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1  |  INTRODUC TION

In 1985, the World Health Organization reported that the ideal cesar-
ean section (CS) rate was 10%– 15%.1 However, since then, CS rates 
have been steadily increasing around the world. In Japan, CS rates have 
also increased, reaching 19.2% in 2017.2 Compared with elective CS, 
emergency CS are generally known to be associated with higher risks of 
maternal and neonatal complications.3 Therefore, being able to predict 
the need and clarify the reasons for an emergency CS is an urgent task. 

In the present study, we incorporated “explainable artificial intelligence 
(AI)” (i.e. “white box” AI) to predict the need for an emergency CS.

Since the term was first proposed in 1956, AI has evolved. Neural 
networks (NN) were created as a mechanism that imitated the human 
brain, and these became a precursor to the spread of AI. In 2009, 
Housseini et al.4 compared predictions for CS term deliveries in nul-
liparas using an NN and two logistic regression models. They used 
samples from after 36 weeks of pregnancy. The NN showed slightly 
better predictive accuracy for an emergency CS than did the logistic 
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Objective: One of the major problems with artificial intelligence (AI) is that it is gen-
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regression models. At present, AI research has started to apply ma-
chine learning, a subfield of AI in which algorithms are trained to per-
form tasks by learning patterns from data as opposed to explicit rules, 
to deal with more complex problems than do traditional multivariate 
analyses. NN can also make predictions based on large amounts of 
patient data by learning their own relevance.5

However, why NN achieve better predictive accuracy for emer-
gency CS remains unclear; this is the so- called “black box” problem 
that has recently been pointed out as a disadvantage of AI, because 
almost all of the state- of- the art “black box” machine- learning algo-
rithms previously tested have failed to generalize well.6 Furthermore, 
the errors and biases of some NN- based machine- learning algo-
rithms are difficult to understand, which is why conventional AI is 
often referred to as a “black box”.5

Rule extraction is a technique for resolving the “black box” prob-
lem by attempting to find a compromise between requirements in 
the following ways. The difference between the present and tra-
ditional predictive models (which doctors cannot understand and 
cannot explain why) is that we aim to build “explainable AI” using 
simple rule sets that mimic how complex predictive models make 
decisions for doctors and clinicians. We previously proposed the 
continuous recursive rule extraction (Re- RX) algorithm with J48graft 
as a promising tool for rule extraction.7 Re- RX with J48graft can si-
multaneously increase the accuracy and interpretability of extracted 
classification rules.

Rule extraction8 is a newer branch of machine learning that uses AI 
and focuses on why the entire data set is classified into each class. In 
rule extraction, the rules are typically expressed as the most popular 

and comprehensible symbolic descriptions as follows: “if (conditions 1) 
& (conditions 2), … & (condition n), then (target class).” Rule extraction 
algorithms in the medical field require a sufficient number of cases 
and associated final diagnoses as a supervised signal (e.g. emergency 
or elective CS).

The objectives of the present study were to construct a predic-
tion system for an emergency CS using “white box” AI by explaining 
the reason for the CS using interpretable rules and clarifying the de-
cision process, and to propose a new perinatal system by integrating 
AI with perinatal medicine.

2  |  MATERIAL S AND METHODS

2.1  |  Data source

Data were collected from all perinatal records of all delivery out-
comes at Osaka Medical College between December 2014 and July 
2019. The present study was approved by our institutional review 
board (No. 2831). Consent was not required because of the retro-
spective study design. We identified the delivery method for all de-
liveries after 36 weeks of gestation as either (1) vaginal delivery or 
elective CS, or (2) emergency CS. We studied cases after 36 weeks 
of pregnancy because our institution has an open system for preg-
nant women after 34– 36 weeks of pregnancy. The reasons for the 
emergency CS were when labor began before the elective CS, pla-
cental abruption, failure to induce labor after premature rupture of 
the membranes or exceeding the estimated due date, prolapse of 

F I G U R E  1  Risk levels of the five- tier classification system as defined by the Japanese Society of Obstetrics and Gynecology. 1, Level 
1 Normal pattern; 2, Level 2 Benign variant pattern; 3, Level 3 Mild variant pattern; 4, Level 4 Moderate variant pattern; 5, Level 5 Severe 
variant pattern
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the umbilical cord, uterine rupture, or non- reassuring fetal status 
based on cardiotocography. The Japan Society of Obstetrics and 
Gynecology has defined abnormalities in a fetal heart monitor as 
levels 1– 5.9 We determined the non- reassuring fetal status to be 
the continuation of level 3 or the appearance of level 4 and level 5 
according to the Japan Society of Obstetrics and Gynecology guide-
lines (Figure 1).10

2.2  |  Variable selection

Several intricately intertwined risk factors (RF) are known for emer-
gency CS.11- 13 In the present study, we considered RF and selected 52 

variables associated with the prediction of an emergency CS (Tables 1 
and 2). Among these 52 variables was body mass index (calculated 
as weight in kilograms divided by the square of height in meters). 
Gestational hypertension and pre- eclampsia were both defined as 
blood pressure >140/90 mm Hg, pre- eclampsia was also defined as 
urinary protein/creatinine >0.27. Gestational diabetes was diagnosed 
based on a 75- g oral glucose tolerance test (fasting blood glucose 
>92 mg/dL, 1- h blood glucose >180 mg/dL, or 2- h blood glucose 
153 mg/dL). Preterm birth was defined as a birth before 37 weeks of 
pregnancy. Fetal growth restriction was diagnosed in utero with an 
estimated fetal weight <1.5 standard deviations from the Japanese 
standard. Placenta previa was defined as a placenta covering the 
 internal uterine ostium.

TA B L E  1  Maternal characteristics and complicationsa

(1) Vaginal delivery or 
elective CS (2) Emergency CS P value

Maternal age, years 33.0 (27.0– 40.5) 35.0 (28.0– 41.5) N.S.

Weight, kg 52.1 (41.1– 63.1) 53.0 (42.0– 64.0) N.S.

Height, cm 159.0 (151.0– 167.0) 157.1 (150.1– 163.1) < 0.01

BMI 20.5 (16.4– 24.6) 21.4 (17.2– 25.6) < 0.05

Gravida 2 (0– 4) 1 (0– 2) < 0.01

Parity 1 (0– 3) 1 (0– 2) < 0.001

Spontaneous abortion 0 (0– 2) 0 (0– 2) N.S.

Infertility treatment 228 (21.1%) 44 (22.9%) N.S.

Smoking 41 (3.7%) 5 (2.5%) N.S.

Alcohol consumption 26 (2.5%) 7 (4.0%) N.S.

Family history

Hypertension 341 (33.4%) 48 (25.8%) < 0.05

Diabetes 242 (23.7%) 45 (24.5%) N.S.

Maternal history

Hyperthyroidism 8 (0.7%) 5 (2.5%) < 0.05

Hypothyroidism 20 (1.8%) 3 (1.5%) N.S.

Overt DM 9 (0.8%) 3 (1.5%) N.S.

Hypertension 11 (1.0%) 2 (1.0%) N.S.

Hepatitis 6 (0.5%) 1 (0.5%) N.S.

Respiratory disease 23 (2.1%) 1 (0.5%) N.S.

Autoimmune disease 32 (2.9%) 5 (2.5%) N.S.

Collagen disease 32 (2.9%) 3 (1.5%) N.S.

Appendicitis 24 (2.2%) 3 (1.5%) N.S.

Central nervous system disease 17 (1.5%) 3 (1.5%) N.S.

Mental disease 53 (4.8%) 11 (5.6%) N.S.

Renal disease 14 (1.3%) 1 (0.5%) N.S.

Hematologic disease 3 (0.3%) 1 (0.5%) N.S.

Myoma 38 (3.4%) 5 (2.5%) N.S.

Uterine operation 29 (2.6%) 7 (3.6%) N.S.

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters); CS, cesarean section; DM, 
diabetes mellitus; N.S., not significant.
aValues are presented as mean (range) or as number (percentage).
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2.3  |  Artificial intelligence- based rule 
extraction technology

The Re- RX algorithm recently developed by Setiono et al.14 was 
originally designed as a rule extraction tool. The Re- RX algorithm 
enables a hierarchical, recursive consideration of discrete vari-
ables (variables that have only one integer value within a range 
of values, e.g. male [1]/female [0], category [0,1,2,3]) before the 
analysis of continuous data (variables that can have any value 
within a defined range, e.g. 0.123, 45.67). It therefore provides a 
rule extraction method that offers both accuracy and interpret-
ability because of its ability to discriminate between discrete 
and continuous attributes in the antecedent (if condition) of each 

extracted rule. The Re- RX algorithm eliminates continuous at-
tributes before the C4.5 decision tree15 is generated using only 
discrete attributes.

The Re- RX algorithm is a “white box” (more understandable) 
model that can provide highly accurate and concise classification 
and be easily explained and interpreted in accordance with the con-
cise extracted rules associated with if– then forms; therefore, this 
type of model is often preferred by physicians and clinicians. The 
Re- RX algorithm provides an accurate rule extraction method that 
also offers comprehensibility by generating perfect separation be-
tween discrete and continuous attributes in the antecedent (if con-
dition) of each extracted rule. The outline of the Re- RX algorithm is 
as follows16:

TA B L E  2  Obstetrics history and perinatal outcomes between two classesa

Obstetrics history
(1) Vaginal delivery or 
elective CS (2) Emergency CS P value

Cesarean section 0 (0– 2) 1 (0– 3) <0.001

Gestational hypertension 11 (1.0%) 2 (1.0%) N.S.

Pre- eclampsia 17 (1.5%) 2 (1.0%) N.S.

Preterm birth 0 (0– 3) 0 (0– 2) N.S.

Premature labor 43 (3.9%) 2 (1.0%) <0.05

Cervical laceration 4 (0.4%) 2 (1.0%) N.S.

Placenta abruption 4 (0.4%) 2 (1.0%) N.S.

Infection 10 (0.9%) 4 (2.0%) N.S.

Gestational diabetes mellitus 23 (2.1%) 4 (2.0%) N.S.

Gestational age, weeks 38.3 (36.0– 39.4) 39.3 (36.2– 39.6) N.S.

CS 263 (23.8%) 197 (15.1%) — 

Emergency CS — 197 (15.1%) — 

Vaginal delivery 842 (76.2%) — — 

Vacuum delivery 131 (15.6%) — — 

Augmentation of labor 135 (12.2%) 27 (13.7%) N.S.

Pregnancy complications

Fetal growth restriction 30 (2.7%) 19 (9.6%) <0.0001

Induction of labor 159 (14.4%) 37 (18.8%) N.S.

Hypertensive disorders of pregnancy 60 (5.4%) 22 (11.2%) <0.001

Stillbirth 6 (0.5%) 0 (0%) — 

TORCH syndrome 2 (0.2%) (0%) — 

Gestational diabetes mellitus 24 (2.2%) 2 (1.0%) N.S.

Premature rupture of membranes 153 (13.8%) 60 (30.5%) <0.001

Placenta previa 17 (1.5%) 4 (2.0%) N.S.

Single umbilical artery 3 (0.3%) 1 (0.5%) N.S.

Abnormal umbilical cord insertion (marginal or velamentous 
insertions)

60 (6.3%) 17 (8.6%) N.S.

Deep vein thrombosis 2 (0.2%) 1 (0.5%) N.S.

Neonatal birth weight (g) 2974 (2437– 3511) 2894 (2156– 3632) <0.01

Abbreviations: CS, cesarean section; N.S., not significant; TORCH, (T)oxoplasmosis, (O)ther Agents, (R)ubella, (C)ytomegalovirus, and (H)erpes 
simplex.
aValues are presented as mean (range) or as number (percentage).
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2.3.1  |  Re- RX algorithm (S,D,C)

Input: A set of data samples S with discrete attributes D and continu-
ous attributes C.

Output: A set of classification rules.

1. Train and prune an NN using data set S and all its D and C 
attributes.

2. Let Dʹ and Cʹ be the sets of discrete and continuous attributes in 
Sʹ, respectively, still present in the network, and let Sʹ be the set of 
data samples correctly classified by the pruned network.

3. If Dʹ = φ, then generate a hyperplane, 
∑

Ci ∈C�

WiCi = W0, that sepa-
rates the two groups of samples. Use the constant W0 and the rest 
of the coefficients Wi of the hyperplane to split the samples into Sʹ 
according to the values of the continuous attributes Cʹ, and then 
stop. Otherwise, use only the discrete attributes Dʹ to generate the 
set of classification rules R for data set Sʹ.

4. For each rule, Ri is generated:

If support (Ri) > δ1 (covering rate) and error (Ri) > δ2 (error rate), 
then.

• Let Si be the set of data samples that satisfy the condition of rule Ri 
and let Di be the set of discrete attributes that do not appear in rule 
condition Ri.

• If Di = φ, then generate a hyperplane to split the samples in Si accord-
ing to the values of their continuous attributes Ci, and then stop.

• Otherwise, call Re- RX (Si,Di,Ci).

The Re- RX algorithm prioritizes the extraction of rules compris-
ing discrete attributes, while continuous Re- RX with J48graft belongs 
to the accuracy– priority type and uses both discrete and continuous 
attributes to generate the J48graft decision tree, which results in 
slightly increased complexity. With mostly continuous input features 
(variables), we prioritize selecting and expressing important/influen-
tial continuous features in perinatal data sets that are expressed in an  
if– then form in J48graft. For a better understanding of the mechanism 
underlying continuous Re- RX with J48graft,16 a schematic overview is 
provided in Figure 2.

2.4  |  Performance measures

To guarantee the validity of the results and evaluate the classifica-
tion rule accuracy of the test data sets, we performed five- fold cross- 
validation, which is a technique used to assess how a classifier performs 
when classifying new instances of a task (Figure 3). We trained the 
perinatal data set using Re- RX with J48graft and obtained 10 runs of 
five- fold cross- validation for the training accuracy, test accuracy, aver-
age number of extracted rules, and area under the receiving operating 
characteristic curve on a conventional personal computer (Intel Core 
i7 7500 U; 2.7 GHz; 8 GB RAM).

2.5  |  Statistical analysis

To compare clinical parameters between the patients who under-
went a CS, we used a t test (P < 0.05 was considered significant) for 
comparisons. Data were analyzed using SPSS software (Mac version 
20.0 J; IBM).

3  |  RESULTS

3.1  |  Statistical comparisons between the 
emergency and non- emergency CS classes

In total, we identified 1513 cases of singleton deliveries after 36 weeks 
of pregnancy at Osaka Medical College between December 2014 and 
July 2019, among which, 1285 (84.9%) were vaginal deliveries or elec-
tive CS and 228 (15.1%) were emergency CS.

Table 1 shows the maternal characteristics for all cases. In a uni-
variate analysis, differences were found between the (1) vaginal deliv-
ery or elective CS (non- emergency CS) and (2) emergency CS classes. 
Table 2 shows the differences in obstetrics history and perinatal out-
comes between two classes. After multiple regression, significant dif-
ferences were found in parity, height, hyperthyroidism, history of CS, 
premature membrane rupture, and fetal growth restriction (Table 3).

Table 4 shows the 15 concrete rules that were used to dis-
criminate the emergency CS from the vaginal delivery or 

F I G U R E  2  Schematic overview of Re- RX with J48graft. Abbreviations: CS, cesarean section; NN, neural network
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elective (non- emergency) CS class in the perinatal data sets using 
the AI- based rule extraction approach. Each condition in a rule is a 
conjunction.

3.2  |  Performance of the continuous Re- RX 
algorithm with J48graft

We achieved a test accuracy of 81.90% and an area under the re-
ceiving operating characteristic curve of 71.46 for the perinatal 
data set. This means that the performance of the predictive model 
to discriminate the emergency CS from the non- emergency CS 
class was relatively high. The predictive model consisted of the 
entire set of 15 extracted rules. It took about 3 s to train the data 
set using continuous Re- RX with J48graft. The testing time was 
negligible.

3.3  |  Extracted rules

3.3.1  |  Rules 1 and 12– 15

Rule 1 included low birth weight (≤2118 g), a history of CS, a history of 
preterm birth, parity, and no gestational diabetes mellitus. It is known 
that late- onset fetal growth restriction is an RF in short-  and long- term 
prognoses.17 Moreover, it is well known that the first delivery is a most 
frequent cause of an emergency CS.18

3.3.2  |  Rules 2 and 3

Rules 2 and 3 included very low birth weight (≤1152 g), which can 
cause non- reassuring fetal status more easily than can low birth 
weight. In rule 3, maternal height ≤159.5 cm was included.

3.3.3  |  Rules 4– 6

Rules 4 and 5 included maternal age (≤29.5 or >29.5 years). Moreover, 
GDM was an RF for an emergency CS in rules 4– 6.

3.3.4  |  Rule 7

Rule 7 included birth weight ≤2456 g and >2118 g when there is no 
placenta previa, no fertility treatment, nullipara, and no history of 
CS or preterm birth.

3.3.5  |  Rules 8– 10

Rules 8– 10 included maternal body mass index (≤21.4 or >21.4) and 
fertility treatment.

3.3.6  |  Rule 11

Rule 11 included placenta previa. When pregnant women have vagi-
nal bleeding, an emergency CS is frequently performed.

3.3.7  |  Rule 12

Higher parity increases the chance of a vaginal delivery.

4  |  DISCUSSION

An emergency CS increases the risk of maternal complications and 
infant mortality.19,20 In the present study, we included 52 extracted 
factors in J48graft for the prediction of an emergency CS, resulting 
in 15 rule sets, which included 12 factors. These factors are well- 
known RF for an emergency CS.4,21 Regarding the birth weight fac-
tor, there were three cut- off points: 2456, 2118, and 1152 g. It is also 
well known that a low birth weight (<2500 g) can easily cause an 
emergency CS.22 We performed univariate analysis on each factor. 
As a result, the 10 factors that appeared in the rule sets were signifi-
cantly different in the emergency CS group. Therefore, we consid-
ered that these rule sets could approximate the predictive model.

To date, several emergency CS prediction systems have been 
reported, many of which have used multivariate analysis. Whereas 
multivariate analysis identified individual causal factors for an emer-
gency CS, in the present study, the coefficient for each risk was pre-
sented in the form of rules.

In 2017, Papoutsis et al.23 proposed a risk assessment tool for 
the prediction of an emergency CS and reported several RF using a 
scoring model. That scoring model has the advantage of being able 
to calculate a large number of factors and their values, but it cannot 
have several cut- offs for one RF.

Furthermore, in 2018, to identify RF for an emergency CS, 
Campillo- Artero et al.21 used likelihood ratios and logistic regres-
sion, and fitted a conditional inference tree (CTREE). The decision 
tree is a major competitor of classification and regression trees 
given an identified bias of the latter toward numeric and categorical 

TA B L E  3  Results of the multiple logistic regression analysis

Variable
Adjusted relative 
risk (95% CI) P value

Parity 0.457 0.333– 0.626

Maternal height 0.956 0.922– 0.991

Hyperthyroidism 6.055 1.380– 26.569

History of cesarean section 3.042 2.137– 4.329

Premature membrane rupture 3.372 2.128– 5.246

Fetal growth restriction 8.635 3.529– 21.126

Abbreviation: CI, confidence interval.
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variables with many categories. Consequently, CTREE was found 
to improve predictions compared with classification and regression 
trees. However, the CTREE algorithm assumes independence be-
tween samples and is more likely to select a split in correlated data. 
In multilevel data sets, this can lead to complex trees that may over-
fit the training data.

In 2020, a systematic review reported that the machine- learning 
algorithms were superior to logistic regression for predicting prena-
tal outcomes, including a CS.24 According to that review, gradient 
boosting, decision trees, and RF were significantly better than the 
logistic regression for predicting a CS. They then recommended a re- 
analysis of existing logistic regression models through a comparison 
with machine- learning algorithms.

To the best of our knowledge, only one algorithm has been pro-
posed to extract rules from decision tree ensembles such as ran-
dom forest models.21 That algorithm did not fully outperform the 
accuracy and interpretability (e.g. the number of rules extracted) 
obtained by continuous Re- RX with J48graft. The main strength 
of the present study is that it explains the reason why an emer-
gency CS is required by using interpretable and concise rules de-
rived through continuous Re- RX with J48graft. Second, numerous 
RF (52 variables in the present study) and their cut- off values can 
be obtained at the same time by using the proposed algorithm. 
Therefore, it is possible to investigate emergency CS clearly and 
in a timely fashion using a unique mechanism consisting of NN and 
C4.5 decision trees.

Artificial intelligence is still often seen as a “black box”, which 
makes it difficult for obstetricians to accept, because the reasons 
for decisions are not clearly explained. Moreover, the weak points 
of “black box” AI to detect errors and biases have been pointed out.5 
A review article about clinical safety in AI reported that predictions 
by rules- based systems can be explained in terms of inputs. The AI- 
based rule extraction approach used in that study can explain why 

an emergency CS is performed.7 The emergency CS prediction sys-
tem using continuous Re- RX with J48graft described in the present 
study explains risk based on a rule set that discriminates between 
emergency and non- emergency CS. As a result, the system can be 
considered “white box” AI for perinatal medicine. Furthermore, the 
support of AI could be expected to improve the perinatal progno-
sis. One of the present authors previously proposed a non- invasive 
prediction method for non- alcoholic steatohepatitis in Japanese 
patients with morbid obesity using this algorithm.25 That work  
included a discussion about extracted rules and RF.

The present study has several limitations. First, we extracted 52 
RF, but we did not include other RF, such as the sex and maternal 
race of the newborn. The reason why we chose not to include these 
factors is that most of the data are from Japan, and we judged that 
they were not important. Second, the data set was from one hospi-
tal, which might introduce some degree of bias in the data set. More 
cases need to be considered to construct a model with better pre-
dictive ability. Third, to enable comparisons with previous studies,3,4 
we constructed a prediction system that included planned vaginal 
deliveries and planned CS. However, a predictive system for emer-
gency CS after a vaginal delivery would also be required.

To the best of our knowledge, this is the first study to use “white 
box” AI- based rule extraction technology to predict the need for 
an emergency CS. This system extracts accurate and concise rules 
to identify multiple RF in the field of labor and appears useful for 
identifying RF for an emergency CS, which could improve perinatal 
results in the future.
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