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Breast cancer has been reported as the most common cancer in women globally, with
2.26 million new cases in 2020. While anthracyclines are the first-line drug for breast
cancer, they cause a variety of adverse reactions and drug resistance, especially for triple-
negative breast cancer, which can lead to poor prognosis, high relapse, and mortality rate.
MicroRNAs (miRNAs) have been shown to be important in the initiation, development and
metastasis of malignancies and their abnormal transcription levels may influence the
efficacy of anthracyclines by participating in the pathologic mechanisms of breast cancer.
Therefore, it is essential to understand the exact role of miRNAs in the treatment of breast
cancer with anthracyclines. In this review, we outline the mechanisms and signaling
pathways involved in miRNAs in the treatment of breast cancer using anthracyclines. The
role of miRNA in the diagnosis, prognosis and treatment of breast cancer patients is
discussed, along with the involvement of miRNAs in chemotherapy for breast cancer.
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INTRODUCTION

Different kinds of treatments are applied to different immunohistological types of breast cancer.
Triple-negative breast cancer (TNBC), which is not sensitive to endocrine and targeted therapies, is
treated with a combination of anthracyclines in the clinical. As the first-line drug class for TNBC,
anthracyclines can influence the development of tumors by inhibiting the synthesis of biological
DeoxyriboNucleic Acid(DNA). Studies have shown that anthracyclines can affect the activity of
DNA topoisomerase to stabilize the DNA double-strand and prevent DNA replication (1, 2). Since
daunorubicin, the first anthracycline drug, was discovered, many other anthracycline drugs have
been developed one after another, including adriamycin, epirubicin, clarithromycin, and so on.
They have been widely used in the treatment of hematological malignancies and solid tumors.
However, the frequent use of anthracyclines can cause drug resistance to develop gradually. As a
result, cancer will continue to develop, proliferate, invade and metastasize, and eventually lead to
patient death. Meanwhile, many adverse reactions caused by anthracyclines, in particular,
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cardiotoxicity, also affect the prognosis of patients. Clinical
studies have shown that this adverse reaction is often
irreversible and fatal to patients. Even the first use of
anthracyclines may cause heart damage (3). In addition, it can
also induce liver damage (4) and promote breast cancer
metastasis to the lungs (5). Therefore, many researchers are
now working on the mechanisms of breast cancer cell resistance
to anthracyclines and the mechanisms of anthracycline
adverse reactions.

As a non-coding Ribonucleic Acid(RNA), miRNA is
composed of approximately 20 nucleotides, and participates in
the regulation of RNA transcription by activating or blocking the
translation of mRNA targets. More and more studies have found
that miRNA plays a significant role in biological processes, such
as embryonic development, cell proliferation, differentiation,
migration, apoptosis, and signal transduction (6). Therefore,
the abnormal expression of miRNA is closely related to the
development of tumor cells (7). In recent years, many studies
have shown that miRNA is involved in the regulation of the
efficacy of anthracyclines in the treatment of breast cancer, and
may be used as a specific biomarker for diagnosis, control and
prediction of adverse reactions. Through reviewing past research,
this article summarizes the effects of various miRNAs in breast
cancer treated by anthracyclines, and provides certain guidance
for future research. At the same time, we prove the clinical
application potential of various miRNAs in risk prediction,
diagnosis and treatment.
MIRNAS AND ANTHRACYCLINES
RESISTANCE

An important problem to overcome in the application of
anthracyclines is drug resistance. The emergence of drug
resistance makes tumor cells more aggressive and metastatic
and leads to failure in clinical treatments, eventually leading to
patient death (8). Therefore, in hopes of overcoming the
resistance of anthracyclines through miRNA regulation,
scientists have been studying the mechanism of drug
resistance. To modify sensitization, transformation, and
metastasis, miRNAs regulate their downstream signaling
pathways or associated proteins by modulating their target
genes. Increased drug efflux via altering cell membrane
transporters is one of the mechanisms of drug resistance
generated by anthracyclines, according to Li, X.J. et al.The key
factor is the ATP-bindingcassette transporter (ABC) family and
its derivatives, P-glycoprotein (P-gp), Multidrug Resistance-
associated Protein (MRP) and topoisomerase II. The other
potential mechanism of drug resistance is the inhibition of
tumor cell apoptosis. Anthracycline reduces tumor cell
apoptosis and increases cell survival and causes cell cycle
arrest, then activates the epithelial-mesenchymal transition
(EMT) by activating or inhibiting cell signaling transduction
pathways (9). In addition, the drug resistance of tumors depends
on some tumor proteins, which can affect the metabolic function
of tumor cells and control their microenvironment.
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Wang, Y.D. et al. reported that the target genes of miRNAs
can be divided into four types: oncogenes, tumor suppressor
genes, signaling pathway genes, and cell cycle regulatory genes
(10). The upstream or downstream of these pathways are also
interspersed with various apoptotic proteins, oncogenes, and
tumor suppressor genes to affect cell apoptosis, changes in
EMT processes, and cell cycle arrest. Accumulating studies
have found that one miRNA may be able to regulate multiple
genes, and these genes can cooperate to influence each other, and
even produce feedback loops.
MIRNAS AND MEMBRANE TRANSPORT

The factors that cause changes in cell membrane transport
mainly include the ABC family, P-gp protein, MRP protein,
topoisomerase, etc. MiRNAs participate in their regulation cells
to anthracycline drugs. Xie, M.X. et al. demonstrated that the
expression of miR-132 and miR-212 inhibits the expression of
nuclear factor kappa-b (NF-kb), which leads to an increase in the
expression of breast cancer resistance protein (BCRP), a member
of ABC family, and reduces the sensitivity of tumor cells to
anthracyclines (11). Some studies have reported that miR-128
exerts its function of reducing drug resistance of tumor cells by
inhibiting the B-cell- specific Moloney murine leukemia
virusintegration site-1 (Bmi-1) and ABCC5 (9, 12, 13). The
relationship between miR-760 and ABCA1 has also been
studied. The high expression of miR-760 can mediate the
decline of tumor cell resistance to drugs by reducing the
expression of ABCA1 (13). There was a negative correlation
between miR-134 and ABCC1, the high expression of miR-134
resulting in reduced tumor cell proliferation and increased
apoptosis, which reflects its potential to reduce drug resistance
(14). miR-145, miR-451, miR-326, and miR-199a are also
implicated in MRP1 (ABCC1) (15–18). Di, H. et al. reported
that miR-124-3p enhanced the sensitivity of tumor cells to drugs
by reducing the expression of ABCC4 (19).

P-gp is a molecular pump located on the cell membrane to
protect cells from harmful exogenous molecules (20). However,
this protective mechanism on tumor cells can hinder the entry of
anticancer drugs, thereby inducing drug resistance. P-gp genes
can be downstream targets of many oncogenes and tumor
suppressor genes. MiRNAs affect the number of transcription
and synthesis of P-gp through modulating related signaling
pathways. Research showed that miR-302s can cause cancer
cells susceptible to anthracyclines by down-regulating the
expression of P-gp through the MAP/ERK kinase 1 (MAKK1)
pathway (21). The overexpression of miR-195 can inhibit the
expression of P-gp through the Raf-1 signaling pathway, making
more breast cancer cells susceptible to apoptosis and increasing
their sensitivity to anthracyclines (22).

MiRNAs and Cell Apoptosis
Most of the miRNAs achieve their aims by regulating signaling
pathways. The most important and widely studied pathways are
the Phosphatase and tensin homolog deleted on chromosome
May 2022 | Volume 12 | Article 899145
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ten- phosphatidylinositol 3 kinase- AKT (PTEN-PI3K-AKT)
signaling pathway, Notch signaling pathway, Ras signaling p–
athway, etc (23). The antiapoptotic protein, B cell leukemia
oncogene (Bcl) protein family is the most important link in
cell apoptosis, including Bcl-2, Bcl-Xl, Mcl-1, Bcl-w, and so on
(24). Many studies have shown that various signaling pathways
related to apoptosis have a common junction, which is regulated
by the Bcl family. Therefore, Bcl family proteins can inhibit cell
death caused by a variety of cytotoxic factors. This phenomenon
is even more prominent in tumor cells. Many researchers are
trying to link miRNAs with the expression of Bcl family proteins
to find a therapeutic strategy to reduce the resistance of tumor
cells to anthracyclines. miR-181a is a well recognized miRNA at
present. Ying, Z. et al. found that Bcl-2 was decreased by
increasing the expression of miR-181a and induced the
apoptosis of mitochondria, thereby increasing the apoptosis
induced by doxorubicin drugs (25). There is evidence that the
overexpression of miR-192-5p will also reduce the expression of
Bcl-2, which makes the Bcl-2-Asociated Agonist of Cell Death
(BAD) gene competitively increases. As a result, the expression
of Peptidylprolyl Isomerase A (PPIA) is inhibited and the
resistance of tumor cells to anthracyclines reduced (26).
Furthermore, miR-122-5p, miR-195, miR-125b, miR-193b,
miR-34a, and miR-200c are negatively related to the regulation
of Bcl-2 or Myeloid cell leukemia sequence (Mcl) family and
other Bcl family proteins (24, 27–31). Other studies showed that
some miRNAs, such as miR-222, miR-19a, and miR-21, are
positively correlated with the expression of the Bcl family
(32, 33).

The Bcl activating gene proteins are tumor suppressors. Their
mutations can affect the process of cell proliferation,
transcription and apoptosis. The relationship between the
mutation of P53 and miRNA is attractive to researchers.
miR-214 has been shown to down-regulate RFWD2-p53
cascade, causing tumor cells sensitive to anthracyclines (34).
Yuan, Y. et al. identified that miR-133a improves sensitization of
tumor cells by suppressing the expression of the uncoupling
protein-2 (UCP-2) (35). This mechanism is considered to be
related to P53 mutation (36). Furthermore, it is interesting to
note that miR-191-5p declines the expression of P53, which
binds to the promoter of miR-191-5p, forming a negative
feedback regulation chain by downregulating the expression of
SOX4 (37). Not only can miRNAs change drug resistance by
regulating the mutation of P53, recent studies demonstrated that
some miRNAs can also be regulated by P53. Lin, S. et al. found
that the expression level of miR-30c is controlled by P53
mutation, which could contribute to tumor cell sensitivity to
doxorubicin by regulating the Fanconi anemia complementation
group F protein (FANCY) and REV1 protein (38). In addition,
miR-127, miR-34a, and miR-542-3p are all mentioned to be
related to P53 network in other studies (16, 39).

PI3K-AKT is also a classic signaling pathway that can induce
the apoptosis of cells. The abnormal expression of PTEN protein is
enough to antagonize PI3K-AKT via dephosphorylating the
Phosphatidylinositol (3–5) Trisphosphate (PIP3) on the cell
membrane to produce phosphati-dylinositol-4,5-bisphosphate
Frontiers in Oncology | www.frontiersin.org 3
(PIP2), which plays a role in the growth, apoptosis, adhesion
(40), infiltration and migration of cancer cells (41). Once the
PI3K-AKT signaling pathway is inhibited or damaged, it will
promote the activation of tumor cell apoptosis and reduce the
occurrence of drug resistance. It was reported that the expression
of miR-222 (42, 43) and miR-29a (44) were decreased after
treatment with anthracyclines. As a result, it led to anthracycline
resistance because of the decreased of PTEN. In addition, miR-221
has been shown to make the PI3K-AKT pathway more active by
targeting the PTEN protein, which strengthens the tolerance of
tumor cells to anthracyclines. Many miRNAs, such as miR-21 (45,
46), miR-19a (47), miR-132 (11), and miR-212 (11), are negatively
correlated with PTEN expression to promote anthracycline
resistance in breast cancer. In contrast, miR-200c raised the
expression of PTEN, contributing to reverse drug resistance
(48). Not only can the PTEN protein affect the PI3K-AKT
pathway, but this pathway also accepts other regulations. For
example, insulin-like growth factor-1 receptor (IGF-1R) is a
tyrosine kinase receptor that can activate the expression of
PI3K-AKT and prevent cell apoptosis. Zhang, H. et al. found
that the downregulation of miR-520b expression can increase the
expression of PI3K-AKT by activating IGF-1R so that tumor cells
can acquire drug resistance (49). Similarly, the downregulation of
miR-452 can also induce drug resistance through the IGF-1
signaling pathway (50). Other studies have shown that miR-7
can restrain the expression of epidermal growth factor receptor
(EGFR), thereby regulating the PI3K-AKT pathway to enhance
the sensitivity of cells to anthracycline drugs (51). miR-200c can
enhance tumor cell resistance to anthracyclines by decreasing the
expression of Friend of GATA2 (FOG2) protein (52). In addition
to the above pathways, vascular endothelial growth factor A
(VEGFA) and fibroblast growth factor 2 (FGF2) also target the
PI3K-AKT pathway. miR-205 has also been shown to inhibit the
synthesis of VEGFA and FGF2, causing damage to the pathway
and tumor cell apoptosis (53).

The Notch gene, as a highly conserved gene, regulates cell
proliferation, differentiation, and apoptosis (54, 55). It also plays
an important role in the interaction of adjacent cells, which
makes the Notch pathway a possible target for tumor treatment.
Among published studies, miR-34a is closely related to the Notch
pathway (56). The expression of homolog 1 declined after
downregulating miR-34a. Cell drug resistance is reduced
because of the inhibition of the Notch pathway, after
upregulating miR-34a (57). Moreover, it has been reported that
miR-34a can suppress tumor cell migration effectively through
the Notch pathway (28).

Beyond the above pathways, the mitogen-activated protein
kinase/the extracellular signal-related kinases (MAPK/ERK)
pathway is also a potential direction that countributes to
regulate the resistance to anthracyclines (58). The MAPK
family are highly conserved serine/threonine protein kinases, a
group of major signaling molecules in the process of signal
transduction. Thus, it plays an important role in cancer
development and disease occurrence (59). It has been reported
that miR-302s inhibited the transcription of P-gp glycoprotein
and resensitized the resistance of breast cancer cells to
May 2022 | Volume 12 | Article 899145
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Adriamycin (ADR) to death by reducing the expression of
mitogen-activated protein kinase/ERK kinase 1 (MEKK1) (21).
Furthermore, P38 is an another important member of the MAPK
family. miR-381 executes its function by inhibiting the
expression of Fyn, a Src-family kinase (60) and cutting down
the synthesis of P38 (61). This means that it may become a
potential target for overcoming the resistance of anthracyclines
in the future. Tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein zeta (YWHAZ), an
antiapoptotic gene located downstream of miR-30c, can inhibit
the expression of the P38 pathway (62). Other pathways have
also been mentioned. For example, miR-140-5p was found to
suppress the Wnt1 pathway, resulting in decline of
anthracyclines resistance (63). Another miRNA, miR-148a,
plays a role in tumor migration and erosion by inhibiting the
expression of the Wnt-1 pathway (64). Lastly, miR-129-5p
induced apoptosis of cancer cells by disrupting SOX2
expression (65).

MiRNAs and the Cell Cycle
In addition to the function of apoptosis and the EMT process in
the formation of drug resistance, abnormal cell cycle is also an
important factor to consider. As we all know, cancer cells can
produce infinite proliferation, so uncontrollable proliferation is a
manifestation of cancer drug resistance. The cell cycle includes
the division phase and the interphase. When the cell cycle is in
the G0 phase, the cells stop dividing. Therefore, restraining the
cancer cell cycle in the G0 phase is a potential way to overcome
cancer drug resistance. Cyclin-dependent kinase (CDK), a
regulator of the cell cycle, are divided into two categories based
on their positive and negative effects (66). The positive regulation
is via cyclin and the negative regulation is via cyclin-dependent
protein kinase inhibitor (CKI) (67). The reduced expression of
p27kip, a CKI regulated by miR-222, causing proliferation of
tumor cells and reducing apoptosis. Based on the view of Wang,
D.D. et al., the IC50 of tumor cells was increased after
upregulating miR-222, which indicated that the increased
resistance to anthracyclines (68). Additionly, miR-24 inhibited
expression of p27kip (69, 70). It changed the chemosensitivity by
regulating autophagy and tumor vascular survival. miR-574 has
also been found to inhibit the expression of Smad4. It accelerates
the G1-S phase of the cell cycle through regulating the
Transforming Growth Factor-b (TGF-b), inducing cell growth
and reducing the sensitivity of cells to anthracyclines (71). Other
studies have discovered a negative feedback regulation of CDKs.
miR-449 could inhibit cell cycle gene expression against drug
resistance by reducing the synthesis of CDK2, E2F transcription
factor 1 (E2F1), E2F transcription factor 3 (E2F3). Surprisingly,
E2F1 regulates the expression of miR-449, forming a negative
feedback loop (72). Furthermore, the aforementioned miR-122-
5p can reduce the expression of drug resistance by targeting
CDKs (27). A mircoRNA targeting cyclin was rarely discovered.
The downregulation of miR-135b-5p was confirmed to promote
the synthesis of Anterior Gradient 2 (AGR2), an enzyme that
functions as a folding protein on the endoplasmic reticulum of
tumor cells. It can mediate the expression of cyclin D1 and make
cells sensitive to anthracyclines (73).
Frontiers in Oncology | www.frontiersin.org 4
MiRNAs and Epithelial-Mesenchymal
Transition
EMT ensures the cells with the ability of transformation and
invasion, therefore against cell senescence and apoptosis (74).
EMT regulates the process of cell development, as well as
participates in the process of tissue healing, cancer occurrence,
and metastasis. So EMT is critical to the development of drug
resistance in the treatment of breast cancer with anthracyclines
(75). miR-93 was found to strengthen cell proliferation and reduce
the sensitivity of tumor cells to the drug by inhibiting the PTEN
pathway and promoting the occurrence of EMT (76). Du, F.Y. and
his colleagues showed that the overexpression of miR-137 would
be detrimental to the synthesis of dual-specifificity phosphatase 4
(DUSP4), which blocked the EMT process. Therefore, it implied
that miR-137 has a great potential for sensitivity enhancement
against anthracyclines resistance (77). In addition, studies have
validated that miR-124 targets the expression of t signal transducer
and activator of transcription 3 (STAT3), suppressing the activity
of the hypoxia-inducible factor-1(HIF-1) pathway, resulting in the
reversal of drug resistance (78). An intriguing discovery is the
miR-448 positive feedback. It has been reported that the
downregulation of miR-448 can promote the high expression of
special AT-rich sequence-binding protein-1 (SATB1) sequence
binding protein, sequentially activating the EMT process and the
nuclear factor NF-kb (79). Moreover, NF-kb, when bonded to
miR-448, inhibits the transcription of miR-448. This positive
feedback phenomenon enhances the drug resistance of tumor
cells. Vimentin and cadherin are important protein targets in the
EMT process and are closely related to miRNAs. Zhou, Y. et al.
found that miR-25 played a major role in the miR106b-25 cluster,
which can reduce the expression of EP300, a transcriptional
activator of E-cadherin. This change obstructed the occurrence
of EMT and restored the chemosensitivity of tumor cells (80).
Similarly, miR-181c renders tumor cells to regain sensitivity to
anthracyclines by suppressing vimentin and N-cadherin (81).
miR-489 performed its function of improving drug resistance of
tumor cells by losing vimentin, but increasing the synthesis of E-
cadherin, through reducing the synthesis of Smad3 (82, 83).
Because there are many potential targets for a miRNA, a
miRNA can also be regulated in many ways. As previously
mentioned, it affects drug resistance through the PTEN-PI3K-
AKT pathway and also can inhibit the EMT process by reducing
the synthesis of E-calcein (48).
MiRNAs and Other Mechanisms of
Resistance
In addition to the above-mentioned key factors, exosomes have
been discovered as having an emerging role. Exosomes
encapsulates specific signaling molecules or biologically active
molecules and can transmit from one cell to another, ventually,
changing the biological activity of recipient cells (84). Tumor
cells with anthracyclines resistance can deliver miRNA to
sensitive tumor cells through exosomes so that sensitive cells
can be transformed into resistant cells. Therefore, the emergence
of drug resistance is also closely related to exosomes (85). From
the prespective of Chen, W.X. et al., miR-222 and miR-100 are
May 2022 | Volume 12 | Article 899145
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potential biomarkers that can be used to predic 4t drug resistance
and prognosis. Moreover, upregulated miR-222 and miR-29 can
be secreted from drug-resistant cells through exosomes and enter
sensitive cells to infect them to endure anthracyclines (86).
Among them, miR-222 was further studied to show that it can
be transported from drug-resistant tumor cells to macrophages
through exosomes. Finally, research showed its overall tumor cell
resistance by causing inhibition of the PTEN pathway and
remodeling of macrophages. Conversely, this mechanism can
be used to improve medicinal properties to overcome drug
resistance after anthracycline treatment of breast cancer. For
example, drug-resistant cells combined with integrin and dvb3
can deliver miR-159 through exosomes to inhibit tumor cell
proliferation (87).

In addition, some miRNAs are associated with the
anthracycline resistance of breast cancer cells through their
unique effects. For example, miR-548p can elevate the synthesis
of phenazine biosynthesis-like domain-containing protein
(PBLD),which was identified as a tumor suppressor. Therefore,
the overexpression of miR-548p expression restricted tumor
growth and proliferation (88). miR-770 proomotes the
polarization of macrophages by inhibiting the Stathmin1
(STMN1) protein, indicating that miR-770 controls the tumor
microenvironment, which is conducive to reducing the drug
resistance of tumor cells (89). miR-548c-3p and miR-1236-3p
moderated drug resistance by inhibiting DNA damage and repair
(52, 90). The downregulation of miR-149 contributes to the
activation of heparinase by increasing the expression of GlcNAc
N-deacetylase/N-sulfotransferase-1 (NDST1) and inducing drug
resistance (91). In addition, miR-3609 causes tumor cells to
become sensitive to anthracyclines through promoting the
synthesis of Programmed death-ligand 1 (PDL1) (92).
Meanwhile, Drug metabolizing enzymes and transporters can be
Frontiers in Oncology | www.frontiersin.org 5
inhibited by miR-148 and miR-152 to reduce the drug resistance
of tumor cells (64). miR-133a plays its role in enhancing cell drug
sensitivity by targeting ferritin light chain (FTL) protein (93). It
has been shown that the decreasing expression of FBXW7, a tumor
suppressor gene regulated by miR-188-5p, leads to the emergence
of drug resistance (94).

MiRNAs and Adverse Effects
In the process of applying anthracyclines to treat breast cancer
patients, many adverse reactions often emerge. Among them,
cardiovascular adverse reactions are the most prominent (95).
Studies have shown that when using anthracycl ine
chemotherapy regimens, the occurrence of cardiovascular
events increases the risk of patient death (96). Therefore,
urgent attention is needed on the occurrence of cardiovascular
adverse events clinically. Appropriate stratification of risk factors
and early detection is extremely meaningful for the survival and
prognosis of breast cancer patients. Thus, a large number of
miRNA related research is ongoing. miRNAs clearly show an
objective quantitative or expression-intensity correlation with
the occurrence of adverse reactions, which may help avoid or
reduce the harm caused by adverse reactions to patients. It has
guiding significance in improving the prognosis. Furthermore,
X-ray photography, a commonly used method in clinical
diagnosis, has the unavoidable disadvantage of discomfort,
overdiagnosis, and false positives. Figure 1 shows that the
different roles of above mentioned miRNAs plays in
anthracyclines resistance. As a detection method of peripheral
blood indicators, miRNA is more nontoxic, convenient (97).

Qin, X. et al. (98). showed that anthracyclines induce
myocardium damage in three possible ways: Firstly, it
increased free radicals can cause tissue lipid oxidation leading
to destruction of sarcomeres and causing autophagy and
May 2022 | Volume 12 | Article 8991
FIGURE 1 | The role of miRNAs in anthracyclines resistance. (+): microRNA promotes expression of dowmstream protein; (-): microRNA suppresses expression of
dowmstream protein.
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apoptosis of cardiomyocytes. The second mechanism is that it
renders the death of cardiomyocytes by influencing
topoisomerase II and opening the double strands of DNA of
cardiomyocytes. Lastly, anthracyclines can damage myocardial
fibers by inhibiting the ErbB-2 pathway (99). Anthacyclines
induce early toxicity particularly in the left ventricle. The
process of reconstruction is closely related to the reactivation
of embryonic genes (100). miRNA can contribute to the
cardiotoxicity occurrence (101).

The lethal-7 (let-7) family, a member of miRNAs, is mentioned
extensivly. Upregulation of let-7a can predict the occurrence of
cardiotoxicity (102). The downregulation of the expression of let-
7f, a family member of let-7, signified the appearance of cardiac
dysfunction because of its good correlation with N-terminal pro-B
type natriuretic peptide (NT-proBNP) (98, 103). In addition to the
let-7 family, miR-1 is another important biomarker, and has also
been used as a clinical indicator. Expression of miR-1 implies the
occurrence of arrhythmia to heart failure through a good response
with left ventricular ejection fraction (LVEF) (98). Rigaud. et al.
further explored its mechanism by demonstrating that miR-1 has a
direct connection with the inhibition of antioxidant genes, leading
to oxidative stress, promoting cardiomyocyte apoptosis, and
myocardial damage (104). In another study, it was also found
that miR-1 expression was increased in patients with adverse
cardiotoxic reactions, possibly indicating that miR-1 was released
by necrotic cardiomyocytes. miR-20a, miR-210, miR-34a, miR-
126, and miR-130a are also have great potential. There is evidence
that miR-20a is a dependable predictor of the occurrence of
cardiotoxicity via the mechanism of activating angiogenesis and
abnormal tumor vascular development. Another miRNA that
plays a role in the development of chemoresistance, metastasis,
proliferation, and self-renewal of tumor cells from hypoxic
conditions is miR-210 (103). miR-34a-5p was also significantly
increased after treatment with anthracyclines, which induces DNA
breakage and P53 activation (105). MiR-126 also has the potential
to be used to predict cardiotoxicity because it was validated to
protect cardiomyocyte from apoptosis with its elevated expression
(106–108). Recent findings have suggested that b-adrenergic
pathway can modulate the contractile function in the heart by
stimulating guanylyl nucleotide binding proteins, including
adenylyl cyclase,cyclic adenosine monophosphate (cAMP), and
so on (109–111). miR-30 affects the activation of the elements of
Frontiers in Oncology | www.frontiersin.org 6
the contraction coupling system by targeting the expression of b-
adrenergic receptors. It was also concluded that miR-30 is a
cardioprotective biomarker to monitor calcium overload and
myocardial damage (112, 113).

In addition, another common adverse effect is liver metastasis.
Studies have shown that miR-1-3p can mediate the occurrence of
liver injury during the application of anthracyclines (4).
Meanwhile, miRNA also plays a role in regulating the metastasis
of breast cancer. miR-222 can promote the EMT process through
the the mitogen-activated protein kinase (RAS-RAF-MEK-ERK)
pathway, inducing breast cancer to be more aggressive and
metastatic (68). Moreover, Deng, Z. et al. found that
myelosuppressive cells (MDSC) can release miR-126a through
exosomes to generate T helper 2 (Th2) cells with Interleukin-13
(IL-13) positive after Dox treatment. It promoted tumor
angiogenesis, and ultimately led to breast cancer metastasis to
the lungs (5). This also shows that miR-126a has the potential to
predict breast cancer metastasis. Table 1 presents the link of
several miRNAs involved in response to adverse effects of
anthracyclines treatment in breast cancer.
CONCLUSIONS AND OUTLOOK

There are many mechanisms and signaling pathways involved in
the miRNA implications in breast cancer patients being treated
with anthracyclines, and there is an abundance of possible
miRNAs involved in the diagnosis, prognosis, and treatment of
breast cancer patients. The study of microRNAs in regulating the
resistance of anthracyclines in the treatment of breast cancer
signifies that people may be able to control various types of
microRNAs to overcome the shortcomings of anthracyclines
application. MicroRNAs may be the key to the selection and
development of personalized and safe anticancer drugs in the
future. Moreover, as mentioned above, microRNAs can be used
as a more accurate and safe early prediction tool, and has the
potential as prognostic markers to be used in the clinic.
Therefore, to overcome the challenge of providing
individualized medicine in a complex disease, especially breast
cancer, it is essential that more understanding of the biological
effects of the various miRNAs will guide the possible direction of
future academic interests.
TABLE 1 | MicroRNAs involved in response to adverse effects linked to anthracyclines treatment in breast cancer.

microRNA expression Adverse effect Reference

let-7a(↑) cardiotoxicity (102)
let-7f(↓) cardiac dysfunction (98, 103)
miR-1(↑) Arrhythmia, heart failure (98, 103, 104)
miR-20a(↑) cardiotoxicity (103)
miR-210(↑) tumor metastasis (98, 103)
miR-34a-5p(↑) P53 activation,

cardiotoxicity
(105)
(98)

miR-130a(↓) myocardial damage (98)
miR-1-3p(↑) liver injury (4)
miR-222(↑) tumor metastasis (117)
miR-126a(↑) lung metastasis (5)
May 2022 | Volume 12 |
↑, microRNA expression increasing; ↓, microRNA expression decline.
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Moreover, there are many challenges in current researches.
Firstly, many groups of miRNAs involving breast cancer were
found by metabonomics methods (9, 114, 115). To a certain
extent, these results only found a simple quantitative relationship
between them. But do not provide adequate epidemiological
information, such as age, the course of disease, the breast cancer
type and stage, complications, the dosage and dosing interval of
anthracyclines administration and so on. More importantly,
most studies do not consider whether drug interactions,
especially some cardioprotective drugs, have influence on the
outcomes. Whether this relationship could be used as a reliable
early detection indicator for the clinic is doubtful. Therefore,
more effort should be invested into a more deeper study. Lastly,
not only are the traditional techniques of miRNA detection
complex and require special laboratory skills, but they can also
generate false-positives during the amplification process (116).
The optimization of methods for quantification and visualization
of abnormal miRNA expression are needed for early clinical
diagnosis. A more accurate and economical detection method is
an absolutely need in the future.
Frontiers in Oncology | www.frontiersin.org 7
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