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Abstract: In this manuscript, a method for maneuvering a spacecraft using electrically charged
tethers is explored. The spacecraft’s velocity vector can be modified by interacting with Earth’s
magnetic field. Through this method, a spacecraft can maintain an orbit indefinitely by reboosting
without the constraint of limited propellant. The spacecraft-tether system dynamics in low Earth
orbit are simulated to evaluate the effects of Lorentz force and torques on translational motion. With
500-meter tethers charged with a 1-amp current, a 100-kg spacecraft can gain 250 m of altitude in one
orbit. By evaluating the combined effects of Lorenz force and the coupled effects of Lorentz torque
propagation through Euler’s moment equation and Newton’s translational motion equations, the
simulated spacecraft-tether system can orbit indefinitely at altitudes as low as 275 km. Through a
rare evaluation of the nonlinear coupling of the six differential equations of motion, the one finding
is that an electrodynamic tether can be used to maintain a spacecraft’s orbit height indefinitely for
very low Earth orbits. However, the reboost maneuver is inefficient for high inclination orbits and
has high electrical power requirement. To overcome greater aerodynamic drag at lower altitudes,
longer tethers with higher power draw are required.

Keywords: actuators; guidance; navigation; and control; cubesats; mini/micro satellites; spacecraft
maneuvering; dynamics; magnetic field; tether; orbital dynamics; aerodynamic drag

1. Introduction

Space, particularly in low-earth orbits, is littered with dangerous debris monitored by
the National Aeronautics and Space Administration (NASA) who together with the United
States Space Force issues warnings of impending space collisions [1]. Ecuador’s first and
only satellite in orbit, Pegasus, collided with a Soviet-era rocket still in orbit [2]. In 2019
the European Space Agency spacecraft dodged potential collision with Starlink satellite
when it maneuvered to avoid collision [3]. Collision avoidance is very challenging when
the spacecraft at risk has no remaining fuel to perform maneuver, so this manuscript inves-
tigates the effectiveness of maneuvering spacecraft in low Earth orbit using electrodynamic
tethers.

Spacecraft in low Earth orbit have a limited lifetime due to deceleration from aero-
dynamic drag that eventually cause low-earth orbiting satellites to re-enter (but on on-
command). Reboost maneuvers can be conducted to keep them on station, however once
the propellant is expended the spacecraft loses its maneuvering capability.

Spacecraft equipped with electrodynamic tethers are able to take advantage of Earth’s
magnetic field and maneuver to avoid collision by generating miss-distance, or alterna-
tively, reboost using electrical power, which can be generated from solar arrays. Such
propellant-less maneuvers could extend spacecraft lifetime significantly; however, the
effectiveness of maneuvering using electrodynamic tethers depends on several variables,
including orbit eccentricity, inclination, altitude, and the charge and length of the tether.
Various trajectories and tether configurations are illustrated via computer simulation in-
vestigating the functional limits of electrodynamic maneuvers in low Earth orbits. The
proposed developments should prove especially useful for CubeSat whose extensive use of
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commercial off-the shelf components for their subsystems makes their cost a small fraction
of the cost of traditional satellites, and thus likely ubiquitously lack propulsion systems to
maintain low cost.

Propellant-free space maneuvers [4] are currently a hot research topic usually per-
formed by angular momentum storage devices such as reaction wheels or control moment
gyroscopes [5]. The gyroscopes are complicated by singular mathematics [6], which was
only recently solved [7]. Further complicating using momentum exchange devices is their
limited capacity, and that capacity soon becomes saturated when they are required to ab-
sorb spacecraft disturbance torques caused by (aerodynamic drag [8], gravity gradient [9],
solar wind [9], and electro-magnetic disturbances [10,11]). The proposals in this manuscript
reverse the paradigm by instead seeking to utilize these external momentum source to in-
tentionally modify spacecraft orbits, particularly by orienting an electric tether as depicted
in Figure 1. Utilization of electric propulsion was recently proposed for ChipSats [12], and
the dynamics were studied for CubeSats [13,14], including electric translational propul-
sion [15–17] in addition to tether-assisted propulsion [18] in the inaugural issue of Aerospace.
This manuscript will study utilization of electric tethers to generate angular momentum,
which propagates through the six coupled nonlinear equations of motion forming the basis
for modern spacecraft attitude control and guidance proposed in 2007 [19], formulated
in 2009 [20], and experimentally validated in 2012 [21]. The method will be evaluated for
microsatellites. Electromagnetic tethers were recently proposed for spacecraft docking [22],
and many other examples were just articulated in the review by O’Reilly et al., 2021 [23],
which was already demonstrated by NASA to produce translational propulsion forces [24].
This manuscript will instead evaluate the resultant translational effects of coupled motion
due to externally applied forces and torques through tethers. Multisatellite tether systems
are not addressed.
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Figure 1. (a) Tether orientation for reboost. (b) Les Johnson, a scientist at Marshall Space Flight
Center inspects nonconducting part of a tether [25].

Developments presented in this manuscript follow the nature of the 1998 NASA
study [10], which focused on translational thrust generation using Lorentz force combined
with the recent augmentation by Weis and Peck [12], which evaluated attitude control by
Lorentz torques determined by Euler’s moment equations. Novelty is validated by the just
published review [23] illustrating the assertion of the predominant focus of the literature
on the generation of translational motion via thrust of the tether as a novel propulsion
system or torque for attitude control.

This manuscript will add to the current state of the art by evaluation of the effects
of Lorentz torque alone propagated through the full 66-term Euler’s moment equation
and resultant coupled translational motion through the modification of angular veloc-
ity vector components appearing in Newton’s translational motion equations leading to
translational motion.

While the coupling effects are nominally small (hundreds of meters), the evaluation
illustrates useful propellant-free maneuvering capability not previously articulated by
evaluation of the capability in five disparate sample low-earth orbits using simulations.
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The effect is also illustrated to be capable of changing orbital inclination tens of millide-
grees (another small but non-negligible, propellant-free capability). A rare illustration
of computation accuracy is offered foremost to illustrate the numerical precision of the
simulation, which is included in Appendix B to aid repeatability.

2. Materials and Methods
2.1. Mechanics

According to Chasle [26], mechanical motion of rigid bodies may be fully articulated
by invoking three equations from Newton’s second law [27] for translation and three
equations from Euler’s equations [28] for rotation. Smeresky et al., (2019) present the
nonsimplified rotation equations in [29], presented here as Equation (1) in two disparate
compact vector-matrix notations, where Equation (4) displays the noncompact form that
illuminates the propagation of angular velocity modifications through all three equations
of rotational state motion.

∑ τ = J
.

ω + ω× Jω = [φ]{θ} (1)

where vector and matrix components are defined in Table 1 elaborated in Equations (2)–(4),
whose components are defined in Table 2.

Table 1. Definitions of variables proximal to Table 1.

Variable Definition Variable Definition Variable Definition Variable Definition

J
mass

moment of
inertia

τ
applied
torque

.
ωx

Angular
acceleration

about x-direction
ωx

Angular velocity
about x-direction

.
ω

angular
acceleration φ

regression
matrix

.
ωy

Angular
acceleration

about y-direction
ωy

Angular velocity
about y-direction

ω
angular
velocity θ

regression
vector

.
ωz

Angular
acceleration

about z-direction
ωz

Angular velocity
about z-direction

Table 2. Definitions of variables proximal to the Table 2.

Variable Definition Variable Definition

Jxx
mass moment of inertia with

respect to the x-axis Jxy

mass product of inertia–sum of the products formed by
multiplying each element of mass by the product of the

x and y coordinates

Jzz
mass moment of inertia with

respect to the z-axis Jyz

mass product of inertia–sum of the products formed by
multiplying each element of mass by the product of the

y and z coordinates

Jyy
mass moment of inertia with

respect to the y-axis Jxz

mass product of inertia–sum of the products formed by
multiplying each element of mass by the product of the

x and z coordinates

Equation (1) reparametrizes the better-known formulation on the left of the equation
into the lesser-known regression form on the right of the equation by defining a matrix of
presumed “knowns” and a vector of parameters potentially to be estimated. The regression
matrix is defined in Equation (2), while the regression vector is defined in Equation (3)
with the variables’ definitions in Table 2. Here, a third parameterization is depicted in
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Equation (4), where all terms are of Equation (1) and are multiplied out revealing the
nonlinear coupling upon quick inspection.

[Φ] =

 .
ωx

.
ωy

.
ωz

ωxωz
.

ωx 0
−ωxωy 0

.
ωx

−ωyωz 0 ωzωy.
ωy

.
ωz −ωzωx

ωyωx
.

ωy
.

ωz

 (2)

Θ =
{

Jxx, Jxy, Jxz, Jyy, Jyz, Jzz
}T (3)

τx

τy

τz

 =


Jxx

.
ωx + Jxy

.
ωy + Jxz

.
ωz − Jxyωxωz − Jyyωyωz − Jyzω2

z + Jxzωxωy + Jzzωzωy + Jyzω2
y

Jyx
.

ωx + Jyy
.

ωy + Jyz
.

ωz − Jyzωxωy − Jzzωxωz − Jxzω2
x + Jxxωxωz + Jxyωzωy + Jxzω2

z

Jzx
.

ωx + Jzy
.

ωy + Jzz
.

ωz − Jxxωxωy − Jxzωyωz − Jxyω2
y + Jyyωxωy + Jyzωzωx + Jxyω2

x

 (4)

∑ F = ma = [m]
{

ar −
(
2ω× .

r
)
−ω× (ω× r)− .

ω× r
}

(5)

Meanwhile Equation (5), whose components are defined in Table 3, elaborates how
the external application of forces produces translation motion; the equation is also coupled
to Equation (4)’s rotational motion through the angular velocity, ω. Equation (4), whose
components are defined in Table 3, clearly illustrates how a change in a single angular
momentum component Jijωk results in motion throughout all three rotational equations
in Equation (4). Similarly, Newton’s Law expressed in rotating reference frames results in
three coupled nonlinear equations that also include cross-products with angular velocity,
ω Equation (5). This coupling is well-known in all avenues of motion mechanics, even
ocean vehicles (see the opening equations in [30]). Modification of a component of angular
momentum in Equation (1) or Equation (4) modifies the respective component of angular
velocity [which resides in Equation (5) as well]. Thus, the identical angular momentum
component in Equation (5) is modified, propagating through all three translational motion
equations, as was the case with all three equations of rotational motion. Translational
velocity components are modified as linear momentum (which remains conserved) swaps
between the three channels of translational motion.

Table 3. Definitions of variables proximal to Table 3.

Variable Definition Variable Definition Variable Definition

τx
applied torque

about x-direction F applied force
.
r displacement rate relative to

rotating frame

τy
applied torque

about y-direction m mass r displacement relative to
rotating frame

τz
applied torque

about z-direction a acceleration ar apparent acceleration

2.2. External Forces and Torques, F and τ

Four of the main disturbance forces acting on Earth orbiting spacecraft (whose rough
relative characteristics are displayed in Figure 2): gravity gradient, aerodynamic drag, and
magnetic field forces are simulated (solar radiation pressure is omitted). Aerodynamic
drag forces dominate in low earth orbits, while gravity gradient and then magnetic forces
dominate at altitudes on the order of thousands of kilometers. Solar pressure forces in
Equation (6) are four orders of magnitude smaller than aerodynamic forces at altitudes less
than 500 km.
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Environmental forces and torques are included in the validating simulation, while
magnetic forces and torques are the focus of the investigation of useful production of
translation. Aerodynamic drag force is calculated using Equation (6), where ρ is the atmo-
spheric density from the (Mass Spectrometer-Incoherent Scatter) MSISE-90 atmosphere
model [31,32] under mean solar conditions. No torque is produced from drag if the center
of pressure and center of gravity are coincident. Gravity gradient torque elaborated in
Equation (7) is a function of gravitational parameter µ [33,34], as reported by [35], orbit
altitude R, moment of inertia matrix J, and body frame. Magnetic torque caused by Earth’s
magnetic field is represented in Equation (8). This torque depends on the magnetic moment
MM and magnetic field B. Variables for Equations (6)–(8) are defined in Table 4.

Fdrag = −1
2

CD Aρv2 (6)

τg = 3
µ

R3 J × δB (7)

τM = MM × B (8)

Table 4. Definitions of variables proximal to Table 4.

Variable Definition Variable Definition

ρ Atmospheric density τLorentz Lorentz torque

µ
Standard

gravitational
parameter

n Number of coils

R Earth radius A Area
MI Magnetic moment I Current
L Tether length B Magnetic Field Vector

dL Tether length
differential FLorentz Lorentz Force

Although aerodynamic disturbances have greater influence than magnetic distur-
bances in low Earth orbits, magnetic effects can still be used to maneuver a spacecraft.
By interacting with Earth’s magnetic field, rotational and translational motion can be pro-
duced without expending propellant. Magnetorquers create magnetic dipoles which exert
a force on the surrounding magnetic field at moment arms described in Equation (8). A
magnetorquer with vector area (A) and current (I) passing through n coils will generate a
torque that can rotate a spacecraft. Similarly, an electrically charged tether can produce
translational motion using the Lorentz force in Equation (9). Based on the orientation of
the tether (depicted in Figure 1a), its interaction with the local magnetic field can provide a
boosting or deorbiting force. Several missions demonstrated application of electrodynamic
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tethers, and the principle was proposed for use on the International Space Station [10].
A unique contribution here is the analysis of utilization of electromagnet Lorenz torques
modifying angular momentum components in accordance with Equation (4), with result-
ing propagation though translation motion described in Equation (5) without modifying
velocity magnitude. Variables for Equations (9) and (10) are defined in Table 4.

τLorentz = nIA× B (9)

FLorentz =
∫ L

0
I(L)dL× B (10)

A magnetic field will exert a force on a current carrying wire in a direction perpendic-
ular to the wire and the field vector. By orienting a tether along the gravity vector towards
Earth, the resulting force will be aligned with the spacecraft’s velocity vector. The resulting
acceleration will boost the spacecraft to a higher orbit and counteract the deceleration
caused by aerodynamic drag.

Not all orbits are ideal for electrodynamic maneuvering. The strength of the magnetic
field will vary depending on the spacecraft’s eccentricity, inclination, and altitude. Circular
equatorial orbits at various altitudes are simulated first to understand the best-case scenario
performance of an electrodynamic tether reboost. Orbit inclination and tether deflection
angle are additional independent variables that will be investigated to test the effectiveness
of the maneuver. Tether deflection can be caused by aerodynamic drag. When deployed at
low altitudes, the tether will deflect behind the spacecraft if there is insufficient end mass
to keep the tether taut. This deflection can reduce reboost efficiency. To increase energy
efficiency, current (I) can be reduced by proportionately increasing tether length (L) to
produce an equivalent Lorentz force. Tethers of varying lengths and charge are simulated
to determine the limits of electrodynamic maneuvering efficiency.

2.3. Spacecraft Simulation

In the simulation, a 1 m3 microsatellite with a mass of 100 kg is deployed in a low
Earth orbit between 100 km and 500 km altitude with electrodynamic tethers. This test
spacecraft has a coefficient drag of 2.2, which is a typical value for satellite simulations [8].
It is assumed that the satellite’s center of pressure is coincident with the center of gravity.

The tether system is assumed to have sufficient conductivity to maintain a one ampere
current through lengths of 500 m as well as a low mass density. Historical tether designs
have typically used a copper conductor with Kevlar insulation, such as the tether used for
the TSS-1R tether experiment flown aboard STS-75. A detailed investigation of the power
systems used to maintain the current through the tether system is out of the scope of this
manuscript. However, power consumption is a major factor in the effectiveness of this
maneuver technique.

2.4. Validating Simulations

To validate the assertion that Lorentz torques will propagate through all six coupled
Equations of motion in Equations (4) and (5), simulation models were created and run in
MATLAB/SIMULINK R2021a. Depictions of the simulations are included in Appendix B
to aid repeatability along with accompanying MATLAB code and the results are described
in Section 3.

2.5. Simulation Accuracy

To verify that the simulation is producing accurate results, the numerical solver and
step size was chosen to limit the numerical error. The maximum precision obtainable
is called machine precision for floating point arithmetic. As the quaternion normaliza-
tion necessitates unity normalization, the difference between the calculated normalized
quaternion and unity is utilized to represent the numerical accuracy of the simulation
with various simulation step sizes and solver properties. Several solver and step size
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combinations are investigated to determine an option that produces accurate results, where
10−15 is used as an accuracy standard in this study.

3. Results

After presenting simulations performed to validate accuracy in Section 3.1, reboost
by electrodynamic tether is presented in Section 3.2 before discussing the results in broad
terms in Section 4.

3.1. Verification of Simulation Accuracy

This section illustrated a well-known adage: computer simulations can seemingly be
made to indicate very different things. Visual inspection of Figure 3 reveals four identical
simulation calculations with immediately obvious differences in results driven here (in this
manuscript) by both the integration solver selected and the discretization time interval or
step-size. Figure 3 illustrates the step-size alone results in disparate accuracies assuming the
same integration solver. Table 5 indicates the results of iterating four different integration
solvers and down-selecting to the Runge–Kutta solver with subsequent integration of four
step-sizes eventually selecting 0.001 s with a numerical precision calculating the quaternion
normalization condition of 5.0× 10−15 (standard deviation).
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Table 5. Quaternion normalization errors for different solver schemes 1.

Solver Step Size Mean Standard Deviation

Euler (ode1) 0.001 2.5× 10−5 2.2× 10−5

Heun (ode2) 0.001 6.5× 10−11 6.1× 10−11

Dormand–Prince
(ode5) 0.001 2.0× 10−12 1.2× 10−12

Runge–Kutta (ode4) 0.020 2.0× 10−9 3.5× 10−9

Runge–Kutta (ode4) 0.010 3.9× 10−9 4.4× 10−9

Runge–Kutta (ode4) 0.002 4.7× 10−10 5.2× 10−10

Runge–Kutta (ode4) 0.001 1.0× 10−15 5.0× 10−15

1 Runge–Kutta (ode4) with 0.001 step-size was selected.

Utilizing the most accurate integration solver and step-size iterated in Section 3.1,
Section 3.2 describes the ability of using electromagnetic tethers to modify angular momen-
tum (through modified angular velocity), and the modified angular velocities are seen to
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propagate through all six Equations (4) and (5) cyclically boosting the orbital attitude of
the microsatellite.

3.2. Performance of Electrodynamic Tether Reboost

A microsatellite of 1 m3 size was simulated deploying 500-m tether system charged to
1 amp. The total mass of the spacecraft is 100 kg. All data presented in this manuscript use
the same spacecraft model. The simulations are used to iterate initial orbit parameters and
tether deflection angle.

Figure 4 displays the natural orbit decay and the boost height gained. Figure 5 shows
the change in orbit trajectory and absolute change in altitude over a period of three orbits.
Figure 6 displays the periodic variance in Lorentz force obtained from the electrodynamic
tether and the effects of altitude and inclination. Both Figures 5 and 6 depict a spacecraft
flying a circular equatorial orbit, except for Figure 6b which depicts 300 km orbits of
varying inclination. Table 6 presents numerical values for the data shown graphically in
Figure 6. Atmospheric density is assumed to be constant; the atmospheric density at the
initial altitude is used throughout each simulation.
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meters on the ordinate. 200 km is blue, dash-dotted line; 250 km is red dashed line; 300 km is solid
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decay from disturbances; (b) results with tether deployed.



Micromachines 2021, 12, 916 9 of 20

Micromachines 2021, 12, x 8 of 20 
 

 

(a) (b) 

Figure 4. Effect of electrodynamic tether reboost on a 300 km altitude orbit. (a) Trajectory. (b) Alti-
tude change in meters on ordinate versus time on abscissa. 

 
(a) (b) 

Figure 5. Altitude-change over one orbit with time in seconds on the abscissa and altitude change 
in meters on the ordinate. 200 km is blue, dash-dotted line; 250 km is red dashed line; 300 km is solid 
yellow line; 350 km is dotted purple line, and 500 km is green, thick dashed line: (a) Natural orbit 
decay from disturbances; (b) results with tether deployed. 

  
(a) (b) (c) 

Figure 6. Lorentz force extracted from electrodynamic tether with time in seconds on the abscissa and (a) Altitude (kilo-
meters) on the ordinate where 200 km is blue, dash-dotted line; 250 km is red dashed line; 300 km is solid yellow line; 350 
km is dotted purple line, and 500 km is green, thick dashed line; (b) Inclination (degrees) on the ordinate, respectively 
where 0 degrees is blue, dash-dotted line; 10 degrees is red dashed line; 30 degrees is solid yellow line; 60 degrees is dotted 
purple line, and 90 degrees is green, thick dashed line. (c) Lateral miss distance (meters) from orbit trajectory due to tether 
deflection (degrees) over one revolution on the ordinate. Zero degrees is displayed by the dashed blue; 10 degrees is 
displayed by the red dashed line; 20 degrees is displayed by the solid yellow line. x and y coordinates (× 10 ) on the 
horizontal plane with z coordinates displayed vertically. 

0 2000 4000 600

-1500

-1000

-500

0

500

0 2000 4000 6000

-1500

-1000

-500

0

500

1000

0 2000 4000
0

0.005

0.01

Figure 6. Lorentz force extracted from electrodynamic tether with time in seconds on the abscissa and (a) Altitude
(kilometers) on the ordinate where 200 km is blue, dash-dotted line; 250 km is red dashed line; 300 km is solid yellow line;
350 km is dotted purple line, and 500 km is green, thick dashed line; (b) Inclination (degrees) on the ordinate, respectively
where 0 degrees is blue, dash-dotted line; 10 degrees is red dashed line; 30 degrees is solid yellow line; 60 degrees is dotted
purple line, and 90 degrees is green, thick dashed line. (c) Lateral miss distance (meters) from orbit trajectory due to tether
deflection (degrees) over one revolution on the ordinate. Zero degrees is displayed by the dashed blue; 10 degrees is

displayed by the red dashed line; 20 degrees is displayed by the solid yellow line.
ˆ
x and

ˆ
y coordinates (×107 ) on the

horizontal plane with
ˆ
z coordinates displayed vertically.

Table 6. Orbit and altitude parameters for implementation at various initial altitudes.

Initial Altitude (km) Orbit Period (s) Final Altitude without
Tether (km)

Final Altitude with
Tether (km)

Altitude Gain from
Tether (m)

200 5301.245 198.264 198.513 249.680
250 5361.245 249.513 249.763 249.796
300 5422.715 299.841 300.091 249.828
350 5483.790 349.939 350.189 249.838
500 5668.390 499.995 500.245 249.848

Table 7 gives numerical Tabls for means and standard deviations of Lorentz force
produced by the electrodynamic tether in orbits of varying inclinations. Figure 6 describes
the effects of tether deflection on reboost maneuver efficiency. Figure 6a shows the absolute
altitude gain with respect to the center of the Earth. Figure 6b compares the change in force
produced by the tether due to the deflection. Figure 6c is a visual representation of the
off-axis movement in the orbital trajectory caused by tether deflection.

Table 7. Means and standard deviations of Lorentz force at varying inclinations.

Inclination (◦) Mean Force (N) Standard Deviation

0 0.01324 9.462776735569736 × 10−5

10 0.013374031380808 1.633511026861032 × 10−6

11.5 0.013376428353265 1.077122200582248 × 10−7

20 0.013374031380808 5.225155534655572 × 10−5

30 0.013034404952252 2.449844931947672 × 10−4

60 0.011209316951912 0.001576691931541
90 0.008873540981345 0.003581649585287

With these results (tabularized and depicted for ease of reading), the next section de-
scribes the results in a narrative including how they can be interpreted from the perspective
of previous studies and of the working hypotheses. The findings and their implications
are discussed in the broadest context possible, and future research directions are also
be highlighted.
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4. Discussion

Table 5 and Figure 3 indicate the solver scheme declared to produce sufficient accuracy
for validating simulations is the Runge–Kutta solver when used with a step size of 1 ms.
As no other solver schemes produced accurate mean normalized quaternions, those other
solver and step-size combinations are declared insufficiently accurate.

Figure 4 shows a periodic increase in altitude of 91,112 m per orbit starting at three-
hundred-kilometers following electrodynamic tether system activation. Orbit altitude
temporarily decreases every orbit period; however, the net change is still a positive increase
in altitude. Slight decreases in altitude occur regularly and can be observed at the one-
quarter and three-quarter points in each orbit cycle. Over three orbits, the cross-track
deviation in spacecraft position is 100 m left and right. Increase in orbit inclination can be
attributed to cross track velocity (component) changes caused by the Lorentz torque. This
can be minimized by actively controlling the tether direction.

Figure 5a shows the effect of aerodynamic drag forces on spacecraft orbiting at low
altitudes. Lower orbits will have greater altitude loss due to increased aerodynamic drag.
Table 6 shows that over one orbit period, a 200 km altitude orbit will drop by 1776 m,
while a 500 km altitude orbit will drop by only 5 m. Over multiple orbits, altitude losses
will compound exponentially. This can be observed with the 200 km altitude spacecraft,
which experiences the greatest altitude loss in one orbit. Although altitude losses for
spacecraft with higher orbits are not as significant, over multiple orbits the altitude changes
will compound as well. Overall, the life expectancy of such spacecraft without reboost
options are on the order of hours to days. Figure 5b shows the altitude change from the
reboost maneuver. Figure 5b appears to show that the electrodynamic reboost maneuver is
more effective at higher altitudes, however this is not the case. The greater altitude gain
recovered by the maneuver is due to the decrease in atmospheric density, which results
in lower aerodynamic drag force. However, periodic variations are observed in altitude
gain due to cross-track velocity changes from Lorentz torque. Greater altitude gain can
be observed between the one quarter and three-quarter points in each orbit cycle. Table 6
confirms that the altitude gain is nearly constant at 249.8 m. Slight changes are caused
by variations in magnetic field strength at different altitudes. Extrapolation from Table 6
data implies that around an altitude of 275 km, the spacecraft could achieve a state of
equilibrium by balancing Lorentz force with aerodynamic drag.

Figure 6a confirms that as altitude increases, the Lorentz force decreases as well due to
the weakening of the magnetic field. However, altitude gain increases as altitude increases,
as displayed in Table 6, illustrating that less force is required to gain altitude in higher
orbits due to the decrease in atmospheric density.

Figure 6b plots the periodic variation in Lorentz force throughout one orbit period. The
periodic variation is due to the magnetic field lines travelling at an angle not perpendicular
to the circular equatorial orbit of the spacecraft. Earth’s magnetic axis is not parallel to its
rotation axis. Every year the magnetic poles shift. As of the year 2020, the epsilon angle
between Earth’s magnetic and rotation axes is 11 degrees. When the inclination of the orbit
was changed to 10 degrees in Figure 6b, the periodic variation of Lorentz force decreased as
the spacecraft’s orbit was nearly perpendicular to the magnetic field lines. In this condition,
the generated force was near the maximum during the entire orbit. Higher inclinations
experience greater variations in force generation due to tether position with respect to the
magnetic field lines. Force output decreases sinusoidally as the spacecraft’s distance to the
magnetic plane increases. Therefore, the effectiveness of the electrodynamic tether reboost
maneuver decreases as the inclination of the spacecraft’s orbit deviates from the epsilon
angle. Table 6 gives numerical means and standard deviations showing the variance in
force generation. The mean force generated is greatest and had the least variance when the
orbit and magnetic axes were aligned.

Figure 6c shows tether deflection causes the spacecraft to deflect laterally along its
orbit trajectory. Lateral deflections on the order of 100 m are expected when the tether is
deflected up to 20 degrees. Tether orientation can be adjusted such that maneuvering in
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alternate directions is possible. Due to the orientation of the magnetic axis, the reboost
maneuver will cause the orbit inclination to increase. This can be countered by reorienting
the tether, but this also adds the necessity of an active control framework for the tether. The
lateral motion generated from tether deflection also opens the possibility of multidirectional
maneuvering using electrodynamic tethers, where a tether directional control system could
be manipulated to generate vectored thrust.

5. Conclusions

In this manuscript, the dynamics of orbital boost maneuvers for microsatellites using
electrodynamic tethers is investigated. This manuscript offers a novel contribution by
evaluating the effects of both Lorentz force and Lorentz torque propagation through the
full sixty-six term Euler’s moment equation and resultant coupled translational motion
through the modification of angular velocity vector components appearing in Newton’s
translational motion equations. Computational accuracy is also provided to demonstrate
the numerical precision of the simulation.

Electrodynamic tethers are a viable instrument for reboosting satellites in low Earth
orbit, provided that sufficient power generation is available. Mass and budget savings from
eliminating the need for expendable propellant can save billions of dollars over a 10-year
period [3]. Smaller satellites equipped with small tethers only 500 m in length and a 1 amp
current would be able to operate at low altitudes for longer times. The spacecraft could
conserve power by running current through the tether during portions of the orbit that
would produce maximum Lorentz force. By evaluating the effects of both Lorentz force and
Lorentz torque propagation through Euler’s moment equation and Newton’s translational
motion equations, the simulated spacecraft-tether system can orbit indefinitely at altitudes
as low as 275 km.

Further investigation of the effectiveness of the propellant-free reboost using electro-
dynamic tethers will require a study of the power requirements of the tether system and
detailed design of the system. Limitations introduced by the power generation capabili-
ties of microsatellites will reduce the effectiveness of the reboost maneuver. Mechanical
properties of the tether must also be modelled in greater detail to understand deployment,
lifetime analysis, and libration modes.

Following these results illustrating the ability to generate propellant-free translational
maneuvers by modifying the angular velocity with rotational maneuvers utilizing energy
from the Earth’s magnetic field, future research will focus on methods to generate predicted
maneuvers to command generating specified translational maneuvers. The previously
cited [30] elaborates such a method applied to unmanned underwater vehicles, and the
next directions of research will develop applications of deterministic artificial intelligence to
autonomous spacecraft utilizing electrodynamic tethers in accordance with this manuscript.
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Appendix A Consolidated Variables and Acronyms

This appendix contains a table of variable and acronym definitions used in the manuscript.
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Table A1. Variables and acronyms.

Variable/Acronym Definition

J mass moment of inertia
.

ω angular acceleration
ω angular velocity
τ applied torque
Φ regression matrix
Θ regression vector
.

ωx Angular acceleration about x-direction
.

ωy Angular acceleration about y-direction
.

ωz Angular acceleration about z-direction
ωx Angular velocity about x-direction
ωy Angular velocity about y-direction
ωz Angular velocity about z-direction
Jxx mass moment of inertia with respect to the x-axis
Jyy mass moment of inertia with respect to the y-axis
Jzz mass moment of inertia with respect to the z-axis

Jxy
mass product of inertia—sum of the products formed by multiplying each
element of mass by the product of the x and y coordinates

Jyz
mass product of inertia—sum of the products formed by multiplying each
element of mass by the product of the y and z coordinates

Jxz
mass product of inertia—sum of the products formed by multiplying each
element of mass by the product of the x and z coordinates

τx applied torque about x-direction
τy applied torque about y-direction
τz applied torque about z-direction
F applied force
m mass
a acceleration
.
r displacement rate relative to rotating frame
r displacement relative to rotating frame
ar apparent acceleration
ρ atmospheric density
µ gravitational parameter
R orbit altitude
L tether length
dL differential tether length
τLorentz Lorentz torques
n number of coils in magneto-torquer
A magneto-torquer vector area
I magneto-torquer current
B Earth’s magnetic field
FLorentz Lorentz forces

Appendix B

The appendix contains SIMULINK models in figures and computer codes inserted into
the InifFcn callback and StopFcn call back respectively. Together, this is the only computer
code need to achieve the results presented in this manuscript.
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Algorithm A1. InitFcn callbacks for SIMULINK model depicted in Figures 3–6

% Simulation run parameters
Rate = 34.3; DeltaT = 1/Rate;

%Constants0
Re = 6371.2e3; mu = 398601.2e9; %earth radius and universal gravitation constant

%Spacecraft orbit
R = Re + h; %orbit radius from center of earth
we = 0.000072921158553; %earth’s angular velocity rad/solar sec(Vallado)
wo = sqrt(mu/(R)ˆ3); %orbit angular velocity
epsilon = 11.5*pi/180; %angle between magnetic and geographic pole axes
alphao = 0;
uo = 0; nuo = 0; %Start S/C beneath subsolar point
betasun = 60; gamma = 1.5;
a = 1; b = 1; c = 1; %Assumed spacecraft rectangular size
Area = [b*c a*c a*b]; %projected area~mˆ2 in body x, y, z directions
kpre = −9.9639/24/3600/180*pi*0; %nodal precession constant assumed zero here
wn = kpre*(Re/(Re + h))ˆ3.5*cos(incln); %nodal precession (zero eccentricity)
V = wo*(Re + h);
rho = asin(Re/(h + Re)); %earth angular radius
psun = 4.5E-6; %solar pressure constant~N/mˆ2 NOT USED
dL = [0.1 0 0]; %predicted distance between cp and cg
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kilometerse = 2.3390e-005;

%drag properties
Cd = 2.2; %drag coeff corresponding to shape
Kaero = −0.5*Cd*Vˆ2; Psolar = 2*psun; %constants for aero and solar torque calculation
density;

%Spacecraft Magnetic Properties (assumed)
mresid = [0 0 0.001]; %Spacecraft residual magnetic moment
M = mresid; %Magnetic unit dipole vector
K = 7.943e15;

% ACTUAL Spacecraft Inertia conditions
Ix = 16.67; Iy = 16.67; Iz = 16.67;
Ixy = 0; Iyz = 0; Ixz = 0;
Imo = [Ix −Ixy −Ixz;
−Ixy Iy −Iyz;
−Ixz −Iyz Iz]; %Moment of inertia matrix
Iinv = inv(Imo); %Moment of inertia inverse goes in dynamics block

%Spacecraft initial Euler state angles and rates
phio = 0; thetao = 0; psio = 0; %Initial Euler Angles
phidoto = 0; thetadoto = 0; psidoto = 0; %Initial Euler Rates

%Calculation of initial quaternion (qo) and angular momentum (Ho)
s1 = sin(phio/2); s2 = sin(thetao/2); s3 = sin(psio/2); c1 = cos(phio/2); c2 = cos(thetao/2); c3 =
cos(psio/2);
q1o = s1*c2*c3-c1*s2*s3;
q2o = c1*s2*c3 + s1*c2*s3; %Wie pg. 321
q3o = c1*c2*s3-s1*s2*c3;
q4o = c1*c2*c3 + s1*s2*s3;
S1 = sin(phio); S2 = sin(thetao); S3 = sin(psio); C1 = cos(phio); C2 = cos(thetao); C3 = cos(psio);
wxo = phidoto − psidoto*S2 − wo*S3*C2;
wyo = thetadoto*C1 + psidoto*C2*S1 − wo*(C3*C1 + S3*S2*S1);
wzo = psidoto*C2*C1 − thetadoto*S1 − wo*(S3*S2*C1-C3*S1);
qo = [q1o q2o q3o q4o];
Ho = Imo*[wxo wyo wzo]’;
norm(Ho)*1000;

%Calculate eclipse time for comparison with EPS calculations
Te = 100.87*2*V/2/pi;

%CMG Properties (in degrees)
%beta = 90*pi/180; %Skew angle in degrees converted to radians
beta = [90; 90; −90; 0]; beta = beta.*pi./180;
%beta = [54.73; 54.73; −54.73; 0]; beta = beta.*pi./180;

Gimbal0 = [−30*pi/180; 90*pi/180; −30*pi/180; 0]; % Initial Gimbal angles for 0 H spin up
w_wheel = 2800*(2*pi/60); %Wheel speed in RPM converted to rad/s
Iwheel = 0.0614*1.3558179483314; % Wheel inertia in slug-ftˆ2 converted (exact) to kilogram mˆ2
h_wheel = Iwheel*w_wheel; % CMG Wheel Angular Momentum

%FEEDFORWARD (ASSUMED) Spacecraft Inertia conditions
Ix = 16.67; Iy = 16.67; Iz = 16.67;
Ixy = 0; Iyz = 0; Ixz = 0;
Imo = [Ix −Ixy −Ixz;
−Ixy Iy −Iyz;
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−Ixz −Iyz Iz]; %Moment of inertia matrix
THETAo = [Ix Ixy Ixz Iy Iyz Iz 0 0 0];

% [Fossen]’s adaptive feedforward parameters
ETA = 1; LAMBDA = 0; uffGain = 1;

%FEEDBACK CONTROLLERS Follow
%PDI Controller Gains % TUNED Well for Presence of LOWPASS (Kp = 0.5; Kd = Kp*750; Ki = 0.1)
%Kp = 0.5; Kd = Kp*750; Ki = 0.1;

%PDI Controller Gains % TUNED WELL FOR NO-NOISE (Kp = 1; Kd = 2000*Kp; Ki = 5)
Kp = 1; Kd = Kp*6000; Ki = 5;

%PDI Controller Gains % TUNED WELL FOR NOISE (Kp = 1; Kd = Kp*3000; Ki = 1)
%Kp = 1; %Kd = Kp*3000; %Ki = 1;

%PID Controller Gains tuned well for uff and ufb decoupling
Kpx = 20; Kdx = 1000; Kix = 0.1;

%Bandpass filter pole per Bong Wie 2nd Edition pg 137–138
wp = 10*pi/SlewTime; % Product of pole frequency and zero frequency establishes max phase lag
wz = 2*wp;
dampZ = 1; % >0 but small for good tracking.
dampP = dampZ;
% Sensor Noise Parameters
NoiseVariance = 1e-9; BADNoiseVariance = NoiseVariance*1e3;

% Observer Gains
MaxI = 100; lambda1 = 12.5; lambda2 = 50; lambda3 = 200;
Kdo = MaxI*(lambda1 + lambda2 + lambda3)/10;
Kpo = MaxI*(lambda1*(lambda2 + lambda3) + lambda2*lambda3)/10;
Kio = MaxI*lambda1*lambda2*lambda3/9;

m = 100*eye(3);
minv = pinv(m);
x0 = [R; 0; 0];
xdot0 = cross([0; 0; wo], x0)

%gravity = −mu/(Rˆ2);
orbitperiod = 2*pi*sqrt((Rˆ3)/mu);

Algorithm A2. StopFcn callbacks for SIMULINK model depicted in Figures 3–6

%% Means and Standard Deviations for solvers quaternion
format long
load(‘qneuler.mat’); load(‘qnheun.mat’); load(‘qnrk.mat’); load(‘qnode5.mat’);
load(‘qnrk50.mat’); load(‘qnrk100.mat’); load(‘qnrk500.mat’);
qnorm = [qneuler(2,:); qnheun(2,:); qnrk(2,:); qnode5(2,:)];
QNORMSTD = zeros(1,4);
for i = 1:4
QNORMSTD(i) = std(qnorm(i,:)); QNORMSTDSTRING = num2str(QNORMSTD);
QnormLEGEND = [‘||q||=’, QNORMSTDSTRING];

end
QNORMSTD;



Micromachines 2021, 12, 916 18 of 20

figure;
plot(qnrk50(1,:),qnrk50(2,:),‘k–’,‘linewidth’,1.5); hold on; qnorm =
std(qnrk50(2,:));QNORMSTDSTRING = num2str(qnorm); Q50 = [‘ ||q_{50}||=’,
QNORMSTDSTRING];
plot(qnrk100(1,:),qnrk100(2,:),‘g:’,‘linewidth’,1.5); hold on; qnorm =
std(qnrk100(2,:));QNORMSTDSTRING = num2str(qnorm); Q100 = [‘||q_{250}||=’,
QNORMSTDSTRING];
plot(qnrk500(1,:),qnrk500(2,:),‘r-.’,‘linewidth’,1.5); hold on; qnorm =
std(qnrk500(2,:));QNORMSTDSTRING = num2str(qnorm); Q500 = [‘||q_{500}||=’,
QNORMSTDSTRING];
plot(qnrk(1,:),qnrk(2,:),‘b’,‘linewidth’,1.5); hold on; qnorm = std(qnrk(2,:));QNORMSTDSTRING =
num2str(qnorm); Q1000 = [‘||q_{1000}||=’, QNORMSTDSTRING];

legend([Q50],[Q100],[Q500],[Q1000],‘FontName’,‘Palatino
Linotype’,‘FontSize’,10,‘location’,‘best’);
xlabel(‘Time (s)’,‘FontName’,‘Palatino Linotype’,‘FontSize’,10)
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
grid on;
set(gcf,‘units’,‘inches’,‘Position’,[1 1 7 2.5])

%% 3D Trajectory and altitude change over orbits
load(‘long300.mat’)
subplot(2,1,1);
plot3(long300(2,:),long300(3,:),long300(4,:),‘Linewidth’,1.5); zlim([-175 175]); hold on; grid on
subplot(2,1,2);
plot(long300(1,:),long300(6,:)-300e3,‘Linewidth’,1.5); ylim([−80 350]); grid on;
xlabel({‘Time (s)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10), ylabel({‘\Delta h
(m)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
set(gcf,‘units’,‘inches’,‘Position’,[1 1 7 3])

%% Altitude change over single orbit—with and without tether
load(‘rise200.mat’); load(‘rise250.mat’); load(‘rise300.mat’); load(‘rise350.mat’); load(‘rise500.mat’);
load(‘fall200.mat’); load(‘fall250.mat’); load(‘fall300.mat’); load(‘fall350.mat’); load(‘fall500.mat’);

figure;
subplot(1,2,1);
plot(fall200(1,:),fall200(6,:)-200e3,‘-.’,fall250(1,:),fall250(6,:)-250e3,‘–’,fall300(1,:),fall300(6,:)-
300e3,fall350(1,:),fall350(6,:)-350e3,‘:’,fall500(1,:),fall500(6,:)-500e3,‘–’,‘LineWidth’,1.5);
grid on; ylim([−1000 1000]); xlabel({‘Time (s)’; ‘(a)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10),
ylabel({‘\Delta h (m)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
legend(‘200 kilometers’,‘250 kilometers’,‘300 kilometers’,‘350 kilometers’,‘500
kilometers’,‘location’,‘best’);
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
subplot(1,2,2);
plot(rise200(1,:),rise200(6,:)-200e3,‘-.’,rise250(1,:),rise250(6,:)-250e3,‘–’,rise300(1,:),rise300(6,:)-
300e3,rise350(1,:),rise350(6,:)-350e3,‘:’,rise500(1,:),rise500(6,:)-500e3,‘–’,‘LineWidth’,1.5);
grid on; ylim([−1000 1000]); xlabel({‘Time (s)’; ‘(a)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10),
ylabel({‘\Delta h (m)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
%legend(‘200 kilometers’,‘250 kilometers’,‘300 kilometers’,‘350 kilometers’,‘500
kilometers’,‘location’,‘best’);
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
set(gcf,‘units’,‘inches’,‘Position’,[1 1 7 3])

%% Numerical Values for Spacecraft Altitude
%DATA REQUIRED: all files from prev
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format long;
at200 = [rise200(1,end), fall200(6,end), rise200(6,end), rise200(6,end)- fall200(6,end)]
at250 = [rise250(1,end), fall250(6,end), rise250(6,end), rise250(6,end)- fall250(6,end)]
at300 = [rise300(1,end), fall300(6,end), rise300(6,end), rise300(6,end)- fall300(6,end)]
at350 = [rise350(1,end), fall350(6,end), rise350(6,end), rise350(6,end)- fall350(6,end)]
at500 = [rise500(1,end), fall500(6,end), rise500(6,end), rise500(6,end)- fall500(6,end)]

%% Lorentz force extracted from tether—altitude and inclination
load(‘inc0.mat’); load(‘inc10.mat’); load(‘inc30.mat’); load(‘inc60.mat’); load(‘inc90.mat’);
figure
subplot(1,2,1);
plot(rise200(1,:),rise200(7,:),‘-.’,rise250(1,:),rise250(7,:),‘–
’,rise300(1,:),rise300(7,:),rise350(1,:),rise350(7,:),‘:’,rise500(1,:),rise500(7,:),‘–’,‘LineWidth’,1.5);
grid on; ylim([0 0.02]); xlabel({‘Time (s)’; ‘(b)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10),
ylabel({‘\Delta h (m)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
legend(‘200 kilometers’,‘250 kilometers’,‘300 kilometers’,‘350 kilometers’,‘500
kilometers’,‘location’,‘best’);
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
subplot(1,2,2);
plot(inc0(1,:),inc0(7,:),‘-.’,inc10(1,:),inc10(2,:),‘–
’,inc30(1,:),inc30(2,:),inc60(1,:),inc60(2,:),‘:’,inc90(1,:),inc90(2,:),‘–’,‘LineWidth’,1.5);
grid on; ylim([0 0.02]); xlabel({‘Time (s)’; ‘(b)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10),
ylabel({‘Force (N)’},‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
legend(‘0’,‘10’,‘30’,‘60’,‘90’,‘location’,‘best’,‘NumColumns’,2);
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
set(gcf,‘units’,‘inches’,‘Position’,[1 1 7 3])

%% Lorentz force means and standard deviations varying inclinations
m0 = mean(inc0(7,:))
m10 = mean(inc10(2,:))
m30 = mean(inc30(2,:))
m60 = mean(inc60(2,:))
m90 = mean(inc90(2,:))
sd0 = std(inc0(7,:))
sd10 = std(inc10(2,:))
sd30 = std(inc30(2,:))
sd60 = std(inc60(2,:))
sd90 = std(inc90(2,:))

%% Deflection 3D plot
load(‘def0.mat’); load(‘def10.mat’); load(‘def20.mat’);
figure;
plot3(def0(2,:),def0(3,:),def0(4,:),‘Linewidth’,1.5); hold on;
plot3(def10(2,:),def10(3,:),def10(4,:),‘Linewidth’,1.5); hold on;
plot3(def20(2,:),def20(3,:),def20(4,:),‘Linewidth’,1.5); hold on;
legend(‘0’,‘10’,‘20’,‘location’,‘best’); view(−45,15);
set(gca,‘FontName’,‘Palatino Linotype’,‘FontSize’,10);
set(gcf,‘units’,‘inches’,‘Position’,[1 1 7 2]); grid on
%xlim([0 400]); ylim([−200 20]); zlim([−1 2]); view(−45,15);
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