 C\A 0.22 9.20E-11 -0.917 count 0.52

SPH 7A 672644138A 151.0 A\G 0.4 9.39E-09 -0.476 count 0.96 [80]

SSQM 1A 49502948E 73.8 T\C 0.11 4.33E-12 27.2 Spikes m-2 0.56

(Continued)
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MTA haplotypes and translation effects

The GCTA and FarmCPU analyses identified a total of 77 significant MTAs, 35 of which were

located on haplotype blocks containing two or more SNPs (S4A Table). One haplotype block

spanning a 2Mb segment on chromosome 7A contained three significant MTAs located at

672,644,138bp, 672,856,129bp, and 673,460,466bp. The set of SNPs involved in MTAs over-

lapped 48 genes encoding 68 transcripts, and produced a total of 109 predicted transcriptional

Table 4. (Continued)

Traita Chr Posb cMc Alleles MAF P-value Effect Units RMIP References

SSQM 1A 372638734 92.9 T\C 0.07 7.38E-11 29.1 Spikes m-2 0.54 [73]

SSQM 2A 40249083 50.0 A\T 0.06 4.07E-07 31.3 Spikes m-2 0.18

SSQM 3A 6788503 12.5 T\C 0.46 4.25E-11 15.8 Spikes m-2 0.35

SSQM 6A 466270386C 112.9 G\A 0.34 9.45E-06 -11.9 Spikes m-2 0.29

SSQM 7D 216134381 148.1 A\C 0.07 2.90E-06 -20.1 Spikes m-2 0.11

STARCH 1B 39382550 47.3 G\A 0.22 3.05E-07 -0.139 % 0.72

STARCH 2A 620961503 93.1 G\A 0.05 7.61E-06 -0.188 % 0.25

STARCH 2D 633668158 151.2 G\T 0.07 7.23E-07 0.177 % 0.22

STARCH 4A 122852500 59.0 A\G 0.05 1.43E-07 -0.241 % 0.31

STARCH 4A 581248758 94.3 G\A 0.05 9.61E-09 -0.315 % 0.31

STARCH 7A 196456932 113.6 T\G 0.05 6.42E-06 -0.185 % 0.59

TKW 2A 740238876 138.6 C\T 0.37 1.25E-05 0.513 grams 0.25 [81–84]

TKW 2B 44983849 79.0 A\G 0.38 2.97E-07 -0.770 grams 0.12 [28,77,84,85]

TKW 4A 379041624 64.6 A\C 0.06 1.23E-05 -1.17 grams 0.44 [85,86]

TKW 6A 617591341 215.2 G\T 0.21 1.43E-08 0.703 grams 0.84

TKW 6B 687528310 133.5 C\G 0.48 3.45E-06 -0.562 grams 0.36

TKW 6D 467652883 184.8 C\T 0.33 1.19E-07 0.773 grams 0.95

TKW 7A 672856129A 151.2 C\T 0.46 1.83E-07 -0.542 grams 0.36 [80]

TKW 7B 444463299B 82.4 A\G 0.06 5.85E-07 1.46 grams 0.51 [28]

TKW 7D 197300822 147.6 G\T 0.09 1.33E-06 0.772 grams 0.33 [28]

TWT 1A 583992305 218.8 C\T 0.23 1.69E-08 -2.67 g L-1 0.89

TWT 3A 477707675 104.2 A\G 0.05 3.65E-08 -5.40 g L-1 0.56

TWT 6A 614373502 208.5 A\G 0.34 6.58E-12 -3.14 g L-1 0.99

TWT 6B 12668423 8.5 G\A 0.34 2.81E-08 2.77 g L-1 0.42

YLD 2B 4638412 2.2 G\A 0.08 9.69E-06 118 kg ha-1 0.18

YLD 6A 355929298 111.9 G\C 0.08 1.36E-06 -110 kg ha-1 0.38

YLD 6B 656280645 110.7 C\T 0.14 9.23E-06 -75.7 kg ha-1 0.50 [80]

YLD 7A 30243496 32.8 C\T 0.28 2.96E-07 -66.9 kg ha-1 0.29 [81,84]

YLD 7D 66984783 93.8 C\A 0.31 6.41E-08 67.4 kg ha-1 0.71

Chr chromosome; Pos physical position; cM genetic position in centiMorgans; Alleles major allele listed first, minor allele second, favorable allele (if any) highlighted in

bold; MAF minor allele frequency; Effect mean difference in trait value caused by substituting minor allele for major allele; RMIP resampling model inclusion

probability
a FLSG flag leaf stay green; GSQM grains per square meter; GW grain weight; HD heading date; HT plant height; MAT physiological maturity date; NDVI normalized-

difference vegetation index at Zadok’s GS25; PROT whole-grain protein content; SPH seeds per head; SSQM spikes per square meter; STARCH whole-grain starch

content; TKW thousand kernel weight; TWT test weight; YLD grain yield
b Superscript letters indicate QTLs with pleiotropic effects
c Genetic position estimated from synthetic W7894 × Opata M85 GBS genetic map aligned to Chinese Spring IWGSC RefSeq v1.0 wheat reference sequence

https://doi.org/10.1371/journal.pone.0208217.t004
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consequences due to alternative splicing (S4C Table). The most severe predicted consequences

were isolated and compiled for each SNP. A total of 56 of the SNPs involved in significant

MTAs (73%) were intergenic, and of these intergenic SNPs, 15 were labeled as upstream or

downstream proximal variants (i.e. within 5Kb of the start or end of a gene). The remaining 21

SNPs (27%) were located within genes, with 11 of these occurring in introns, one occurring in

a 5’ untranslated region, two occurring in 3’ untranslated regions, and the remaining seven

causing missense mutations within exons. Putative functions for genes containing SNPs caus-

ing missense substitutions include a disease resistance protein, a RNA binding protein, a ubi-

quitin-family protein, a chloroplast membrane translocase, an aspartyl protease family protein,

a glutamate receptor, and a Myb transcription factor. In addition, a total of 155 wheat genes of

known function were located within the empirically-derived 1Mb radius of significant LD sur-

rounding the set of significant MTAs (S4D Table).

Discussion

The current study demonstrates that the recent availability of the wheat reference genome will

greatly facilitate reliable QTL curation and comparisons between studies. The ability to

describe MTAs in terms of both physical and genetic positions removes much of the ambiguity

associated with earlier studies which relied solely on genetic positions to describe QTLs. The

availability of a reference genome also enables more accurate QTL and haplotype boundary

delineation and comparative genomics analyses. We were able to use positional information

both to identify GBS SNPs that could potentially be used as substitutes for existing KASP SNP

assays, and to identify candidate genes located near significant MTAs. Although it was difficult

Fig 5. Distribution of MTAs across traits and chromosomes. The number of MTAs detected by the GCTA single-

locus model (preceding slashes) and by the FarmCPU model (following slashes) are summed for each trait/

chromosome combination. Grey shading indicates that no MTAs were found for that particular trait/chromosome

combination. Red shading is proportional to the total number of MTAs detected by both models. Marginal totals of

MTAs are displayed for each trait and chromosome, with the grand total displayed in the lower right cell.

https://doi.org/10.1371/journal.pone.0208217.g005
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to compare the QTLs we identified with those discovered in previous studies, we do believe

that many of the QTLs we detected were previously-characterized. These QTLs mainly affected

HD, MAT, HT, and TKW, perhaps reflecting the relative ease of measurement for these traits,

and the very low measurement error inherent to TKW.

This study evaluated both a traditional mixed linear model and the more-recently devel-

oped FarmCPU algorithm for performing GWAS. While a thorough comparison of these two

methods is beyond the scope of this article, some general recommendations will be discussed.

The authors of FarmCPU suggested that it can increase the power to detect causative geno-

type-phenotype associations over traditional mixed linear model methods while limiting the

false-discovery rate and type I error rate [21]. A subsequent study compared single-locus

mixed linear models, FarmCPU and the BayesCπ Bayesian model developed by Habier et al.

[87], and found that all three offered comparable power for simple traits controlled by a few

QTL, with FarmCPU offering enhanced power for moderately complex traits, and BayesCπ
exhibiting the highest power for complex, highly polygenic traits [88].

Based upon our experiences, we recommend exercising some caution when using Farm-

CPU. Our experiences support the practice of bootstrapping of results if computational

resources allow; out of 108 total MTAs identified by FarmCPU, 34 (31.5%) had RMIP values

below our selected threshold of 10%. Additionally, the traditional mixed linear model identi-

fied four significant MTAs which were not identified by FarmCPU. These MTAs were also not

present in the FarmCPU results which were discarded due to low RMIP values, suggesting the

possibility of false negatives in the set of significant MTAs returned by FarmCPU. While

FarmCPU did indeed identify many more significant MTAs than the GCTA mixed linear

model, its methodology is more complex and less transparent to the user, and hence we still

recommend using a single-locus mixed linear model, or perhaps a simpler multi-locus mixed

model [18] to compare results.

In the present study, many previously-characterized loci of agronomic importance interro-

gated with KASP-SNP assays had significant effects on multiple traits (S3B Table). Loci that

significantly affected many traits included the Sr36 stem rust resistance gene and the TaSus2-
2B sucrose synthase gene (both assaying the presence/absence of the 2G:2B T. timopheevi
translocation), the 1AL:1RS and 1BL:1RS translocations, the Ppd-B1 and Ppd-D1 photosensi-

tivity genes, the Rht-B1 and Rht-D1 dwarfing genes, and polymorphisms within the Vrn-A1
vernalization gene. However, despite their significant effects on many traits, the KASP assays

for these loci were not among the significant MTAs identified in the current study. Some

potential explanations for these results are presented below.

The two Rht dwarfing genes Rht-B1b and Rht-D1b mostly occurred in repulsion within the

testing panel. Of the 322 lines included in the panel, 22 had neither the Rht-B1b nor the Rht-
D1b dwarfing alleles, one line was heterozygous for both alleles, and one line was homozygous

for both alleles, with the rest being homozygous for either one dwarfing allele or the other.

Note that lines lacking both Rht-B1b and Rht-D1b may contain other dwarfing genes which

were not assayed in this study. At face value, this high degree of repulsion led to the somewhat

odd finding that the presence of the Rht-B1b allele increased height and decreased yield when

allelic effects were calculated for each of the KASP assays individually. A subsequent ANOVA

pooling together the two dwarfing alleles revealed that at an alpha level of 0.05, lines with either

Rht-B1b or Rht-D1b were significantly shorter and yielded significantly higher than lines that

were wild-type for both genes. Yield was significantly higher for lines with only Rht-D1b vs.

those with only Rht-B1b, though height was not significantly different between lines with these

dwarfing genes. (These analyses excluded lines that were heterozygous for either allele, and the

single line that was homozygous for both alleles). This perhaps serves as a good reminder of

how population-specific epistasis can prevent the accurate estimation of many allele effects.
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While multi-locus GWAS models may partially ameliorate these problems in some cases, the

careful choice of experimental design, such as the use of nested association mapping panels

[89], is likely a better solution.

In the present study, both the Sr36 and TaSus2-2B genes were highly confounded with the

testing panel’s population structure. A SNP located at 44,983,849bp on chromosome 2B was in

moderate LD with both Sr36 and TaSus2-2B (r2 = 0.24), and had the expected significant

impact on TKW, given the known effects that TaSus2-2B exerts on kernel weight [13]. The

2G:2B translocation from T. timopheevi on which the Sr36 gene resides introduced a large

alien haplotype into the panel germplasm. Cavanagh et al. [90] found that Sr36 was associated

with a large segment of segregation distortion on chromosome 2B in seven different mapping

populations. In the present study, splitting the population by the presence or absence of the

Sr36 gene and subsequently performing a genome-wide FST scan (Fig 3) revealed a large high-

LD block spanning most of chromosome 2B, containing many SNPs which could almost per-

fectly differentiate between lines with and without the 2G:2B translocation. In addition, an

enrichment in high-FST SNPs was observed on chromosomes 2A and 2D, likely due to SNP

misalignments between chromosomes within this homeologous group. On chromosome 2B,

there was a general positive linear trend between a SNP’s FST score and its LD with the Sr36
KASP marker. This was as expected, as the presence or absence of this marker was used to par-

tition the subpopulations. However, a smaller subset of SNPs simultaneously exhibited high

FST and an r2 value with the KASP Sr36 assay that approached zero. These SNPs were distrib-

uted throughout the translocation (Fig 4). It is likely that SNPs with a high FST value that are

also in high LD with the Sr36 KASP marker share a common private haplotype allele inherited

from T. timopheevi, while those with a high FST are in low LD with the Sr36 KASP assay repre-

sent a set of SNPs with shared alleles between T. aestivum and T. timopheevi, where recombi-

nation rates are higher. Despite the effects of the 2G:2B translocation in the current study,

population structure was generally subdued, as evidenced by principal component plots of the

LD-thinned dataset, where the first principal component explained only 3.68% of total varia-

tion (Fig 1B). This finding is in line with those of previous studies examining population struc-

ture in elite European winter wheat germplasm [91,92]. This suggests extensive past admixture

among the lines included in the population, which is as expected given the frequent germplasm

exchanges that are typical of public small grains breeding programs.

A previous report by Sukumaran et al. [31] found much more pronounced population

structure effects due to rye translocations, using a panel of elite spring germplasm which clus-

tered into two distinct sub-populations explained by the presence or absence of the 1BL:1RS

translocation. In addition, Sukumaran et al. found that the 1BL:1RS translocation explained

significant differences among the two subpopulations for most of the traits included in their

study (e.g. grain yield, grain number, grain weight, plant height, and several phenological

traits). The 1AL:1RS and 1BL:1RS translocations have been associated with desirable disease

and insect resistance traits, as well as drought and general environmental stress resistance.

However, the 1BL:1RS translocation has been associated with lateness, and effects on yield due

to these translocations may be manifested depending upon environment and genetic back-

ground [93–95]. While both the 1AL:1RS and 1BL:1RS translocations did produce significant

differences for many traits in this study (S3B Table), their contributions to population struc-

ture were not noticeable in comparison to the effects of the 2G:2B translocation (data not

shown). In addition, the indicator KASP markers for these translocations did not produce sig-

nificant p-values in either the GCTA or FarmCPU GWAS. The 1AL:1RS translocation

occurred at a very low frequency (0.07) within the tested germplasm, while the 1BL:1RS trans-

location occurred at a frequency of 0.19. In the study of Sukumaran et al. [31], the 1BL:1RS

translocation occurred at a frequency of 0.39. In the present study, the KASP markers for
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1AL:1RS and 1BL:1RS were in high LD (r2 approximately 0.8) with the SNPs located at

103,223,278bp on chromosome 1A and 39,382,550bp on chromosome 1B respectively. This

high LD suggests that these GBS markers, or others in close proximity, could be used as suit-

able indicators for the 1AL:1RS and 1BL:1RS translocations. Although further validation is

required, ideally GBS markers, individually or in groups, could be used to ascertain the pres-

ence or absence of these translocations without necessitating the use of the additional stand-

alone assays that are currently performed.

The effects of previously-characterized genes affecting phenological traits were likewise

insignificant in the GWAS, likely due to a variety of factors. Polymorphisms of Vrn-A1 exon 7

and Vrn-B1 occurred at low frequencies of 0.03 and 0.07 within the testing panel, respectively,

most likely precluding their detection in the GWAS. The Vrn-A1 exon 4 SNP had a higher

minor allele frequency of 0.14, and was in moderate LD (r2 = 0.29) with one GBS SNP located

at 594,957,276bp on chromosome 5A. The Vrn-A1 KASP assays used in this study may simply

have not been predictive enough to adequately distinguish among different vernalization

alleles present at the Vrn-A1 locus. The Ppd loci were likewise never identified as significant,

most likely due to masking from the predominance of long-vernalizing genotypes in the panel.

However, a BLAST analysis indicated that the GBS SNP located at 35,084,672bp on chromo-

some 2D, which FarmCPU identified as significant for the trait HD, was located within

approximately 1Mb of Ppd-D1.

As previously mentioned, there was evidence for pleiotropic effects involving multiple

SNPs and traits in both the GCTA and FarmCPU results (Tables 3 and 4). The sole region of

pleiotropic effect identified by GCTA was a QTL located at approximately 58.5Mb (84.6 cM)

on chromosome 7D, affecting the phenological traits HD and MAT. The haplotype block anal-

ysis indicated that this QTL spanned a region of roughly 1.5Mb. This QTL was also identified

by FarmCPU, and was one of the more consistently significant QTLs identified, with a RMIP

value of 0.78. Many of the other pleiotropic QTLs identified by FarmCPU demonstrated trait

compensation effects relating to grain number and grain weight. For example, the minor allele

of a QTL located at approximately 444Mb (82.4cM) on chromosome 7B produced an increase

in TKW and a decrease in GSQM, while the minor allele of a QTL at approximately 50Mb

(75cM) on chromosome 1A produced an increase in SSQM, but a slight decrease in SPH. The

minor allele of a QTL on chromosome 7A at approximately 673Mb (151cM) caused a decrease

in TKW, and an increase in GSQM. It also apparently produced slight decrease in SPH, though

the effects of this locus will be discussed in greater detail below. Finally, a large region on chro-

mosome 6A affected the relatively uncorrelated traits HD and SSQM. It is not clear whether

this region is being affected by long-range LD, or simply physical linkage, as the distance

between the two MTAs involved is approximately 16.5Mb. A simple pairwise LD analysis indi-

cated that these SNPs were in moderate LD with each other, though the haplotype block analy-

sis placed them in separate haplotypes.

Due to the large number of significant findings, we limit further discussion of the GWAS

results to several MTAs in close proximity to plausible candidate genes (S5 Table). The previ-

ously-mentioned pleiotropic region on chromosome 7A affecting the traits TKW, SPH, and

GSQM spanned a distance of approximately 1.5Mb, containing three MTAs. FarmCPU identi-

fied one significant SNP within this haplotype with a RMIP value of 0.96. The 7A pleiotropic

region contains a total of 22 genes, only three of which have listed functions in UniProt. How-

ever, the IWGSC’s automated gene functional annotation process [34,96] had previously iden-

tified one gene within this haplotype as a likely ortholog of the aberrant panicle organization 1

(APO1) protein, which plays an important role in panicle architecture and development in rice

(Oryza sativa L.). The loss of function of APO1 results in rice plants which produce small pani-

cles with a lower number of inflorescence branches and spikelets [97]. The minor alleles for
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two of the MTAs in this region decreased TKW and increased GSQM. We also found that the

minor allele of the third MTA in this region decreased SPH, which was against expectation.

However, the high MAF of all three MTAs within this QTL (0.4 and 0.46) suggested the possi-

bility that at least one was actually in trans linkage with the other two. Upon closer inspection

of the SNP data, we discovered that this was indeed the case, with the SNP associated with

SPH in trans configuration with the others. Therefore, we detected two primary haplotypes

present at this QTL with frequencies close to 0.5: one increasing GSQM and SPH while

decreasing TKW, and the other with the opposite effect. The MTAs for SPH and TKW are not

in perfect LD; a total of 40 lines (12.4%) exhibited recombination between these SNPs. The

SNP associated with TKW within the 7A QTL is predicted to cause a missense protein transla-

tion effect within an aspartyl protease family protein, though it is not known whether this is

relevant to the QTL’s phenotypic effects. The fact that FarmCPU fit different covariates for dif-

ferent traits within this region raises the possibility that this QTL’s effects could be due to mul-

tiple candidate genes, rather than a single gene such as APO1 exhibiting pleiotropic effects.

However, we cannot at this time test this hypothesis.

Chromosome 7B also contained a large number of putative candidate genes for multiple

traits. A pectin esterase was located in close proximity (67Kb) with a MTA affecting FLSG

located at 64Mb (62.4cM). Due to the ubiquity of pectin within plant cell walls, pectin esterases

have been associated with a wide range of cellular processes (reviewed in [98]). Notably, pectin

esterases have been found to play a role in fruit maturation in heat-stressed tomato plants [99],

as well as the initiation of flowering in day lilies [100]. Another MTA on 7B located at 97Mb

(65.4cM), affecting the trait HD, was within 485Kb of a MYB transcription factor. The MYB

family of proteins function in a wide number of signal transduction pathways in plants. Gib-

berellin-interacting MYB factors (GAMYBs) were first identified in barley (Hordeum vulgare
L.), inducing the activation of alpha-amylase in the aleurone tissue of grains [101]. GAMYB

factors were subsequently identified in wheat [102]. Currently, GAMYB factors have been

putatively implicated in contributing to flowering initiation, though their role in this process is

not well understood. Gocal et al. [103] suggested that a GAMYB protein in the grass species

Lolium temulentum L. was an important component in signaling pathways for flower develop-

ment. However, Kaneko et al. [104] later found that while rice GAMYBs were important in

normal flower organ development, knockout mutants did not display any differences from

wild-type plants in the timing of flower development. Therefore, while GAMYB factors may

play a role in wheat floral development, their exact function in this process remains unknown.

A pleiotropic SNP located at approximately 444Mb (82.4cM) on chromosome 7B exerted large

effects on the traits GSQM and TKW, and was intronic within an ortholog of an intracellular

protein transporter identified in Medicago truncatula Gaertn. While this SNP is not associated

with a haplotype block, it is located 170Kb from a glycosyltransferase gene. The glycosyltrans-

ferases are a superfamily consisting of thousands of identified proteins. Notably, multiple fami-

lies of glycosyltransferases have been associated with grain development in wheat [105].

On chromosome 7D, a SNP located at approximately 59Mb (84.6cM) was identified by

both the single-locus and FarmCPU models, produced pleiotropic effects for both HD and

MAT, had a large effect size magnitude of approximately 0.5 days, and produced a RMIP value

of 0.78 for HD. Due to its exertion of effects with the same sign on both HD and MAT, it is

likely that this locus could be involved with plant vernalization or photoperiod response.

While this SNP is approximately 10Mb away from the VRN3 vernalization response/flowering

time gene, a significant MTA located at 66,984,783bp on 7D affecting yield is located only

1.5Mb away from VRN3, and there is no significant LD between these two SNPs, making it

likely that some other as yet undetermined causal agent is underlying this locus’ effects on

heading and maturation dates. This SNP is intronic within an ortholog of the Escherichia coli
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Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha gene, which is involved in

fatty acid synthesis via the synthesis of malonyl-CoA [106], though any connection between

this function and vernalization response in plants remains unknown.

Several other MTAs were in close proximity to candidate genes that have previously been

functionally characterized in wheat. One MTA on chromosome 1A affecting the trait GSQM

was located 409Kb away from the gibberellin oxidase gene TaGA2ox-A1. Gibberellins are an

important family of plant hormones, which have many functions in plant growth and develop-

mental processes, including a crucial role in grain volume increase in wheat [107]. The GA2ox

family of oxygenases play a role in deactivating gibberrelins, and paralogs of many GA2ox

genes have been identified in all three genomes of hexaploid wheat [108]. On Chromosome

3A, the GCTA and FarmCPU models both detected a MTA affecting the trait SSQM, located

within 506Kb of the gene TaMFT. This gene, an ortholog of the Arabidopsis thaliana gene

MFT, encodes a protein which functions as a key promoter of seed dormancy and suppressor

of precocious seed germination during seed development [109]. Finally, one MTA located on

chromosome 1A, affecting the trait SPH, is located within 76Kb of TaB2, a wheat ortholog of a

protein first isolated from carrot (Daucus carota L.) [110]. In wheat, B2 proteins were found to

function as heat stress response proteins, and are highly upregulated in developing seeds dur-

ing and for several days following the application of heat stress [111]. Additionally, TaB2 was

found to influence plant growth and development upon transformation into Arabidopsis thali-
ana [112].

Taken together, these findings suggest a viable set of candidate genes and QTLs that may be

exploited to increase yield in soft winter wheat breeding. The recent use of CRISPR-Cas9

genome editing systems in wheat (e.g. [113–116]) may allow for rapidly testing the functions

of the candidate genes mentioned above without the need for expensive and time-consuming

fine mapping and gene cloning. The finding of multiple MTAs affecting phenological traits

suggests that there is still variation in the tested elite germplasm that can be exploited in breed-

ing programs to fine-tune the timing of growth stages and grain fill duration, perhaps allowing

for finer control of maturation date to maximize grain fill time while avoiding heat stress dur-

ing kernel formation. The findings regarding traits relating to grain density per unit area and

grain weight give cause for hope, while also suggesting strategies for ongoing germplasm

improvement. Many MTAs for these traits appeared to entail no significant tradeoff between

grain number and grain size. These included MTAs for GSQM on chromosomes 1A and 5B,

MTAs for SSQM on chromosomes 1A, 2A, 3A and 7D, and MTAs for TKW on chromosomes

2A, 2B, 4A, 6A, 6B, 6D and 7D. Barring any epistatic effects, favorable alleles for these QTLs

could gradually be combined within the tested elite germplasm pool. In contrast, several QTLs

located on chromosomes 1A, 7A, and 7B exerted pleiotropic effects for these traits, with favor-

able alleles in a trans configuration. If these QTL represent tightly trans-linked genes, then

they may eventually be exploited if the component genes are broken up by recombination over

generations. However, QTLs that represent true pleiotropic effects of a single gene will likely

not be useful for achieving genetic gain. Many of the MTAs for GSQM, TKW, and particularly

SSQM had favorable minor alleles, suggesting either that breeders have unintentionally per-

formed selections which favored the less-desirable allele, or that these favorable alleles initially

occurred at low frequencies and remain rare due to a lack of selection pressure.

While the availability of a reference genome allows for previously impossible follow-up

analyses, this study also identifies a number of areas for continued improvement for GWAS

experiments in wheat. For instance, the genome-wide FST scan based upon the presence or

absence of Sr36 revealed multiple SNPs which were misaligned between the group 2 homeolo-

gous chromosomes, and therefore non-allelic. In addition to the obvious problem of poten-

tially identifying significant MTAs on the wrong chromosome, these SNPs complicate the
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process of haplotype estimation, as they may artificially “break” patterns of strong LD within

haplotype blocks. There is currently no simple solution to identify misaligned SNPs within

GBS datasets, as discarding sequencing reads that don’t uniquely map to a single location may

entail discarding a large portion of data. However, several methods for identifying non-allelic

SNPs in polyploids are under development (e.g. [117,118]). Finally, although the availability of

a reference genome has greatly aided the interpretation of GWAS studies in wheat, it should

be noted that the causal variants underlying the majority of significant MTAs identified in this

study remain unknown. As the amount of bioinformatics data available for wheat increases,

this situation may improve through the increasing availability of gene expression data and

gene ontology information, enabling the use of new techniques such as gene set analysis.

Conclusions

The significant MTAs reported in this study indicate that there is still genetic variation in the

tested elite germplasm that may be exploited for yield gains. In particular, the combination of

identified MTAs affecting traits relating to grains per unit area and phenological development

offer promise for increasing the former while avoiding the penalizing effect of lower average

grain weights. In addition, this study suggests that GBS markers can be used to capture much

of the variance explained by previously-characterized polymorphisms of major effect. We

made use of the first reference genome assembled for wheat, enabling the identification of

MTAs based on both physical and genetic positions; it is hoped that the ability to anchor

MTAs by physical position will lead to better curation of results and consistency across GWAS

studies in the future. This study also identifies some potential targets for future in vitro studies

to ascertain the biological functions of several candidate genes affecting yield-related traits in

wheat. Future challenges will include the proper design of GBS or other genotyping assays to

capture the effects of previously-characterized polymorphisms while simultaneously allowing

for the discovery of novel polymorphisms affecting traits of interest, better identification of

non-allelic SNPs which are misaligned between homeologous chromosomes, introgression of

multiple favorable alleles into suitable genetic backgrounds, and more thorough characteriza-

tion of gene functions to ease the identification of candidate genes following association

analyses.
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