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Abstract: Litchi possesses unique flower morphology and adaptive reproduction strategies. Although
previous attention has been intensively devoted to the mechanisms underlying its floral induction,
the molecular basis of flower sex determination remains largely unknown. MADS-box genes are
promising candidates for this due to their significant roles in various aspects of inflorescence and
flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of
101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the
15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are
subdivided into Mα, Mβ and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKCC

-type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA
and MeJA response elements. Tissue-specific and development-related expression analysis reveal
that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes,
including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively
involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK).
However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role
in litchi flower development.

Keywords: litchi; MADS-box genes; sex determination; flower development; phytohormones

1. Introduction

MADS-box family genes act as critical transcription factors in both reproductive and
vegetative developments in plants [1]. The term ‘MADS’ was derived from the four earliest
members of this family in fungi, plants and animals: MCM1 from yeast, AGAMOUS (AG)
from Arabidopsis, DEFICIENS from snapdragon, and SERUM RESPONSE FACTOR (SRF)
from humans [2–5]. All members of the family contain a highly conserved MADS-box
motif, which encodes a 60 amino acid peptide responsible for nuclear localization, binding
to the target DNA sequence [the CArG-box, CC(A/T) 6 GG], and dimerization and binding
of accessory factors [6].

In eukaryotes, the MADS-box gene family can be categorized into two groups, referred
to as type I and type II [7]. In contrast to type I genes, which are weakly characterized in
plants, type II subfamily genes have been extensively studied and documented. Type II
proteins are also called MIKC-type proteins, named after the four characteristic domains:
a MADS-box domain that determines DNA binding and dimerization of proteins; a less-
conserved intervening (I) domain that is crucial to the formation of DNA dimers; a well-
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conserved keratin (K) domain that is involved in protein-protein interaction due to a
coiled-coil structure, and a variable C-terminal (C) domain [6,7]. According to phylogenetic
relationships, type I MADS-box genes can be further divided into Mα, Mβ, and Mγ

classes [8], while type II genes can be subdivided into MIKCC (the C means classic) and
MIKC * classes based on structure differences in their K-domains and the length of their I
domains. In comparison with MIKC *, the length of I domains is shorter and encoded by
fewer exons in MIKCC class proteins [9]. MIKCC-type MADS-box genes are further classified
into approximately 11–13 clades based on structure differences and are well-known for their
roles of significance in flower development according to the ABC model [10,11]. Thereafter,
more important players of the floral process pathway were identified, leading to the extension
of the ABC model to the ABCDE model and the protein-based quartet model [12].

Most angiosperm plants, such as Arabidopsis, consist of four sorts of typical flower
organs, including sepals, petals, stamens, and carpels, arranged in a succession of concentric
whorls or rings. The ABC model postulates three classes of genes that function in adjacent
whorls. A-class genes APETALA1 (AP1) and APETALA2 (AP2) are involved in sepal
and petal development; B-class genes APETALA3 (AP3) and PISTILLATA (PI) specify the
identity of petal and stamen; and C-class gene AGAMOUS (AG) is necessary for stamen and
carpel specification. In addition, D-class genes SHATTERPROOF (SHP) and SEEDSTICK
(STK) are found to determine ovule development, while E-class genes SEPALLATA (SEP)
1–4 assist in the formation of all floral organs [13–15]. All genes involved in the ABCDE
model belong to the MADS-box gene family, except for AP2.

Litchi is an economically valuable species in the Sapindaceae family, which is widely
grown in southern China and subtropical regions due to its popular fruits. Litchi is a
monoecious plant that produces determinate inflorescences on current-season terminal
shoots. The litchi flowers possess a cup-shaped calyx with 4–5 sepals, but do not have
petals. Based on the development and function of stamens and carpels, litchi flowers can be
classified into three types, namely male flowers (type I), hermaphrodite functional female
(type II) and hermaphrodite functional male flowers (type III). Type I flowers lack ovules
and are functionally male (Male = M). These flowers have 6–8 stamens, which produce much
viable pollen. Type II flowers are hermaphrodite but function as female (female = F), with
a well-developed pistil (two carpels) and stigma (two-lobed), as well as stamens that do
not dehisce. Type III flowers are male (male = m) but have a rudimentary pistil lacking
style and stigma. In general, the three types of flowers bloom in the succession of Male-
female-male, namely the first flowers to open are male flowers (type I), whereas in some
particular years the first flowers to open can be female [16], in which we hypothesize that
genes controlling carpel development are activated and promoted ahead of time. However,
little is known about the molecular basis and regulation mechanisms underlying the sex
differentiation of litchi flowers.

In this study, MADS-box genes in litchi were identified because of their versatile roles
in flowering and flower development, and their chromosomic locations were mapped. Gene
structures, conserved motifs, and cis-elements of their promoters were comprehensively
analyzed. The tissue-specific expression profiles of MADS-box genes in stamens and carpels
of three types of flowers at different stages was investigated. In addition, candidate genes
for flower sex determination in response to gibberellin (GA) and methyljasmonate (MeJA)
were evaluated. The results can improve our understanding of the evolution and functions
of MADS-box genes in litchi and facilitate further studies of molecular mechanisms in the
sex determination of litchi flowers.

2. Results
2.1. Identification and Characterization of MADS-Box Genes in Litchi

To identify candidate MADS-box genes in litchi, BLASTP was conducted to search
the litchi genome database using MADS-box protein sequences in Arabidopsis, rice, and
tomato as queries. The full-length coding sequence (CDS) of 154 putative MADS-box genes
was obtained. In addition, a Hidden Markov Model (HMM) search in the litchi genome
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was carried out using the SRF-TF domain (PF00319), resulting in a total of 199 putative
MADS-box genes. Subsequently, these sequences were further verified through blasting
against public databases, including Conserved Domain Database (CDD) and Simple Mod-
ular Architecture Research Tool (SMART). The sequences without conserved MADS-box
domains and alternative transcripts were removed, resulting in a final total of 101 sequences
identified as MADS-box genes in litchi (Figure 1). All 101 genes were unevenly distributed
on 15 chromosomes in litchi and were named as LcMADS1 to LcMADS101, based on their
position on the chromosome (Figure 1). Chr5 had the greatest number of MADS-box genes
(18 genes), followed by Chr9 (16 genes), while Chr4 and Chr13 had only 2 genes each
(Figure 1).
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Figure 1. Schematic representations of the chromosomal location of litchi MADS-box genes. The chromosome number is
indicated at the top of each chromosome.

The CDS length of litchi MADS-box genes ranged from 228 bp (LcMADS16) to 1317
bp (LcMADS98). Accordingly, the relative molecular weight (MW) varied from 8.44 kDa
to 48.94 kDa, and the theoretical pI ranged from 5.16 to 10.37 (Table S1). The diversity in
the amino acid sequence length, MW, and pI of LcMADSs indicated functional differences
between them.

2.2. Phylogenetic Analysis of Litchi MADS-Box Genes

In order to investigate the evolutionary relationship between litchi MADS-box genes
(101 genes) and the known MADS-box genes in Arabidopsis (58 genes), we conducted phy-
logenetic analysis based on multiple alignment of full-length protein sequences. According
to the maximum likelihood phylogenetic tree, 50 litchi MADS-box proteins were clustered
into type I, and the remaining 51 proteins were classified into type II (Figure 2).

To further examine the phylogenetic relationship between litchi MADS proteins and
group them into the established subfamilies, we performed phylogenetic analysis sepa-
rately for type I and type II from alignments of full-length protein sequences from litchi,
Arabidopsis, and rice by the maximum likelihood method. According to the phyloge-
netic tree, fifty type I MADS-box genes were divided into three subfamilies, including
Mα (30 genes), Mβ (9 genes), and Mγ (11 genes) (Figure 3). Fifty-one type II MADS-box
genes could be divided into 13 subfamilies, including 14 MIKC *-type genes and 37 MIKCC-
type genes (Figure 3). In general, litchi and Arabidopsis have a similar number of genes in
each subfamily, except for the SVP (SHORT VEGETATIVE PHASE) subfamily, in which
litchi had 10 members while Arabidopsis and rice had only 2 and 3 members, respectively
(Figure 3). In contrast to the SVP subfamily, Arabidopsis had more members in the FLC
(FLOWERING LOCUS C) subfamily than litchi, with rice possessing no FLC homologs
(Figure 3).
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Figure 3. Phylogenetic relationship analysis of type I (top) and type II (bottom) MADS-box transcription factors in litchi,
Arabidopsis, and rice, based on construction of a maximum likelihood tree. Type I members were grouped into 3 subfamilies,
while type II members were grouped into 13 subfamilies as indicated by different branch colors. Abbreviations: ANR1:
ANTHOCYANIDIN REDUCTASE 1; FUL: FRUITFULL; TT16: TRANSPARENT TESTA 16.

2.3. Identification of Gene Domain, Structure, and Conserved Motif

Generally, type I proteins have only a MADS domain, while type II MADS proteins
contain both MADS and K domains. In litchi, 65 MADS proteins have only MADS do-
mains, while 36 have both MADS and K domains, according to SMART and CDD analysis.
Interestingly, 15 out of 51 type II litchi MADS-box genes, similar to type I genes, lacked
the K domain. The 14 non-K domain genes were located in the MIKC * subfamily, and the
remaining one belonged to the SVP subfamily of MIKCC (Table S1 and Figure S2).

The analysis of intron-exon organization showed that type II genes contained more
introns compared to type I genes, with the MIKC * genes containing the largest number
of introns (Figure 4). Genes in the same group were likely to have a similar number of
introns and exons. However, some closely clustered genes within a subfamily showed
significant differences in gene structural arrangement. For example, LcMADS24 in the SVP
subfamily possessed only 2 exons, while other closely related genes in this subfamily had 6
or 7 exons (Figure 4). Furthermore, 20 conserved motifs within the 101 litchi MADS genes
were predicted using the MEME motif search tool (Figure 5). The lengths of 20 conserved
motifs ranged from 15 to 50 amino acids (Table S2). Motif 1 and 2 represent MADS domains,
while motif 3 and 4 are two fragments of the K domain. All litchi MADS-box genes, except
for LcMADS5, 15, 57, 58, 59 and 69, contained motif 1, and the six genes without motif
1 possessed motif 2. Motif 3 and 4 were identified in the majority of type II MADS-box
genes, whereas they were present only in seven type I genes (LcMADS2, 12, 15, 33, 35, 53
and 55) (Figure 5).
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2.4. Expression Profiles of Litchi MADS-Box Genes in Different Floral Organ Tissues

In order to investigate the role of MADS-box genes in litchi floral organ determination,
the expression patterns of these genes were analyzed based on transcriptome data and
real-time PCR-based expression analysis. Three types of floral organ tissues, including
full-bloom functionally female flowers with rudimentary stamens (Female, F), functionally
male flowers with rudimentary unobvious pistils (Male, M), and functionally male flowers
with rudimentary obvious pistils (male, m), were collected (Figure 6a). Detached carpels
and stamens were separately sampled for RNA extraction, and FPKM (fragments per
kilobase of transcript per million mapped) values of MADS-box genes were calculated to
obtain the differentially expressed LcMADS genes. A total of 29 differentially expressed
LcMADSs were filtered based on pairwise comparisons of FPKM values (Fold change ≥ 2
and FDR < 0.01), and the data were visualized using a heat map (Figure S3).
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the carpels in full-bloom functionally female flowers (Female, F); F-stamen, the stamens in full-bloom functionally female
flowers (Female, F); m-carpel, the carpels in full-bloom functionally male flowers (male, m); m-stamen, the stamens in
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data were normalized to z-scores for each row to construct the heat map (b). Scaled log2 expression values are shown from
blue to red, indicating low to high expression level.

Among the differentially expressed genes, two groups can be distinguished, differing
in the character of expression in the organs of flowers of different sexual functionality. Based
on the expression trend, genes in group I were highly correlated with carpel development,
while genes in group II were highly correlated with stamen development (Figure 6b).
Six genes in group I (LcMADS11, 45, 51, 72, 94 and 96) were highly expressed in the carpel
of functionally female flowers but showed less mRNA abundance in stamens and the
carpel of functionally male flowers. In contrast, all genes in group II showed a much
higher expression level in stamens than carpels. The differentially expressed genes of
both type I and II outside the two groups showed no/negative significant correlation with
flower sex differentiation. For example, LcMADS12/67/85 showed the highest expression
level in F-stamens, whereas stamens were highly under-developed in litchi female flowers,
implicating a negative correlation with stamen development.

2.5. Gene Expression of Litchi MADS-Box Genes during Flower Development

To explore the role of MADS-box genes in flower development, we studied the
expression pattern of MADS-box genes in different stages of female and male flower
development (Figure 7a). The genes without significant differential expression (Fold
change ≥ 2 and FDR < 0.01) were filtered out (Figure S4). According to the expression
pattern, genes in group I showing a higher expression level at the early stages of male or
female flower development might be negatively associated with litchi flower development
or play a role during the early developmental stages of litchi flowers. On the contrary,
the expression of genes in group II and III increased as male or female flowers devel-
oped, respectively, indicating a positive role in flower determination and development
(Figure 7b). Based on tissue-specific and development-related expression analysis, LcMADS51
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could be positively involved in litchi carpel formation, while six MADS-box genes, including
LcMADS42/46/47/75/93/100, play a possible role in stamen development (Figures 6 and 7).
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Four MADS-box genes were randomly selected for Q-PCR analysis in different flower
tissues and during flower development to verify the RNA-seq data (Figures S5–S7). The
relative expression of these four genes was highly consistent with their FPKM value,
derived from RNA-Seq libraries, indicating that the FPKM value could well represent the
expression level of genes.

2.6. Prediction of Promoter Elements in Litchi MADS-Box Genes

Plant hormones play important roles in litchi flowering and flower development. In
order to further understand the response of litchi MADS-box genes to phytohormones,
cis-acting element analysis was performed using the promoter region (2 kbupstream space
transcription start codon) of all 101 genes. Cis-elements were classified into six broad
categories based on their responses to plant hormones, namely auxin, abscisic acid (ABA),
ethylene, gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA).

Type I genes contained up to eleven ABA response elements, up to six ethylene
response elements, and up to eight MeJA response elements, while Type II genes possessed
up to ten ABA response elements and up to eight MeJA response elements (Figure 8,
Table S4). AG/SHP/STK, SEP, FLC, SOC1 (SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS1), and ANR1 subgroups had the most ABA response elements (Figure 8).
For example, LcMADS24 and LcMADS93 promoter sequences contained up to seven
salicylic acid response elements, suggesting these genes are strongly responsive to salicylic
acid signals. Many members contained ethylene response elements, such as LcMADS30
in subfamily Mα, LcMADS14 in subfamily Mβ, LcMADS78 in subfamily MIKC *, and
LcMADS50 in subfamily AP3/PI. However, auxin and GA response elements were rarely
present in the promoter of MADS-box genes (Figure 8).
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2.7. Expression of MADS-Box Genes in Response to the Treatment of Hormones

To validate the response of LcMADS to hormones, we analyzed the expression of
putative ABCDE genes in inflorescences at different times after hormone treatments. Ac-
cording to the phylogenetic relationship analysis (Figure 3), LcMADS95 (LcAP1), LcMADS75
(LcAP3-1), LcMADS45 (LcAP3-2), LcMADS50 (LcPI), LcMADS65 (LcAG), LcMADS51 (Lc-
STK), LcMADS11 (LcSHP), LcMADS100 (LcSEP1), LcMADS94 (LcSEP2), LcMADS91 (Lc-
SEP3), and LcMADS73 (LcSEP4) represented ABCDE genes. A previous study observed
the regulation of GA and its inhibitor (uniconazole) in litchi sex determination [17], and JA
has shown an antagonistic role to GA in flower development [18]. Hence, we tested the
response of genes involved in the ABCDE model to these two hormones in this study.

The results showed that LcMADS75 (LcAP1) was significantly up-regulated 10 d and
30 d after the GA treatment, but showed an opposite trend after the uniconazole treatment
(Figure 9). A similar expression pattern in response to GA could be observed for LcMADS51
(LcSTK), which had two GA response elements, just as LcMADS75 did. However, other
genes having one or no GA response elements did not show a significant response to GA or
its inhibitor. These data suggest that the response of MADS-box genes to GA is consistent
with the prediction of promoter elements.
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time point were analyzed by one-way ANOVA with Duncan’s post-hoc test. Significant differences between treatments at
each time point are indicated with letters (p < 0.05).

The expression of putative ABCDE genes, except for LcMADS94, gradually increased as
the litchi bloomed (Figure 10). After MeJA treatment, most genes were significantly down-
regulated in litchi inflorescences, such as LcMADS95, LcMADS75, LcMADS50, LcMADS11,
LcMADS100, and LcMADS91, indicating a negative correlation of JA in litchi flower develop-
ment. Interestingly, LcMADS45, having eight JA response elements in its promoter region,
did not significantly respond to MeJA at any development stage (Figure 10).
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3. Discussion

In plants, MADS-box transcription factors play important roles in flowering and floral
organ development [19,20]. Therefore, the identification and evolutionary analysis of MADS-
box families have been intensively studied in many species, such as Arabidopsis thaliana
(107 genes), Populus trichocarpa (105 genes), Pyrus bretschneideri (95 genes), Malus × domestica
(147 genes), and rice (75 genes) [8,21–24]. In comparison with these species, some plants,
including pineapple (48 members) and bamboo (42 members), possess a relatively smaller
number of MADS-box genes [25,26]. In the litchi genome, 101 MADS-box genes were identi-
fied in this study (Figure 1), similar to its Sapindaceae relative longan (Dimocarpus longan),
which has 91 MADS-box members [27]. The difference in MADS-box gene numbers among
species could be the result of genome duplications. For example, pineapple has experienced
two ancient whole genome duplications, whereas rice has gone through a recent whole
genome duplication, resulting in more MADS-box genes than pineapple [24,25,28]. The
variation in members of the MADS-box family between species implicates divergence in
regulatory mechanisms of flowering and flower development.

Among type II genes, the MIKCC cluster is well known for its plant-specific and
important roles in floral organogenesis. However, flowering plants widely differ in the
number of MIKCC family genes. For example, this study found ten putative SVP members
compared to two AtSVP paralogs in Arabidopsis (Figure 3), indicating that additional
lineage-specific duplication events occurred in litchi for the SVP subfamily genes. SVP
serves as a repressor of flowering time via suppressing SOC1 transcription in response to
ambient temperature and gibberellin [29,30]. As an evergreen species in the subtropics,
litchi has flowering that is induced by cold temperatures and by GA inhibitors such as
uniconazole, paclobutrazol, and daminozide [31,32]. During the cold-dependent floral
induction in litchi, the expression of LcSVP homologs decreases in apical meristems and
panicle primordia, and this decrease can be alleviated by brassinosteroid treatment [33].
SVP also interacts with other MADS-box members, such as AP1 and AGAMOUS-LIKE24
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(AGL24), to repress floral homeotic genes controlling petal, stamen, and carpel identity [34].
For example, transgenic Arabidopsis over-expressing AtSVP orthologs from Actinidia spp.
or barley (Hordeum vulgare) results in leaf-like sepals and petals [35,36]. Therefore, more
putative SVP homologs in litchi might involve more complicated regulation of flowering
time and flower development in comparison with Arabidopsis.

On the contrary, litchi has fewer FLC members compared to Arabidopsis [37]. In
Arabidopsis thaliana, FLC encodes a floral repressor whose expression is epigenetically
silenced by prolonged cold exposure in integrating the autonomous and vernalization
flowering pathways [38,39]. The transcriptional silencing involves the cold-induced FLC
antisense transcript, COOLAIR, whose accumulation causes a switch of the chromatin
states at FLC [40,41]. FLC is a transcription factor that can directly repress the expression
of FT (FLOWERING LOCUS T) to inhibit flowering [42]. However, the FLC clade has
been demonstrated to be absent in plants that do not require vernalization for flowering,
such as pineapple and rice [24,25]. This difference may explain why few FLC members
are present in litchi. Although low temperatures under 20 ◦C are required for litchi
floral induction, this cold requirement can be reduced or replaced by drought treatment,
indicating that other players may compensate for FLC and participate in the cold-related
flowering pathway in litchi [43]. In addition, FLC interacts with SVP in vivo to associate
with the promoter of SOC1 and FT, and their function is mutually dependent [30]. This
interaction is critical for their function in determining flowering, because loss of function
of either gene compromises the ability of the other gene to repress flowering. Therefore,
a trade-off is suggested to exist between the number of SVP and FLC genes in plants to
control vernalization/cold-dependent flowering.

Promoter analysis of MADS-box genes in litchi identified numerous putative ABA and
JA response elements, suggesting regulation by these hormones (Figure 8). The promotion
of flowering and flower formation by ABA has been illustrated in litchi and apple [44,45],
in contrast to Phalaenopsis hybrida and Pharbitis nil, in which ABA has been shown to inhibit
flowering [46,47]. In addition, genes related to litchi flower sex determination were also
suggested based on the transcriptome data derived from stamens and carpels. JA signaling
has been shown to induce the elongation of anther filament, the opening of stomium at
anthesis, and the production and release of viable pollen [48–50]. The male fertility of JA
mutants can be restored by application of exogenous jasmonic acid [51]. In accordance with
the prediction of cis-elements of MADS-box genes, the transcription of selected ABCDE
genes increases as litchi flowers develop but decreases in response to exogenous treatment
with JA (Figure 10). Therefore, JA might negatively contribute to litchi flower development,
consistent with the conclusion in a maize study that JA suppresses pistil development [18].

LcMADS51 (LcSTK), a putative D-class gene, has showed a higher expression level in
the carpel of female flowers as opposed to other flower types; this expression increased
during development of the female flowers (Figures 6 and 7), indicating a positive role in
carpel development in litchi [52]. Moreover, the expression of LcMADS51 increased in
response to GA treatment and significantly decreased in response to the inhibitor of GA
biosynthesis (uniconazole), suggesting a positive role for GA in litchi carpel formation. This
result is in agreement with previous observations in corn, Sagittaria latifolia, and Jatropha
curcas [53–55]. GA can also promote the development of stamens and male fertility based
on studies in Arabidopsis, cucumber, and spinach [56–58]. Thus, further studies are required
to pinpoint the molecular basis of this species-dependent role of GA in sex determination.

4. Materials and Methods
4.1. Whole-Genome Identification of MADS-Box Genes

The MADS-box protein sequences of Arabidopsis and rice were obtained from TAIR (http:
//www.arabidopsis.org/, accessed on 23 March 2021) and RGAP (http://rice.plantbiology.
msu.edu/, accessed on 23 March 2021) databases, respectively. These sequences were
used as queries to search potential MADS-box genes by BLAST against the litchi genome
with TBtools software (v1.09854; https://github.com/CJ-Chen/TBtools/releases, accessed

http://www.arabidopsis.org/
http://www.arabidopsis.org/
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
https://github.com/CJ-Chen/TBtools/releases
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on 23 March 2021) [59]. In addition, the MADS-box SRF family domain (PF00319) was
used to identify the MADS-box proteins in the litchi genome using a Hidden Markov
Model Search. All the predicted sequences were further validated using NCBI’s Conserved
Domain Database (CDD) (http://www.ncbi.nlm.nih.gov/cdd/, accessed on 23 March
2021) and EMBL’s Simple Modular Architecture Research Tool (SMART, http://smart.
embl-heidelberg.de/, accessed on 23 March 2021) [60] to search for conserved domains.
Finally, all candidate MADS-box genes were manually examined to remove incomplete
and redundant sequences.

4.2. Phylogenetic Analysis of MADS-Box Genes and Mapping on Chromosomes

MADS-box genes in Arabidopsis and rice were used for the classification of litchi
MADS-box genes. Multiple sequence alignment of the full-length protein sequences of
AtMADSs, OsMADSs, and LcMADSs was performed using Muscle software with default
parameters [61]. A maximum likelihood phylogenetic tree was constructed using MEGA
7.0 software with a bootstrap value of 1000 [62,63]. The missing data and gaps were
processed by partial deletion. The LcMADSs were classified according to the phylogenetic
relationships with MADS-box homologs in Arabidopsis and rice. The litchi genome has
been mapped to 15 chromosomes. The physical locations of litchi MADS-box genes were
mapped onto chromosomes using TBtools software [59].

4.3. Gene Domain, Structure, and Conserved Motif Analysis

Litchi MADS-box genes were analyzed for conserved domains using NCBI’s Batch
CDD program [64]. TBtools was used to identify the gene structure based on the full-length
coding sequences (CDS) and genomic sequences. Conserved motifs were analyzed using the
Multiple Em for Motif Elicitation (MEME) online program (v5.3.3; http://meme-suite.org,
accessed on 23 March 2021) with the following parameters: the number of repetitions was
set to zero or one and the maximum number of motifs was 20 [65]. MADS-box genes were
analyzed for motifs using the SMART program (http://smart.embl-heidelberg.de/, accessed
on 23 March 2021) [46]. Gene domain, structure, and conserved motif were visualized with
TBtools software.

4.4. Cis-Element Enrichment Analysis

Cis-regulatory elements within 2-kb upstream of the predicted translation start codon
of litchi MADS-box genes were identified using the PlantCARE database tool (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 23 March 2021) [66].
Here, we selected cis-elements associated with responses to phytohormones, including
auxin, abscisic acid (ABA), ethylene, gibberellin (GA), methyl jasmonate (MeJA), and
salicylic acid (SA).

4.5. Plant Materials

The ‘Feizixiao’ litchi plants used in this study were grown in an orchard located on the
campus of South China Agricultural University (23◦ 9′ 50′ ′ N; 113◦ 21′ 20′ ′ E), Guangzhou,
China. Carpels and stamens of the three types of litchi flowers (Figure S1), including
full-bloom functionally female flowers with rudimentary stamens (female, F), functionally
male flowers with rudimentary unobvious pistils (Male, M), and functionally male flowers
with rudimentary obvious pistil (male, m), were collected separately. In addition, whole
flowers were collected at five developmental stages based on size: 0.5–1 mm, 1–1.5 mm,
1.5–2 mm, half-bloom, and full bloom.

The ‘Feizixiao’ litchi plants were sprayed with gibberellic acid (GA3, 100 mg/L),
uniconazole (50 mg/L), and MeJA (1 mM) when the length of inflorescences was approxi-
mately 10 cm. Inflorescences were collected from both control and treated plants at 0 d, 1 d,
3 d, 5 d, 10 d, 20 d, and 30 d after treatment. All plant material was sampled in triplicate
from north-, south-, east-, and west-facing parts of the tree in the morning (8 to 10 AM).
The tissue was flash-frozen in liquid nitrogen and stored at −80 ◦C.

http://www.ncbi.nlm.nih.gov/cdd/
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://meme-suite.org
http://smart.embl-heidelberg.de/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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4.6. Analysis of Gene Expression by RNA-Sequencing and Quantitative Real-Time PCR

Total RNA was extracted using an RNA Extraction kit (Tiandz, Beijing, China) ac-
cording to the manufacturer’s instructions. The samples were treated with DNase to
remove residual genomic DNA. Both RNA-sequencing (RNA-seq) and quantitative real-
time PCR (Q-PCR) methods were used to determine the expression of MADS-box genes.
RNA-seq was conducted by Illumina sequencing at Biomarker Technologies Corporation
(Beijing, China). The raw reads were trimmed and filtered with Trimmomatic software
(v0.33) to remove adapters and low-quality reads. The high-quality reads were blasted
against the sillva SSU and LSU ribosome RNA (rRNA) database, and the matched reads
were removed to produce clean reads. The expression calculation at the transcript and
gene level was conducted using Cufflinks (v2.2.1) with default parameters. The uniquely
mapped reads were transformed into FPKM (fragments per kilobase of transcript per
million mapped) values [67]. The RNA-seq datasets presented in this study were deposited
in the Gene Expression Omnibus (GEO) database and are accessible through GEO code
GSE182447 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182447, accessed
on 19 August 2021).

For qPCR analysis, 500 ng of total RNA was synthesized into cDNA using HiScript II
reverse transcriptase (Vazyme Biotech, Nanjing, China). qPCR was performed according
to the manufacturer’s specifications of SYBR Premix Ex Taq (TaKaRa Bio, Inc.) on a
LightCycler 480 II (Roche, Germany). The gene expressions were normalized against a
reference gene LcActin (HQ615689) [43,68]. Primers used in this study were designed on
the website of Primer 3 (v 0.4.0; http://bioinfo.ut.ee/primer3-0.4.0/primer3/, accessed
on 5 March 2020) and are shown in Table S3. Each expression profile was verified in
three biological replicates. Relative expression level of each gene was calculated by the
2−∆∆Ct method [69]. Gene expression profiles were visualized as a heat map via TBtools
software [59].

4.7. Statistical Analysis

Differences between control and MeJA treated plants at each time point were in-
vestigated by an independent sample t-test. For two sample comparisons, significant
differences are indicated with an asterisk symbol. Differences between control plants, and
plants treated with GA and uniconazole at each time point, were analyzed by one-way
analysis of variance (ANOVA) followed by a Duncan test using SPSS software (v.24, IBM).
For multiple comparisons, significant differences are indicated with letters. Data shown
are mean ± SE of at least three biological replicates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10102142/s1. Figure S1. The pictures of three types of litchi flowers and inflorescences.
Figure S2. Litchi MADS-box protein domains. Green boxes indicate MADS domain, and yellow boxes
indicate K domain. Figure S3. Expression profiles of litchi MADS-box genes in various floral organs.
Heatmap result was done by column. Scaled log2 expression values are shown from blue to red,
indicating low to high expression. M-carpel, the pistils in full-bloom functionally male flower (Male,
M); M-stamen, the stamens in full-bloom functionally male flower (Male, M); F-carpel, the pistils in
full-bloom functionally female flower (Female, F); F-stamen, the stamens in full-bloom functionally
female flower (Female, F); m-carpel, the pistils in full-bloom functionally male flower (male, m);
m-stamen, the stamens in full-bloom functionally male flower (male, m). Figure S4. Expression
profiles of litchi MADS-box genes at five developmental stages of flower. Heatmap was created based
on the FPKM values of litchi MADS-box genes from the transcriptome data. The normalization was
done by column. Fl, 0.5–1 mm female flower buds; F2, 1–1.5 mm female flower buds; F3, 1.5–2 mm
female flower buds; F4, half-bloom female flowers; F5, full bloom female flowers; M1, 0.5–1 mm male
flower buds; M2, 1–1.5 mm male flower buds; M3, 1.5–2 mm male flower buds; M4, half-bloom male
flower; M5, full bloom male flowers. Figure S5. Expression confirmation of four BC class genes using
q-PCR in litchi floral organ. Figure S6. Expression confirmation of four BC class genes using q-PCR
at different female development stages. Figure S7. Expression confirmation of four BC class genes
using q-PCR at different male development stages. Table S1. The MADS-box transcription factors
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identified in litchi. Table S2. Motif sequences identified within the litchi MADS-box genes using the
MEME tool. Table S3. Primers used in this study. Table S4. Cis-elements within 2-kb upstream of
transcription start codon of litchi MADS-box genes.
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