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Recent studies clearly indicate that the endocrine function of the skeletal muscle is
essential for a long and healthy life. Regular exercise, which has been shown to stimulate
the release of myokines, lowers the risk of many diseases, including Alzheimer’s and
Parkinson’s disease, emphasizing the role of skeletal muscle in proper functioning
of other tissues. In addition, exercise increases insulin sensitivity, which may also
impact iron metabolism. Even though the role of iron in neurodegeneration is well
established, the exact mechanisms of iron toxicity are not known. Interestingly, exercise
has been shown to modulate iron metabolism, mainly by reducing body iron stores.
Insulin signaling and iron metabolism are interconnected, as high tissue iron stores are
associated with insulin resistance, and conversely, impaired insulin signaling may lead
to iron accumulation in an affected tissue. Excess iron accumulation in tissue triggers
iron-dependent oxidative stress. Further, iron overload in the skeletal muscle not only
negatively affects muscle contractility but also might impact its endocrine function,
thus possibly affecting the clinical outcome of diseases, including neurodegenerative
diseases. In this review, we discuss possible mechanisms of iron dependent oxidative
stress in skeletal muscle, its impact on muscle mass and endocrine function, as well as
on neurodegeneration processes.
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INTRODUCTION

Excess of iron in any tissue may induce oxidative stress and impair tissue function. In the skeletal
muscle, oxidative stress not only causes muscle damage but also negatively impacts its endocrine
function. The skeletal muscle is a source of myokines, which are cytokines produced and released by
skeletal muscle capable of exerting protective effects on other tissues, including the neuronal tissue
(Besse-Patin et al., 2014; Dai et al., 2018; Liu et al., 2018). This is supported by the observation that
regular exercise, which pronouncedly increases myokine biosynthesis, reduces the risk of various
diseases, including Parkinson’s disease (PD) and Alzheimer’s disease (AD) (Chen et al., 2005;
Santos-Lozano et al., 2016). Conversely, disruption of balance between muscle protein synthesis
and degradation, resulting from a wide variety of conditions, including cancer, immobilization
(or disuse), denervation, or iron overload, can lead to oxidative stress dependent skeletal muscle
atrophy and impairment of myokine synthesis (Tisdale, 2004; Argiles et al., 2014). Although muscle
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function is widely studied in terms of adaptive changes induced
by exercise, or atrophy induced by some morbidities, much less
is known about its possible illness-related role as an endocrine
tissue, and about the interconnections between oxidative stress
and myokine production. This topic will probably represent
one of the hot new areas in the study of pathomechanisms of
neurodegeneration and other diseases.

Iron overload is a known contributor to multiple degenerative
diseases, including liver fibrosis, heart attack, and cancer (Stevens
et al., 1994; Klipstein-Grobusch et al., 1999; Ong and Farooqui,
2005). Importantly, excess iron accumulation in the brain is
linked to neurodegenerative disorders (Bartzokis et al., 1999,
2000). Some neurodegenerative diseases are associated with
the failure of muscle function (Busse et al., 2008). However,
little is known about the link between iron accumulation in
the muscle and neurodegeneration. Some interesting results
come from studies on amyotrophic lateral sclerosis (ALS), a
neurodegenerative disease characterized by a selective loss of
motor neurons (Gajowiak et al., 2015). These findings, as well as
current knowledge about iron metabolism in the skeletal muscle
and its possible influence on neurodegenerative diseases, will be
discussed in the current review.

ENDOCRINE FUNCTION OF THE
SKELETAL MUSCLE AND
NEURODEGENERATION

In recent years, the skeletal muscle has been recognized as a
secretory organ that releases appreciable amounts of circulating
proteins, called myokines. Currently, we know that the skeletal
muscle produces several hundreds of peptides classified as
myokines, and muscle contraction stimulates their release
(Henningsen et al., 2010; Huh, 2018). Considering that the
skeletal muscle represents the largest organ of the human body,
(the muscles constitute approximately 40% of total body mass),
its role in the regulation of metabolic processes via myokines
appears to be very important. Myokines can act as autocrine,
paracrine, or endocrine stimuli. Thus, they may affect different
organs and tissues, e.g., the brain, bone, adipocyte tissue, heart
artery, and many others (Giudice and Taylor, 2017). For instance,
the myokines interleukin (IL) IL-6 and IL-10, released from the
muscle during exercise or under ischemia, exert powerful local
and systemic anti-inflammatory effects. Furthermore, IL-10 has
been shown to provide cardio- and neuroprotection, mediated
by the activation of anti-apoptotic protein kinase B (PKB or
Akt) (Sharma et al., 2011; Cai et al., 2013). Physical activity
induces central and peripheral production of neurotrophins,
such as brain-derived neurotrophic factor (BDNF), glial cell
line-derived neurotrophic factor (GDNF), neurotrophin-3
(NT-3), and neurotrophin-4 (NT-4). They support neural
survival, growth, synaptic plasticity, and neuromuscular
junctions (Zoladz and Pilc, 2010). In addition, myokines, such
as myostatin, irisin, IL-15, IL-6, leukemia inhibitory factor
(LIF), or apelin, play a major role in processes associated with
regulation of hypertrophic muscle growth and myogenesis
(Munoz-Canoves et al., 2013).

Limited data are available on the effect of oxidative stress
on the biosynthesis of myokines, where myostatin is one of
the examples. It is a member of transforming growth factor
beta superfamily and negatively regulates muscle growth. The
myostatin/follistatin ratio is significantly higher in ALS in
comparison to control patients, and is positively correlated with
muscle degeneration (Tasca et al., 2016). Oxidative stress has
been shown to increase myostatin synthesis (Enoki et al., 2016)
and, conversely, myostatin increases the production of reactive
oxygen species (ROS) by NADPH oxidase in C2C12 cells (Sriram
et al., 2011). Expression of myostatin is downregulated by regular
exercise (Jones et al., 2004; Kim et al., 2005; Louis et al., 2007).
Interestingly, compared with a sedentary ALS animal, swim
training of ALS mouse significantly lowers oxidative stress and
delays body weight reduction (Flis et al., 2018). In addition, it
has been shown that swim training sustains the motor function
and increases the ALS mouse life span by about 25 days.
This beneficial effect is one of the most important therapeutic
achievements in the strategy of ALS treatment. What is more,
the analysis of muscle phenotype revealed maintenance of the
fast phenotype in fast-twitch muscles, delayed spinal motoneuron
death, and preserved astrocyte and oligodendrocyte populations
in ALS spinal cord (Deforges et al., 2009). Recent data have shown
that swimming exercise not only extends life span in mouse
model of ALS, but also maintains the grip strength in ALS mice,
lowers cholesterol content, and raises the caveolin-1 protein level
in the skeletal muscle crude mitochondrial fraction. Moreover,
higher activity of COX enzyme in swimming animals seems to be
a marker of respiratory chain function improvement (Flis et al.,
2018). However, the role of myokines in protective effects of
swimming training on ALS development has not been studied.

The role of myostatin inhibitors as potential therapeutics for
muscle-wasting diseases and muscle weakness in human and
animals has been widely explored. Several myostatin inhibitors,
including myostatin antibodies, anti−myostatin peptibody,
activin A antibody, soluble (decoy) forms of soluble activin
receptor type IIB (ActRIIB−Fc), anti−myostatin adnectin, and
ActRIIB antibody have been tested in pre-clinical and clinical
trials in the last decade. These inhibitors have currently
progressed into clinical development in several indications,
mainly sarcopenia, early recovery after surgery, and cachexia.
Myostatin inhibitors for the treatment of muscular dystrophy
are also being tested in early clinical trials (Saitoh et al., 2017).
There are many papers showing positive effects of myostatin
inhibitors on animal models with different types of muscle
disorders (Holzbaur et al., 2006; Ohsawa et al., 2006; Morine
et al., 2010). It has been demonstrated that treatment of an
ALS mouse with myostatin inhibitor, ActRIIB−Fc, results in
a delay in the onset of weakness, increases body weight and
grip strength, and enlarges muscle size when applied either in
a pre-symptomatic animal or after symptom onset (Morrison
et al., 2009). Surprisingly, in an animal denervation model,
myostatin inhibition is not effective against atrophy. By contrast,
ActRIIB-Fc treatment protects immobilized mice against the
loss of muscle mass (MacDonald et al., 2014). Myostatin is
thought to disrupt the balance between protein synthesis and
protein degradation in healthy skeletal muscle by inhibiting Akt
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kinase, which regulates the muscle mass by inhibiting protein
degradation and promoting protein synthesis (Morissette et al.,
2009; Trendelenburg et al., 2009; Glass, 2010; Figure 1). The most
common, myostatin-dependent, signaling pathways involved in
muscle myogenesis and protein synthesis/degradation include:
Akt/mTOR/mTORC/p70s6K; Akt/FOXO/Atrogin-1, MURF-1;
Akt/GSK-3β/cyclinD1 (Elkina et al., 2011; Rodriguez et al., 2014).

Contrary to myostatin, other myokines, e.g., apelin and
IL-15, exert a protective effect against oxidative stress and
skeletal muscle atrophy.

Apelin is a peptide which is an endogenous ligand for the
apelin receptor (APJ) (Tatemoto et al., 1998). The apelin/APJ
system has several important functions in the body, such as blood
pressure regulation, cardiac contractility, immunity, glucose
metabolism, water homeostasis, cell proliferation, angiogenesis,
and neuroprotection (Wu et al., 2017). According to research
carried out in recent years, apelin is considered to be a myokine
(Besse-Patin et al., 2014; Son et al., 2018; Vinel et al., 2018).
Vinel et al. (2018) demonstrated in their in vitro and in vivo
studies that apelin reverses age-related sarcopenia. During aging,
apelin synthesis in skeletal muscle is reduced and plasma apelin
levels decrease. Conversely, aged mice, supplemented with a
daily injection of apelin or overexpressing apelin, exhibited
improved muscle capacities and myofiber hypertrophy (Vinel
et al., 2018). A number of studies demonstrated that apelin
mediates neuroprotection in in vivo and in vitro models
(Kasai et al., 2011; Cheng et al., 2012; Zou et al., 2016;
Ishimaru et al., 2017). Moreover, epidemiological and clinical
studies reported that physical activity could reduce the risk
of developing of PD and AD (Bhalsing et al., 2018; Zhang
et al., 2018). Interestingly, apelin stimulates endothelial nitric
oxide release that plays a role in inhibition of amyloid
beta (Aβ) production, synaptic plasticity, and Aβ clearance
in brain (Masoumi et al., 2018). In cells treated with 6-
hydroxydopamine, which imitates dopaminergic neurotoxic
conditions in PD, pretreatment with apelin-13 significantly
decreased the level of intracellular ROS. In heart, apelin protects
from ROS-dependent damage or cardiac hypertrophy (Zeng
et al., 2009; Foussal et al., 2010). Apelin pretreatment decreased
the generation of ROS and malonaldehyde content as well
as lactate dehydrogenase leakage in myocardial cells from
neonatal rats under hypoxia/re-oxygenation. Furthermore, apelin
enhanced superoxide dismutase activity and phosphorylation of
extracellular signal-regulated kinase 1/2 and Akt after hypoxia/re-
oxygenation (Zeng et al., 2009). In a mouse model of ALS,
mRNA levels of apelin and its receptor were significantly lower in
spinal cord of the G93A hmSOD1 mouse than those in the wild-
type mouse. Immunohistochemical analysis revealed a reduced
number of motor neurons and activation of microglial cells in
transgenicG93A hmSOD1 apelin-deficient mouse, indicating that
apelin deficiency pathologically accelerates the progression of
disease. Besides, apelin enhanced the protective effect of VEGF on
hydrogen peroxide (H2O2)-induced neuronal death in primary
neurons (Kasai et al., 2011).

Skeletal muscle tissue releases high amounts of IL-15, which
is reported to increase transiently, immediately following
resistance (Riechman et al., 2004) and aerobic exercise

(Tamura et al., 2011). In the mice muscle and serum, IL-15
protein levels decline progressively with advanced age (Quinn
et al., 2010). Further, Yalcin et al. (2018) demonstrated that the
level of IL-15 is significantly lower in patients with sarcopenia
compared to non-sarcopenic old people. A study conducted
on a C2C12 muscle cell line presented the protective effects
of IL-15 against H2O2-iduced oxidative stress. Pre-incubation
with IL-15 reduced the intracellular creatine kinase and lactate
dehydrogenase activities and decreased the ROS overproduction
in H2O2 exposured myoblasts (Li et al., 2014).

Irisin a novel myokine, which is secreted following proteolytic
cleavage of its precursor fibronectin type III domain containing
5 (FNDC5). Irisin plays a role in metabolic diseases, aging,
inflammation, and neurogenesis (Mahgoub et al., 2018). Physical
activity increases irisin level in plasma (Jedrychowski et al.,
2015). During AD, the level of FNDC5 /irisin was decreased in
hippocamp and cerebrospinal fluid. Knockdown of FNDC5/irisin
in the brain impairs long-term potentiation and novel object
recognition memory in mice. Conversely, boosting brain levels
of FNDC5/irisin rescues synaptic plasticity and memory in
AD mouse models. Peripheral overexpression of FNDC5/irisin
rescues memory impairment, whereas blockade of either
peripheral or brain FNDC5/irisin attenuates the neuroprotective
actions of physical exercise on synaptic plasticity and memory in
AD mice. Irisin reduced ischemia-induced neuronal injury, and
significantly suppressed the levels of nitrotyrosine, superoxide
anion, and 4-hydroxynonenal in peri-infarct brain tissues.
Mice administration with irisin increased Akt and ERK1/2
phosphorylation, while blockade of Akt and ERK1/2 by specific
inhibitors reduced the neuroprotective effects of this compound.
Finally, the exercised mice injected with irisin neutralizing
antibody displayed more severe neuronal injury than the
exercised mice injected with control IgG (Li et al., 2017). In
obese patients and in chronic diseases, such as type I and type
II diabetes or chronic kidney disease, the level of irisin is lower
than in healthy normal subjects (Wen et al., 2013; Ebert et al.,
2014; Belviranli et al., 2016; Lu et al., 2016; Shelbaya et al., 2017).
The above-mentioned cases, as well as other chronic diseases, are
accompanied by chronic inflammation.

DYSREGULATION OF IRON
METABOLISM AND SKELETAL MUSCLE
ATROPHY

Loss of muscle mass is caused by an imbalance between protein
synthesis and muscle fiber degradation. Two main degradation
pathways can be hyperactivated during muscle dystrophy: the
ubiquitin-proteasome and autophagy-lysosome systems. These
two pathways require ATP and are believed to serve separate
functions. Proteasomes degrade myofibrillar and short-lived
proteins (Solomon and Goldberg, 1996; Clarke et al., 2007; Fielitz
et al., 2007; Cohen et al., 2009), whereas autophagy-lysosomes
remove long-lived proteins and organelles (Levine and Kroemer,
2008; Mizushima et al., 2008).

The ubiquitin-proteasome system relies on a cascade of
enzymatic reactions that culminate in the labeling of substrate
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FIGURE 1 | Pathways regulated by oxidative stress induced by iron overload in muscle cells and leading to muscle atrophy, changes in endocrine functions, and
contributing to neurodegeneration. FOXO3a transcription factor upregulates two main protein degradation pathways, ubiquitin-proteasome and
autophagy-lysosome, both involved in muscle atrophy (see details in the text). Iron-mediated ROS elevation inhibits activity of FOXO3a negative regulator, Akt, and
stimulates its positive regulator, AMPK. TRAF6 ubiquitin ligase is also involved in stimulation of muscle atrophy mediated by FOXO3a as well as inflammatory
response and might be activated by ROS. Ferrous iron-induced ROS have been shown to activate TRAF6 in hepatic macrophages. ROS also induce production of
myostatin which leads to muscle atrophy. On the other hand, exercise downregulates myostatin while such myokines as apelin or IL15 are increased and stimulate
Akt in skeletal muscle and neuronal tissue thus protect against muscle and neurons atrophy. Loss of muscle mass thus, reduction in their endocrine functions may
accelerate neurodegeneration and degeneration of motor neurons promotes muscle atrophy.

proteins with ubiquitin chains, for degradation by the 26S
proteasome. E3 ubiquitin ligases confer substrate specificity
and play a crucial role in this system. Two E3 ubiquitin
ligases are essential for the development of skeletal muscle
atrophy: muscle atrophy F-box (MAFbx)/atrogin-1 and muscle
RING finger-1 (MuRF1). They are responsible for the selection
and ubiquitination of myofibrillar proteins for subsequent
proteosomal degradation (Bodine et al., 2001; Gomes et al., 2001).

The autophagy-lysosomal pathway involves sequestration
of substrates within vacuoles called autophagosomes. These
vacuoles subsequently fuse with lysosomes, and the cargo is
hydrolyzed by lysosomal hydrolases. This process is controlled
by autophagy-specific gene products, including Beclin 1. Crucial
stages of the pathway rely on the transfer of small ubiquitin-like

molecules (LC3 and others) from the conjugation system to
the membranes, to allow their growth into double-membrane
autophagosomes that engulf portions of the cytoplasm (Kabeya
et al., 2000; Mizushima et al., 2004).

Interestingly, both pathways are upregulated during atrophy
by Forkhead box (FOX) O3a, which regulates the transcription
of genes coding for atrogin-1, MuRF1, LC3B, and its homolog
Gabarap 1, as well as Beclin 1 (Sandri et al., 2004; Mammucari
et al., 2007; Zhao et al., 2007). Transcriptional activity
of FOXO3a is regulated by posttranslational modifications.
Regulation by Akt has been most extensively investigated; the
protein phosphorylates FOXO3a on Thr32 and Ser253, leading
to its cytosolic retention by 14-3-3 (Brunet et al., 1999).
Consequently, factors that activate Akt, such as insulin or the
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growth factor/phosphatidylinositide 3-kinase (PI3K) pathway,
cause FOXO3a inactivation and prevent the synthesis of proteins
involved in muscle atrophy. By contrast, phosphorylation of
Ser413/588 of FOXO3a by AMP-activated protein kinase, a
protein that becomes activated during energy deficit (exercise,
hypoxia, or nutritional stress), leads to its activation and,
subsequently, the induction of protein degradation pathways
(Sandri, 2010; Sanchez et al., 2012).

The relationship between muscle iron metabolism and muscle
atrophy with age or disease is unclear; however, recent reports
have shed some light on these processes. Ikeda et al. (2016)
showed that iron administration results in a decrease of skeletal
muscle mass in mouse. The molecular mechanism of this
phenomenon involved the induction of oxidative stress and
inhibition of the Akt-FOXO3a pathway, hence, upregulation
of atrogin-1 and MuRF1. Silencing of FOXO3a expression in
C2C12 myotube cells or application of ROS scavenger, TEMPOL,
suppress iron-induced expression of atrogin-1 and MuRF1, and
prevent cell atrophy (Ikeda et al., 2016). Furthermore, Huang
et al. (2013) demonstrated that mouse fed a high-iron diet
exhibits elevated AMP-activated protein kinase activity and
impaired insulin signaling in the skeletal muscle and liver. These
effects are abrogated by co-treatment with N-acetyl cysteine
(Huang et al., 2013).

Another regulator of the degradation pathways is tumor
necrosis factor receptor-associated factor (TRAF6). It induces the
expression of muscle-specific E3 ubiquitin ligases and autophagy-
related molecules in the skeletal muscle on denervation and in
Lewis lung carcinoma tumor-bearing mouse (Paul et al., 2010). It
is worth noting that iron might stimulate this signaling pathway
which was shown in hepatic macrophages (Zhong et al., 2012).
Thus, iron accumulation in the skeletal muscle may play an
underlying role in skeletal muscle atrophy (Figure 1).

IRON ACCUMULATION IN THE
SKELETAL MUSCLE

Under physiological conditions, most iron is stored in the liver,
spleen, and bone marrow; however, a high amount of iron has
also been detected in the skeletal muscle. It has been determined
that the total amount of stored iron in the skeletal muscle is
comparable with that in the liver in healthy individuals (Torrance
et al., 1968). Furthermore, muscle storage of iron can increase,
e.g., in individuals with iron overload.

Iron metabolism seems to be tightly controlled. It is not
entirely clear why under some conditions iron accumulates
in the skeletal muscle and/or other tissues as well. It has
been demonstrated that diet rich in highly bioavailable forms
of iron promotes high iron stores, whereas foods containing
phytate and other natural iron chelators reduce these stores.
Conversely, under some pathological conditions, excessive iron
accumulation is observed regardless of the diet. For example, in
an animal model of ALS, the amount of iron and iron storage
proteins, ferritin L and ferritin H, is elevated in the skeletal
muscles and neurons (Jeong et al., 2009; Halon-Golabek et al.,
2018). Skeletal muscle iron accumulation has also been observed

after immobilization (Kondo et al., 1992). Further, hepatic iron
content significantly increases after 2 weeks of a high-fructose
diet (Ackerman et al., 2005). These data clearly indicate that tissue
iron accumulation is not always associated with the consumption
of food with high-iron content (Tsuchiya et al., 2013) but,
rather, with impaired tissue iron metabolism. The mechanism
of iron transport into a cell is well understood; however, the
changes in iron metabolism that are responsible for excess iron
accumulation are not fully known.

Iron overload can negatively affect skeletal muscle function, as
it can induce oxidative stress (Schafer et al., 1981). Intracellular
ROS formation is strongly associated with the amount of free
iron. Lowering the levels of catalytic free iron in a cell by using
chelators always results in reduced ROS formation and changes
the composition of free radical species. For example, formation
of the hydroxyl radical is iron-dependent.

It is not clear why increased iron stores correlate with
enhanced iron-dependent oxidative stress since iron, stored
mostly in ferritin, does not stimulate ROS formation. Despite this,
a positive correlation between oxidative DNA damage and body
iron stores has been observed (Barollo et al., 2004; Sullivan, 2004).
Iron may affect the clinical course of diseases associated with the
pathological disorders of the muscle. We have recently shown
that in a transgenic rat bearing the G93A hmSOD1 gene (an
animal model of familial ALS), iron levels in the muscle increased
with the development of disease, and that was accompanied by
increased oxidative stress (Halon et al., 2014; Halon-Golabek
et al., 2018). Taken together, similarly to the brain, liver, and some
other tissues, under certain conditions, the skeletal muscle may
accumulate too much iron, which contributes to ROS formation.

STRESS AND IRON SIGNALING

Under stress conditions, numerous signaling pathways are
activated within a cell, which may lead to an adaptive response
to such conditions. One of such pathways is mediated by stress-
activated protein kinases, and results in ferritin degradation and
release of free iron [the so-called labile iron pool (LIP)]. In cell
culture models, c-jun terminal kinase (JNK-1), a stress-activated
protein kinase, together with p66Shc adaptor protein, mediates
ferritin degradation by the proteasome (Antosiewicz et al., 2006,
2007; Borkowska et al., 2011). Ferritin is a protein that binds
iron atoms and stores them in a “safe” (non-reactive) form. One
molecule of ferritin can bind up to 4500 iron atoms in the form
of ferric iron (Fe3+), creating a mineral core, in which the iron
is stored in complex with phosphate. However, ferritin may be
a source of free iron if it undergoes proteasomal or lysosomal
degradation. Recent studies indicate that ferritin can be also
degraded by autophagy mediated by nuclear receptor co-activator
4 (Philpott et al., 2017). These and some other studies clearly
show that ferritin iron is not a “safe” form of iron, as it can be
liberated and subsequently stimulate iron-dependent cell damage
(Sullivan, 2004; Figure 2).

Despite the ability to induce cell damage, iron is also a
physiological signaling molecule. Its signaling properties are
associated with ROS formation. ROS can oxidize specific amino
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FIGURE 2 | Stress-mediated ferritin degradation leads to increase in iron-dependent ROS formation. Overexpression of SOD1 G93A leads to JNK and p66Shc
activation, ferritin ubiquitination, and degradation by proteasome. As a result, LIP and iron-dependent ROS formation increase. In addition, iron augments ferritin
synthesis in order to overcome iron toxicity.

acids in proteins and thus modulate their activity; e.g., iron-
responsive protein 2 in the presence of high iron levels undergoes
site-specific oxidation, which targets this protein for proteolytic
degradation (Iwai et al., 1998). Cysteine is an amino acid with
a very high affinity for chelatable iron. Interestingly, cysteine
oxidation by H2O2 is often not possible in the absence of iron.
That is because of the high pKa of sulfydryl groups of most
cysteine residues in proteins (approximately 8.5). Only cysteine
thiolate anion (Cys-S-) is vulnerable to oxidation by H2O2. Thus,
the amount of iron released during ferritin degradation may
greatly impact cellular response to stress.

One of the most important signaling activities of iron is
associated with its interaction with iron-responsive element-
binding proteins, which can upregulate ferritin gene expression.
Increases in ferritin L and H levels lead to the sequestration
of free iron, and reduction of iron-dependent ROS formation,
lowering tissue damage. Such a scenario has been observed in an
ischemic heart, in which ischemic preconditioning induces iron-
dependent upregulation of ferritin, protecting the heart during
full ischemia (Chevion et al., 2008). Certainly, the amount of
iron liberated during ferritin degradation will determine tissue
responses to stress. For example, in a mouse model of iron
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overload, elevated levels of iron in the tibialis anterior muscle
and a fourfold increase in ferritin light chains were observed.
These changes were accompanied by elevated markers of
oxidative stress; significant reduction in the fast-twitch (extensor
digitorum longus) and slow-twitch (soleus) muscles mass; and
decreased exercise capacity (Reardon and Allen, 2009). Moreover,
cytotoxicity of the tumor necrosis factor was augmented by iron
and significantly reduced by iron chelators on cell line model
(Warren et al., 1993).

INSULIN SENSITIVITY AND IRON
ACCUMULATION IN THE SKELETAL
MUSCLE

Insulin or growth factors/PI3K/Akt/FOXO3a is another
important signaling pathway that is affected by stress. Insulin
resistance is observed in numerous pathological conditions
and is associated with the impaired Akt/FOXO3a signaling
pathway. Insulin and growth factors-mediated activation of Akt
is facilitated by its membrane recruitment upon interaction
with phosphatidylinositol 3,4,5-trisphosphate synthesized by
PI3K. After membrane anchoring, Akt is phosphorylated at
Ser308 and Ser473 by phosphoinositide-dependent kinase 1 and
mammalian target of rapamycin complex 2, respectively. Upon
phosphorylation, Akt translocates from the plasma membrane
to intracellular compartments, including the nucleus, where
it phosphorylates a range of substrates (Song et al., 2005).
One of these substrates is transcriptional factor FOXO3a,
phosphorylated by Akt at Thr32, Ser253, and Ser315. FOXO3a
phosphorylation leads to its exclusion from the nucleus and
reduction of its DNA-binding activity. Stress conditions
may activate JNK, which phosphorylates Ser574 of FOXO3a,
antagonizes the Akt signaling pathway, and promotes nuclear
translocation and transcriptional activity of FOXO3a (Sunayama
et al., 2005; Wang et al., 2012). FOXO3a plays an important
role in the upregulation of genes associated with oxidative stress
resistance, including catalase and MnSOD genes.

Recently, it has been demonstrated thatCaenorhabditis elegans
DAF-16, an ortholog of the FOXO family of transcription factors,
regulates iron metabolism by increasing the expression of ferritin
H (Ackerman and Gems, 2012). We confirmed this observation
using a mammalian cell line, demonstrating that an increase
in FOXO3a activity leads to upregulation of ferritin protein
levels in cells (Halon-Golabek et al., 2018). This observation was
confirmed in the skeletal muscle of transgenic animals expressing
SOD1 G93A in which Akt activity reduction, FOXO3a activity
increase, and upregulation of ferritin protein and catalase activity
were observed (Halon-Golabek et al., 2018).

Thus, impairment in insulin signaling increases FOXO3a-
mediated induction of antioxidant proteins, such as catalase,
MnSOD, ferritin, and increases cellular resistance to oxidative
stress. Under some conditions, increasing ferritin H protein levels
is sufficient to augment cell antioxidant potential. For example,
in a cell culture model, overexpression of ferritin H leads to 50%
reduction of LIP and increased resistance to oxidative challenge
(Cozzi et al., 2000). In the short term, such changes are beneficial

for the cell; however, in the longer term, such conditions can
disturb iron metabolism. Accordingly, overexpression of ferritin
H leads to reduced iron-dependent signaling and induction of
an iron-deficiency phenotype. These changes are manifested by
a fivefold increase in the activity of iron-responsive element-
binding proteins; 2.5-fold increase of transferrin receptor levels;
and 1.8-fold increase in iron-transferrin uptake (Cozzi et al.,
2000). Hence, it can be expected that during chronic stress,
upregulation of ferritin may lead to reduced LIP levels.

Transfer of some labile iron to ferritin may generate iron-
deficiency phenotype, even if the total amount of iron in
a cell is unchanged. Under such conditions, the cell will
continue to import iron until LIP returns to the usual level.
Therefore, as mentioned above, both Akt and JNK kinases can
be involved in iron metabolism by modulating FOXO3a/ferritin
activity. Further, it has been shown on cell lines that JNK-
mediated ferritin degradation is accompanied by increase in
LIP and iron-dependent ROS formation (Antosiewicz et al.,
2007; Borkowska et al., 2011). JNK activation and a decrease in
Akt activity have been observed in ALS humans and animals
(Kim and Choi, 2015). Interestingly, decreases in Akt levels,
upregulation of ferritin L, and decreases in ferritin H levels
are observed in the muscle of ALS pre-symptomatic animals.
These changes are accompanied by increased levels of oxidative
stress markers, possibly because of impaired iron metabolism.
Hence, it can be speculated that LIP transiently increases
before the first symptoms of disease in the muscle of ALS
animals, unblocking the translation of ferritin and activating
FOXO3a, to augment the transcription of ferritin genes. In
later phases of disease, upregulation of ferritin may cause iron
accumulation and iron-dependent induction of oxidative stress
(Figure 3). Interestingly, impairment insulin signaling and iron
accumulation have also been observed in the brain of PD and
AD (Aviles-Olmos et al., 2013; Calsolaro and Edison, 2016;
Rani et al., 2016; Apostolakis and Kypraiou, 2017). Insulin
receptors are found in the basal ganglia and substantia nigra and
growing evidences are suggesting that insulin plays an essential
regulating role in neuronal survival and growth, dopaminergic
transmission, and maintenance of synapses (Bassil et al., 2014).
Thus, there are some evidences that patients with type 2
diabetes (DMT2) have an increased risk of developing PD
and share similar dysregulated pathways suggesting common
underlying pathological mechanisms (Dunn et al., 2014). In the
early stage of the DMT2, patients develop insulin resistance,
leading to a variety of detrimental effects on metabolism
and inflammation. Accumulating evidence suggests that similar
dysregulation of glucose and energy metabolism seems to be an
early event in the pathogenesis of sporadic PD, indicating that
the insulin signaling pathway may potentially be a novel target
for disease modification (Athauda and Foltynie, 2016). There
is a fundamental question, whether insulin resistance occurs
as a cause or a consequence of neurodegeneration. Substantial
evidence implicates that loss of Akt control (an important
downstream target of insulin signaling pathway) is involved in
DMT2 and AD (Griffin et al., 2005). There are strong evidences
that an altered Akt signaling pathway could be a component
of PD neurodegeneration (Greene et al., 2011). Reduction in
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phosphorylated Akt kinase was observed in post mortem studies
of PD patients (Malagelada et al., 2008; Timmons et al., 2009). In
contrary to skeletal muscle, the interdependence between insulin
signaling and iron metabolism in neuronal tissue has not been
studied. We can only speculate that changes in insulin signaling
manifested by the inhibition of PI3K/Akt/FOXO3a signaling
pathway may trigger changes in iron metabolism which will lead
to brain iron accumulation and iron-dependent oxidative stress.

THE ROLE OF IRON IN
PATHOMECHANISM OF ALS

Amyotrophic lateral sclerosis, also known as Lou Gehrig’s
disease, is a progressive, usually fatal, neurodegenerative
disease in human adulthood. It is caused by the degeneration
of motor neurons in the spinal cord, i.e., the nerve cells in
the central nervous system that control voluntary muscle
movement. ALS is characterized by escalating muscle weakness,
spasticity, and atrophy as both the upper and lower motor
neurons degenerate (Rowland, 2001; Lino et al., 2002; Gajowiak
et al., 2016). Recent studies indicate that the nerve cells and
non-neuronal cells may both play a decisive role in the onset
of disease. Transgenic mice harboring SOD1 G93A gene
recapitulates the symptoms of human ALS and are considered
as an animal model of the disease. Interestingly, expression
of the SOD1 variant exclusively in the motor neurons results
in no apparent pathology or motor deficit suggesting that
accumulation of the hm SOD1 gene in neurons is not a
critical factor for the onset of the disease (Lino et al., 2002).
Furthermore, studies involving the animal model indicate
that restricted expression of the mutated SOD1 gene in
astrocytes, neurofilaments, or oligodendrocytes is not sufficient
to cause motor neuron degeneration in vivo. Surprisingly,
these animals fail to develop the disease, which confirms
the notion that the expression of SOD1 G93A in other cell
types is critical for disease initiation, or that other factors
beside the presence of mutated SOD1 gene are essential for
the onset of disease (Gong et al., 2000; Pramatarova et al.,
2001; Yamanaka et al., 2008). Many scientific reports indicate
oxidative stress as an initiating factor in the onset of the disease.
In a transgenic mouse model, selective expression of mutated
SOD1 G93A (Dobrowolny et al., 2008) or G37R (Wong and
Martin, 2010) exclusively in the skeletal muscle demonstrated
progressive muscle atrophy, associated with a significant
reduction in muscle strength, alterations in the contractile
apparatus-sarcomere and sarcotubular system disorganization,
and mitochondrial dysfunction, mimicking a pathologic
phenotype consistent with ALS. These data demonstrate that
skeletal muscle is a primary target of SOD1(G93A)-mediated
toxicity and disclose the molecular mechanism whereby
oxidative stress triggers muscle atrophy, where human SOD1
has a causal role in ALS and motor neuron degeneration
explaining their selective vulnerability (Dobrowolny et al., 2008;
Wong and Martin, 2010).

Thanks to recent advances in genetics, we now know
that ALS is associated with mutations in at least 20 genes,

coding for proteins related to cell functions as diverse as
RNA metabolism (TARDBP, FUS/TLS, Senataxin, Ataxin2,
HNRNPA2/B1, ELP3, HNRNPA1), vesicle trafficking
(Alsin, FIG4, OPTN, VABP, CHMP2B), and proteasomal
function (UBQLN2, VCP) (White and Sreedharan, 2016).
The GGGGCC hexanucleotide repeat expansion in gene
C9orf72 is the most numerous genetic variant of ALS, which
together with genetic modifications in SOD1, TARDBP,
FUS, Antaxin, or OPTN proteins, is extensively explored, in
the ALS context.

The analyses of disorders in iron metabolism in ALS
patients, in most cases, concern patients in whom the etiology
of the disease is unknown. By contrast, in animal models,
rodents of mutated hm SOD1 gene (most commonly SOD1
G93A and SOD1 G37R) predominate. In ALS patients, iron
accumulation was observed in the spinal cord and cerebrospinal
fluid (Kasarskis et al., 1995). MRI technic is a useful method
to detect iron deposits in the brain in ALS patients. There
are some evidence showing iron aggregates in the precentral
gyrus’s gray matter, which shift toward higher MRI scores
after 6 months (Ignjatovic et al., 2013). In postmortem,
histopathological analysis of a brains, Perls’ DAB staining,
revealed abundant cells containing intracellular iron and
occasional extracellular iron deposits in the motor cortex of
ALS patients. The intracellular iron was observed in microglia,
which was accompanied by a higher level of ferritin (Kwan
et al., 2012). In addition, patients with ALS have marked changes
in the iron biochemical parameters measured in the blood.
Studies have shown increased serum ferritin levels, transferrin
saturation coefficient, and decreased transferrin in ALS patients,
which could reflect a general increase in iron stores or be a
consequence of on-going muscle degeneration (Goodall et al.,
2008; Qureshi et al., 2008; Nadjar et al., 2012; Hu et al.,
2016). In addition, elevated serum ferritin levels have been
associated with reduced survival. Patients with high level serum
ferritin had a shorter survival time compared to those with
low level serum ferritin (618 days versus 921 days). However,
increased serum ferritin levels are not specifically indicative of
increased body iron storage. Systemic inflammation can also be
associated with increased serum ferritin, especially during the
end-stage of disease, and positively correlates with bronchial
congestion in patients with respiratory muscle weakness
(Nadjar et al., 2012).

Amyotrophic lateral sclerosis animal models allow for
more accurate investigation of molecular mechanisms of
iron accumulation in the nervous system or muscles. Jeong
et al. (2009) proved iron accumulation in the spinal cord of
SOD1G37R transgenic mice at 12 months of age. In the cell
bodies of the large ventral horn motor neurons in the spinal
cord, the level of cytoplasmic iron inclusions (measured by
ferrozine) was increased by 56% in SOD1G37R mice, compared
with age-matched wild-type controls (Jeong et al., 2009). On
the other hand, changes in iron metabolism were observed
in skeletal muscles of SOD1 G93A transgenic rats. Changes
in expression of the iron metabolism proteins (H-ferritin
and ferroportin) in skeletal muscles were already observed
at the pre-symptomatic stage in SOD1G93A rats. During
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FIGURE 3 | Model for mechanisms of iron accumulation in muscle. Expression of SOD1 G93A or other stresses lead to activation of JNK and inactivation of Akt. It
results in activation of FOXO3a transcriptional factor. FOXO3a upregulates ferritin H expression that can cause decrease in labile iron pool and upregulate iron
transport into a cell. Iron accumulation may negatively affect myokines synthesis and increase motor neuron vulnerability to degeneration. Exercise can prevent AKT
inactivation and iron chelators can diminish skeletal muscle accumulation.

disease progression, the level of ferritin H significantly
increased and was accompanied by iron accumulation
(Halon et al., 2014).

Information on iron metabolism disorders in ALS models
other than those expressing mutations in the SOD1 gene is
poor. In 2006, the gene coding for transactive response DNA
binding protein 43 kDa (TDP-43), an RNA/DNA binding
protein, was implicated in ALS as the major component of
ubiquitinated inclusions (Neumann et al., 2006). TDP-43 is
cleaved, hyperphosphorylated, ubiquitinated, or mis-localized in
the cytoplasm in the form of insoluble inclusions. Guam-ALS
patients presented higher iron levels and lower zinc levels in brain
(Yasui et al., 1993). ALS and ALS/PD-dementia patients in Guam
also present TDP-43 inclusions as a secondary pathology. In this
paper, it has also been shown that the TDP-43 is a consistent
component of the ubiquitinated inclusions in sporadic ALS and
Guam ALS, but TDP-43 inclusions are absent or scarce in SOD1-
familial ALS (Maekawa et al., 2009). On the contrary, evidence
shows that TDP-43 was expressed by astrocytes and microglial
cells in the spinal cord of hmSOD1(G93A) transgenic mice.
In addition, the expression of phosphorylated and truncated
TDP-43 increased in the spinal cord of ALS mice compared
with age-matched non-transgenic (Tg) (Cai et al., 2015; Jeon

et al., 2018). Furthermore, the serum iron concentration and
expression of transferrin (a homeostasis-related iron protein) in
the SP were increased relative to non-Tg. The protein expression
level of heme oxygenase 1 related to oxidative stress was increased
in the spinal cord of hmSOD1(G93A) Tg relative to non-Tg (Cai
et al., 2015). In TDP-43 A315T transgenic mice, dysregulation
of ion metal was noticed. However, only the levels of zinc,
copper, and manganese were increased in the spinal cords
significantly. The level of iron has not changed significantly
(Dang et al., 2014). Many ALS patients (∼36–51%) also exhibit
cognitive impairment, with frontotemporal lobar degeneration
(FTLD) in about 20%. There is some probability that patients
with FTLD might develop ALS. Pathologically, FTLD includes
multiple subtypes, including FTLD-TDP-43, FTLD-FUS (fused in
sarcoma/translocated in liposarcoma), or FTLD-Tau (Guerrero
et al., 2016). Postmortem research conducted on human brains
showed that a significant increase of iron deposition was observed
in the claustrum, caudate nucleus, globus pallidus, thalamus,
and subthalamic nucleus of the FTLD-FUS and FTLD-TDP
groups, while in the ALS one, the iron increase was only
observed in the caudate and the subthalamic nuclei. FTLD
is often linked to mutations in FUS and TDP43or to an
expanded C9orf72 repeat.
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There are no data on skeletal muscle iron metabolism in
ALS models other than ALS-SOD. What is interesting, in
patients with FTLD, the mutation in hemochromatosis gene
(H63D HFE) genotype was found. Further, increased iron
uptake, and gradual iron accumulation in tissues and organs
have been reported in patients with a mutation of the HFE
gene, which encodes a protein responsible for the control
of iron absorption by the intestinal epithelial cells. Other
studies indicate that the H63D mutation within the gene
is a contributing factor in the development of ALS (Wang
et al., 2004; Sutedja et al., 2007). Interestingly, studies show
increased prevalence of HFE gene mutations in individuals
with AD (Percy et al., 2008). Conversely, studies on animal
models demonstrated that double transgenic generated mouse
line (SOD1/H67D) carrying the H67D HFE (homolog of human
H63D) and SOD1(G93A) mutations had a shorter survival
and accelerated disease progression comparing to SOD1 G93A
mouse. This correlated with decreased transferrin receptor and
a significant increase in ferritin L expression-indicators of iron
status (L-ferritin expression in double transgenic mice was
86 and 79% higher than SOD1 mice at 90 and 110 days
in the double transgenic and SOD1 mice starting at 90 days
pre-symptomatic stage), indicating for dysregulation of iron
homeostasis in these mice. What is more, compared to SOD1
mice, double transgenic mice performed significantly worse on
both forelimb and hindlimb grip strength beginning at the
age of disease onset (106 days) until the end of the test (127
days), suggesting an accelerated disease progression in these mice
(Nandar et al., 2014).

In support of the role of iron in the development of ALS, it
has been reported that the use of iron chelator salicylaldehyde
isonicotinoyl hydrazone significantly delays the onset of disease
and increases the life span (by approximately 5 weeks) depending
on the dosage, which resulted in a five- to sixfold decrease
in the number of accumulating iron cells in the spinal cord.
These studies clearly indicate that the disturbance of iron
homeostasis, or rather its excessive accumulation in central
nervous system, leads to the progression of these animals’
disease (Jeong et al., 2009). In addition, treatment with another
chelator, deferoxamine, does not alter the permeability of the
blood–spinal cord barrier to IgG, hemoglobin, or hemosiderin.
Instead, it significantly reduced early accumulation of free
iron, which was accompanied by a delayed onset of disease
in comparison with warfarin- or saline-treated patients.
These data suggest that deferoxamine prevents early iron
accumulation in the spinal cord but does not exert a direct
anti-inflammatory effect (Zhong et al., 2009; Winkler et al.,
2014). Similarly to deferoxamine, VK-28 and monoamine
oxidase inhibitor (M30) are brain-permeable iron chelators
that exhibit neuroprotective and neurorestorative activities in
NCS-34 motor neuron cells (Kupershmidt et al., 2009; Wang
et al., 2011). Treatment with VK-28 and M30 delays the disease
onset, prolongs the lifespan, and reduces spinal cord motor
neuron loss in a mouse model of ALS. Furthermore, iron
chelators attenuate the elevated level of iron and the expression
of transferrin receptor; decrease the production of free oxygen
radicals; and suppress microglial and astrocytic activation in

the spinal cord of the SOD1 G93A mouse. Furthermore, iron
chelators decrease toxic aggregation of the transcriptional
regulator TDP-43, decrease the levels of proapoptotic Bax,
and increased the levels of antiapoptotic protein Bcl-2
(Wang et al., 2011).

The notion of complex etiology of neurodegenerative
disorders led to the discovery of a brain-permeable, non-
toxic compound with antiapoptotic and iron-chelating
properties—VAR10303. When co-administered with a high-
calorie/energy diet to SOD1 G93A mouse, VAR10303 prolonged
life span for about 10%, improved motor performance,
and attenuated iron accumulation and motor neuron loss
in the animal spinal cord (Golko-Perez et al., 2016). This
slight extension of the life span in the context of chronic
disease seems to have a remarkable meaning and what is
far more important, VAR treatment significantly increased
stride length distance—a useful gait footprint parameter in
mouse model of ALS.

Recently published results indicate that conservative iron
chelation—deferiprone (i.e., chelation with low risk of iron
depletion), in a murine preclinical model and pilot clinical
trial in SOD1 G86R mice, increased the mean life span
compared with placebo. This corresponded to a 56% extension
in survival (13 days) from disease onset in a female mouse
compared to the vehicle group (defined as the peak in the
body weight). What is more interesting, an interaction between
dose and sex was observed, namely, the required dose was
higher in males than in females. Treatment with deferiprone
led to a decrease in iron accumulation not only in the
murine model SOD1 G86R, but also in ALS patients where
a significant decrease in iron concentration was observed in
the cervical spinal cord, medula oblongata and motor cortex
after 12 months of treatment, but the first visible signs
were already seen after 3 months. All patients had a slight
elevation in urine iron levels and presented a decreased level
of 8-OHdG in the cerebrospinal fluid after 9 months of
treatment. Summing up, iron chelators might be promising
agents for clinical treatment, as there is a strong evidence
indicating the role of iron dysregulation in neuronal cell
death the pathophysiology of neuromuscular diseases. The
presented and study demonstrates the safety of conservative
iron chelation in ALS, as even at a low-dose levels, deferiprone
can cross membranes, decrease iron accumulation, may re-
enter the captured iron into extracellular transferrin, and then
spread the iron throughout the body, thus avoiding anemia
(Moreau et al., 2018).

CONCLUSION

Neurodegenerative diseases are associated with insulin resistance
and iron accumulation not only in the central nervous system but
also in the muscle. The exact mechanism of iron accumulation in
the skeletal muscle and neuronal tissue is yet unknown; however,
there is evidence for the involvement of impaired insulin
and growth factor/PI3K/Akt/FOXO3a signaling pathways. This
accumulation may lead to increased production of ROS and
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oxidative stress, which may impair endocrine function of
the skeletal muscle and, indirectly, the function of other
organs. Hence, under such conditions, the neuronal tissue
suffers not only from iron-induced oxidative stress but also
from a reduced exposure to trophic factors derived from
the skeletal muscle. Thus, it is possible that changes in
the iron metabolism might constitute a trigger of a disease,
as opposed to being caused by the disease. This notion is
supported by observation that changes in iron metabolism are
observed before the first symptoms of disease in ALS rats.
The protective effects of iron chelators in many models of
neurodegeneration confirm the important role of this metal
in the pathomechanism of these diseases and indicate that
the chelators could have some therapeutic value. Exercise
training which is known to increase insulin sensitivity and
modulate iron metabolism could be recommended as a
preventive approach.
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