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Abstract

Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoono-

sis from macaque reservoir hosts in South-East Asia. Microsatellite genotyping has

indicated that human infections in Malaysian Borneo are an admixture of two highly

divergent sympatric parasite subpopulations that are, respectively, associated with

long-tailed macaques (Cluster 1) and pig-tailed macaques (Cluster 2). Whole-genome

sequences of clinical isolates subsequently confirmed the separate clusters, although

fewer of the less common Cluster 2 type were sequenced. Here, to analyse popula-

tion structure and genomic divergence in subpopulation samples of comparable

depth, genome sequences were generated from 21 new clinical infections identified

as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this sub-

population similar to that for Cluster 1. Profound heterogeneity in the level of inter-

cluster divergence was distributed across the genome, with long contiguous

chromosomal blocks having high or low divergence. Different mitochondrial genome

clades were associated with the two major subpopulations, but limited exchange of

haplotypes from one to the other was evident, as was also the case for the mater-

nally inherited apicoplast genome. These findings indicate deep divergence of the

two sympatric P. knowlesi subpopulations, with introgression likely to have occurred

recently. There is no evidence yet of specific adaptation at any introgressed locus,

but the recombinant mosaic types offer enhanced diversity on which selection may

operate in a currently changing landscape and human environment. Loci responsible

for maintaining genetic isolation of the sympatric subpopulations need to be identi-

fied in the chromosomal regions showing fixed differences.
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1 | INTRODUCTION

The zoonotic malaria parasite Plasmodium knowlesi is a significant cause

of human malaria in South-East Asia. Although long known as a malaria

parasite of long-tailed and pig-tailed macaques that could potentially

infect humans (Coatney, Collin, Warren, & Contacos, 1971), the first

large focus of human cases was only detected approximately 15 years

ago in Malaysian Borneo (Singh et al., 2004). Since then, infections
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have been described from throughout Malaysia (Cox-Singh et al.,

2008; William et al., 2013; Yusof et al., 2014) and in almost all coun-

tries in South-East Asia (Singh & Daneshvar, 2013). Indeed, P. knowlesi

is now the most common cause of human malaria in Malaysia (Barber,

Rajahram, Grigg, William, & Anstey, 2017), with infections capable of

reaching very high parasitaemia and sometimes leading to the death of

patients (Cox-Singh et al., 2008; Daneshvar et al., 2009; Rajahram

et al., 2016; Singh & Daneshvar, 2013; William et al., 2011).

Multilocus microsatellite genotyping analysis of P. knowlesi infec-

tions revealed that human infections in Malaysian Borneo comprise

two major genetic subpopulations that are, respectively, associated

with long-tailed and pig-tailed macaque reservoir hosts (Divis et al.,

2015), with significant divergence confirmed by whole-genome

sequence analyses of parasites in human infections (Assefa et al.,

2015). In most areas of Malaysian Borneo, the number of human clini-

cal infections of the parasite subpopulation type associated with long-

tailed macaques (Cluster 1) is higher than those having the type asso-

ciated with pig-tailed macaques (Cluster 2) (Divis et al., 2017). Further

analyses of additional samples have subsequently revealed a third

divergent subpopulation of P. knowlesi (Cluster 3) on the mainland of

South-East Asia which includes Peninsular Malaysia (Divis et al., 2017;

Yusof et al., 2016). So far, only P. knowlesi parasites of Cluster 3 have

been studied in infections of laboratory monkeys (Assefa et al., 2015),

and one strain of this type has been adapted to efficiently invade

human erythrocytes in culture (Lim et al., 2013; Moon et al., 2013).

To develop laboratory studies on the other two major zoonotic popu-

lations will require establishment of parasite isolates in controlled

monkey infections, or ideally into culture with erythrocytes. Analysis

of P. knowlesi samples from human clinical infections is relatively

straightforward, as most of these are not mixed with other species,

whereas most natural P. knowlesi infections in macaques occur

together with other primate malaria parasite species (Lee et al., 2011).

The first large-scale whole-genome sequence analysis of

P. knowlesi infections contained clinical samples that were mostly of

the Cluster 1 type (N = 38), yielding results indicating that this has

undergone long-term population growth, with additional evidence of

selection on particular loci (Assefa et al., 2015). There were only 10

Cluster 2 type infections sequenced in the study, which limited investi-

gation of the demographic history of that subpopulation, but these

were sufficient to indicate that the level of intercluster divergence var-

ied across the genome, some loci having a concentration of apparently

fixed differences and others showing more shared polymorphism

(Assefa et al., 2015). A separate simultaneous study reported data from

another six infections, confirming the divergence between sympatric

subpopulations (Pinheiro et al., 2015), but this did not cumulatively

give a much deeper sample. In agreement with the initial study (Assefa

et al., 2015), a recent secondary analysis of the previously published

data confirmed the existence of genomic regions with shared polymor-

phisms (Diez Benavente et al., 2017), but did not include any new data.

For a more informed comparison of these important zoonotic para-

site subpopulations, a much larger sample of Cluster 2 type P. knowlesi

genome sequences was obtained in this study. Combining the new

data with samples sequenced previously (Assefa et al., 2015; Pinheiro

et al., 2015) yielded a total of 34 Cluster 2 genome sequences that

enables a more comprehensive analysis of genomic polymorphism and

divergence between the subpopulations. This provides new under-

standing of the genome-wide variation in divergence of these two

sympatric P. knowlesi subpopulations, essential for understanding their

long-term maintenance and potential for future adaptation.

2 | MATERIALS AND METHODS

2.1 | New P. knowlesi DNA samples selected for
analysis

Venous blood samples were obtained from patients infected with

P. knowlesi malaria at Kapit Hospital in Sarawak between March and

November 2014, after written informed consent from each patient

had been obtained. The collection of blood samples was approved by

the Medical Research and Ethics Committee of the Malaysian Ministry

of Health and by the Ethics Committee of the London School of

Hygiene and Tropical Medicine. Leucocytes were removed by allowing

10 ml of blood to pass through a CF11 cellulose column, to enrich for

erythrocytes and thereby increase the proportion of parasite com-

pared to host DNA. Genomic DNA was extracted using QIAamp DNA

Mini kits (Qiagen, Germany), and all infections were confirmed to con-

tain only P. knowlesi by nested PCR assays testing for all locally known

malaria parasite species (Lee et al., 2011). Determination of the

genetic subpopulation cluster of each DNA sample was conducted by

microsatellite genotyping (Divis et al., 2017), and 21 samples of the

Cluster 2 type that had sufficient DNA were selected for whole-gen-

ome sequencing. These were mostly single genotype infections as

determined by microsatellite typing (Divis et al., 2017).

2.2 | P. knowlesi whole-genome sequencing

DNA libraries were constructed using the TruSeq Nano DNA Library

Preparation Kit (Illumina, San Diego, CA, USA). Physical shearing of

the genomic DNA into fragments having an average size of 550 bp

was performed using a M220 Focused-ultrasonicator (Covaris, USA).

After denaturation at 95°C for 3 min, amplification of genomic DNA

was performed with low number of PCR cycles (eight cycles at 98°C

for 20 s, 60°C for 15 s and 72°C for 30 s) followed by a 72°C com-

pletion for 5 min. The quality of DNA libraries was assessed using

the Agilent High Sensitivity DNA kit (Agilent Technologies, Santa

Clara, CA USA), while quantitation was performed using the KAPA

Library Quantification Kit for Illumina� platform (KAPA Biosystems,

Boston, MA, USA). All libraries were then normalized to 4 nM, and

up to 12 samples were included on each sequencing run. Paired-end

whole-genome sequencing was performed on pooled DNA libraries

using MiSeq Chemistry version 3 reagents, on the MiSeq platform

(Illumina, San Diego, CA, USA) with a read length of 300 bp. Raw

data of short reads generated in FASTQ format were undergone for

quality check using the TRIMMOMATIC software (Bolger, Lohse, & Usa-

del, 2014) with defined parameters (LEADING:3 TRAILING:3, SLI-

DINGWINDOW:4:10 MINLEN:36).
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Trimmed FASTQ reads for individual isolates were then aligned

against the version 2.0 of P. knowlesi strain H reference genome

(www.genedb.org/Homepage/Pknowlesi, genome annotation March

2014, accessed December 2015) using the BURROWS-WHEELER ALIGNER

software version 0.7 with the BWA-MEM algorithm and default

parameters (Li, 2013). This generated file in the SAM (sequence

alignment/map) format, and followed by the conversion into a BAM

(binary alignment/map) format using the SAMTOOLS package version

0.1 (Li et al., 2009). Due to the possible effect of PCR amplification

bias introduced during the DNA library preparations, read duplica-

tions were removed using the “MarkDuplicates” command from the

Picard toolkit (https://github.com/broadinstitute/picard). The average

depth coverage was analysed by the BEDTOOLS version 2 package

using the “genomeCoverageBed” command (Quinlan & Hall, 2010).

Re-mapping of short read genome sequences generated from

previous studies (Assefa et al., 2015; Pinheiro et al., 2015) against

the version 2.0 of P. knowlesi strain H reference genome was also

performed in the analysis (Table S1). These include 48 isolates from

Kapit and Betong in Malaysian Borneo (Sequence Read Archive

numbers ERR985372–ERR985419) representing Cluster 1 and Clus-

ter 2 type parasites collected between 2008 and 2013, six isolates

from Sarikei in Malaysian Borneo (SRA numbers ERR274221,

ERR274222, ERR274224, ERR272225, ERR366425 and ERR366426)

and five laboratory isolates (“Nuri” SRA numbers ERR019406, “Hack-

eri” SRR2221468, “Malayan” SRR2225467, “MR4-H” SRR2225571

and “Philippines” SRR2225573). The reference H strain sequence

belongs to Cluster 3 (Assefa et al., 2015), which is approximately

equally divergent from Clusters 1 and 2, so no bias is expected in

the efficiency of mapping of the sequences to this reference.

2.3 | Single nucleotide polymorphism calling and
filtration

The calling of high-quality single nucleotide polymorphisms (SNPs)

was performed using several steps, following procedures described

previously (Assefa et al., 2015). For each isolate, SNPs were first

identified from the BAM file using SAMTOOLS/BCFTOOLS with the fol-

lowing parameters: mpileup –B –Q 23 –d 2000 –C 50 –ugf; varFilter –

d 10 -D 2000. A high-quality list of potential variant positions (Phred

quality, Q > 30) was extracted from the resulting variant call format

(VCF) file, and a list of unique SNP lists was generated by concate-

nating all variant positions from all isolates. Using these unique SNP

positions, the mapping quality (mq) and base quality (bq) were

checked for each isolate to remove positions with an excess of low-

quality reads with the requirement of the minimum read depth cov-

erage at 10x. The ratio of read depth values at high-quality

(mq = 26; bq = 23) and low-quality (mq = 0; bq = 0) thresholds

were calculated for each isolate using customized Perl scripts, and

any SNP positions with the ratio below 0.5 were discarded.

Further filtration involved the removal of positions that contained

ambiguous sequences (represented as a long stretch of unknown

nucleotides “N”) in the reference genome. The SICAVar, KIR, and pk-

fam-a to pk-fam-e multigene families (Pain et al., 2008) and the

subtelomeric regions were also filtered out to avoid ambiguous align-

ments, which may cause false-positive SNP calls. Subtelomeric

regions were here determined by visually inspecting the whole-gen-

ome synteny mapping of P. knowlesi with the P. vivax homolog using

the PlasmoDB GBrowse v2.48 (plasmodb.org/cg-bin/gbrowse/plas-

modb/), with the boundaries of subtelomeric regions defined as

sequences adjacent to the first conserved protein-coding gene

(Table S2). After exclusion of subtelomeric regions and the large

multigene families, 21.2 Mb (92%) of the 23.0 Mb corresponding to

the reference nuclear genome was analysed from each sample.

2.4 | Genomic diversity and population structure

To measure the amount of polymorphism within the parasite popula-

tion, the average pairwise nucleotide diversity (p) among the sequences

from the individual infection samples was calculated. The skewness in

allele frequency distributions was estimated by Tajima’s D index. Both

indices were calculated using the same genome-wide SNP data set in

nonoverlapping window sizes of 10 kb and performed using the DIVSTAT

software (Soares, Moleirinho, Oliveira, & Amorim, 2015). To illustrate

the population substructure, the matrix of pairwise DNA distance

among individuals was calculated and the Neighbour-Joining tree was

constructed using the APE package version 3.4 in the R environment

(Paradis, Claude, & Strimmer, 2004). An independent population struc-

ture evaluation was also conducted using principal coordinate analysis

(PCoA) with SNPs having nomissing data, using the APE package.

To estimate the divergence between the subpopulations, the

genome-wide distribution of the fixation index (FST) between the

two-subpopulation clusters was computed with SNPs having minor

allele frequencies (MAFs) above 0.1, and above 0.3, using cus-

tomized R functions. An elevated FST threshold was set at the 90th

percentile of the FST distributions for all SNPs. Average FST values

were calculated in windows of 500 SNPs with sliding by 250 SNPs.

The FST values for each window were tested for high- or low-differ-

entiated regions against the genome-wide mean FST value.

Genomic regions with contrasting levels of intercluster diver-

gence were determined empirically by examining the FST distribution

across the genome at two different MAFs (MAF above 0.1 and 0.3).

For each MAF analysis, average FST values were calculated in win-

dows of 200 SNPs (sliding by 100 SNPs), 500 SNPs (sliding by 250

SNPs) and 1,000 SNPs (sliding by 500 SNPs). Mean global FST values

and window FST values were then converted into standard z-scores

in order to standardize the definition of outlier windows for different

parameters. Regions of high- or low-FST windows were observed and

compared among the analyses that used different MAF parameters.

Genomic regions were categorized into low divergence regions

(LDR; z-scores < �0.5), intermediate divergence regions (IDR), and

high divergence regions (HDR; z-scores > 0.5). To determine the

contiguous extent of these regions in detail, adjacent outlier win-

dows were merged to form larger adjoining regions. Peak and trough

patterns of window z-scores around the thresholds (z-scores < �0.5

and z-scores > 0.5) were taken into consideration in determining the

junctions. Each candidate region was demarcated by first and last
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SNPs that fell within the merged windows, except for HDRs where

SNPs with elevated FST values were used as start and endpoints.

Patterns of polymorphisms (nucleotide diversity summarized by p

and allele frequency spectrum summarized by Tajima’s D) in all genomic

regions were evaluated using DIVSTAT software. Test runs were per-

formed in nonoverlapping window sizes of 10 kb for each subpopula-

tion. Nonparametric Kruskal–Wallis tests were used to compare among

the genomic regions as well as against the genome-wide background.

2.5 | Extra-chromosomal genomes

Population structure and relationships of the sympatric P. knowlesi

subpopulations were further analysed using the extranuclear DNA,

consisting of the nonrecombining genomes of mitochondria and plas-

tid-like apicoplast. The 5.9-kb mitochondrial DNA sequences were

obtained from the present whole-genome sequence data and previ-

ously published sequences (Assefa et al., 2015; Jongwutiwes et al.,

2005; Lee et al., 2011; Pinheiro et al., 2015). Complete mitochon-

drial sequences were obtained from GenBank database, consisting of

26 haplotypes from human isolates (Accession nos. EU880446–

EU880470) and 20 haplotypes from macaque isolates (EU880471–

EU880474, EU880477–EU880486, EU880489–EU880493 and

EU880499) in Kapit of Malaysian Borneo, and one human isolate

from Thailand (AY598141). Three species, P. coatneyi (AB354575),

P. cynomolgi (AB434919) and P. vivax (AY791551), that have close

evolutionary relationships with P. knowlesi were included in the anal-

ysis as out-groups. For the apicoplast genome of P. knowlesi, 30.6 kb

of the DNA sequences that had clear alignment was extracted from

the present whole-genome data set as well as from previous data

(Assefa et al., 2015; Pinheiro et al., 2015) following mapping and

base quality checks as mentioned above.

The derived mitochondrial and apicoplast genome sequences

were separately aligned using the CLUSTALX programme version 2 (Lar-

kin et al., 2007), following which nucleotide diversity (p) and haplo-

type diversity (Hd) was determined using the DNASP version 5

software (Librado & Rozas, 2009). A maximum-likelihood tree was

inferred with 1,000 bootstrap replicates and gaps treated as missing

data using the PHANGORN packages in R (Schliep, 2011), with the

ModelTest algorithm used to determine the best-fit nucleotide sub-

stitution model, which was GTR+I+G (General Time Reversible model

with a proportion of invariable sites and gamma distribution). For the

mitochondrial sequences, major haplotypes were determined with

gaps treated as missing data, and the statistical parsimony haplotype

network was constructed using the TCS version 1.21 software (Cle-

ment, Posada, & Crandall, 2000).

3 | RESULTS

3.1 | Generation of new whole-genome sequences
and SNP genotyping

Paired-end Illumina sequencing of 21 new P. knowlesi clinical infec-

tion samples, selected on the basis of microsatellite genotyping as

belonging to Cluster 2 (the type previously associated with pig-tailed

macaque as well as human infections), yielded a mean of 6.95 million

high-quality reads per sample, which were mapped against the

P. knowlesi H strain version 2.0 reference genome sequence

(Table S3). The mean depth of sequence coverage genome-wide was

52.3-fold (range from 28.7- to 80.3-fold) per sample. In addition, Illu-

mina short read sequence data from another 59 P. knowlesi isolates

obtained previously (Assefa et al., 2015; Pinheiro et al., 2015) were

remapped against the P. knowlesi H strain version 2.0 reference gen-

ome using the same assembly parameters (Table S1), followed by

SNP calling. In the combined data set of 80 infection sequences, a

total of 2,109,937 SNPs were identified in the nuclear genome. Fol-

lowing exclusion of those in subtelomeric regions or in the KIR or

SICAVAR multigene families, or that had more than two alleles,

1,669,533 SNPs remained, of which 1,186,073 high-quality SNPs

with less than 10% missing calls in all isolates were used for popula-

tion genomic analyses.

3.2 | Population genetic structure

Consistent with predictions from cluster assignment based on

microsatellite genotyping, all 21 of the new P. knowlesi clinical infec-

tion samples showed genome sequences belonging to the Cluster 2

subpopulation (Figures 1a and S1). Together with previous data, this

yielded an overall sample of 34 Cluster 2 isolate sequences, to

achieve a similar sample size as previously available for Cluster 1. As

is visually apparent from the Neighbour-Joining tree based on the

pairwise genetic distances (Figure 1a), the Cluster 2 infections are

less genetically diverse (p = 3.43 9 10�3) than the Cluster 1 infec-

tions (p = 5.78 9 10�3). Furthermore, the Cluster 1 subpopulation

demonstrated a homogenous pattern of sequence diversity across

the 14 chromosomes (Kruskal–Wallis, p = .23), in contrast with Clus-

ter 2 that showed heterogeneous levels of diversity across the chro-

mosomes (Kruskal–Wallis p < 10�16) (Figure S2). In Cluster 2,

nucleotide diversity of entire chromosomes ranged from

2.25 9 10�3 (for chromosome 7) to 4.38 9 10�3 (for chromosome

5), but all had a lower diversity than in Cluster 1 (Wilcoxon signed

rank p < 10�16). In a majority of nonoverlapping 10-kb windows

genome-wide, nucleotide diversity (p) indices were lower in Cluster

2 (Figure 1b). Large regions of chromosomes showed contiguous

stretches in which diversity was much higher in Cluster 1, and also

contiguous stretches in which the diversity was more similar (Fig-

ure 1c).

3.3 | Genomic regions of high and low divergence

The genome-wide variation in diversity in Cluster 2 suggested

that there might be variation in levels of intercluster divergence.

Analysing SNPs with overall minor allele frequencies above 10%

(193,068 SNPs), the mean genome-wide fixation index indicated

substantial divergence between the two subpopulations (mean

FST = 0.25; Figure 2a). The frequency distribution of FST values

was bimodal, one peak having values just above zero and a
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second peak having values at or approaching 1.0 (Figure 2b).

Very high intercluster FST values of > 0.8 were seen for 19,116

SNPs, and 7,415 (3.8%) showed complete fixation of alternative

alleles (FST = 1.0). A large proportion of low FST values were

removed when analysis focused on SNPs with overall allele fre-

quencies of >0.3 (Figure 2b). Mean FST values for whole chro-

mosomes ranged from 0.09 (for chromosome 5) to 0.40 for

(chromosome 7).

The relative level of population differentiation of all windows of

500 contiguous SNPs across the genome was evaluated by consider-

ing standard deviations from the mean genome-wide FST value (z-

score). Genomic regions were identified that contained contiguous

windows defining low divergence regions (LDR with z-score < �0.5)

and high divergence regions (HDR with z-score > 0.5). This revealed

large genomic blocks of high or low divergence (Figure 2c; Table S4).

For example, chromosomes 7, 12 and 13 had HDRs covering most

of their respective lengths, whereas chromosomes 3, 5 and 10

showed no HDRs (Figure 2c).

3.4 | Intracluster diversity in genomic regions with
contrasting levels of divergence

The relationship of intercluster divergence with the varying nucleo-

tide diversity (p) in Cluster 2 across the genome (Figure 1c) was

investigated. Comparing between the two subpopulations, the differ-

ences in nucleotide diversity were higher in the HDRs than in the

LDRs or in the rest of the genome (Figure 3; Mann–Whitney U

p < 10�16 for both comparisons). Most of the highly differentiated

F IGURE 1 Population structure of Plasmodium knowlesi indicated by whole-genome sequence data. (a) Neighbour-Joining tree based on a
pairwise single nucleotide polymorphism (SNP) difference matrix of 80 P. knowlesi isolates. The 21 new genome sequences are indicated with
stars, yielding a total sample size for Cluster 2 (N = 34) that is similar to that of Cluster 1 (N = 41). The scale bar indicates proportions of all
SNPs differing between samples. (b) Scatterplot of nucleotide diversity (p) in individual nonoverlapping 10-kb windows of the genome,
comparing data for Cluster 1 and Cluster 2 subpopulations. (c) Differences in nucleotide diversity between Cluster 1 and Cluster 2
subpopulations (p-diff) in each of the 10-kb windows of the genome [Colour figure can be viewed at wileyonlinelibrary.com]
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regions were those in which nucleotide diversity was substantially

lower in Cluster 2 (Figure 3).

Reduced nucleotide diversity in HDRs compared to the rest of

the genome was specifically seen in Cluster 2 (mean p in

HDRs = 2.08 9 10�3; Mann–Whitney p < 2.2 9 10�16), and not in

Cluster 1 (mean p in HDRs = 5.80 9 10�3; Mann–Whitney

p = 0.25). Similarly, higher nucleotide diversity in LDRs compared to

the rest of the genome was seen specifically within Cluster 2

(Mann–Whitney p = 2.2 9 10�16), and not in Cluster 1 (Mann–Whit-

ney p = .77).

Both subpopulations showed strong skew towards low-frequency

variants, with mean Tajima’s D values of 10-kb windows of the gen-

ome for the Cluster 2 subpopulation being even lower than for the

Cluster 1 subpopulation (Figure 4a; Cluster 1 mean D = �1.77; Clus-

ter 2 mean D = �2.37; Wilcoxon Signed Rank p < 10�16). Across all

10-kb windows in the genome, there was a weak but highly signifi-

cant correlation in the distribution of Tajima’s D values in the two

clusters (Figure 4b; Spearman’s q = 0.25; p < 10�16). The allele fre-

quency spectrum as summarized by Tajima’s D index was less vari-

able across the 14 chromosomes within the Cluster 1 subpopulation

F IGURE 2 Genome-wide plot of divergence between the sympatric Plasmodium knowlesi Cluster 1 and Cluster 2 subpopulations in
Malaysian Borneo. Each dot shows the FST value of an individual single nucleotide polymorphism (SNP), of 193,068 SNPs with minor allele
frequencies above 0.1. The overall genome-wide mean FST value is 0.25. (b) Strong bimodal frequency distribution of FST values for SNPs
genome-wide. The left plot shows the distribution of values for 193,068 SNPs with minor allele frequencies (MAF) > 0.1, and the right plot
shows the distribution of values for 80,168 SNPs with MAF > 0.3 (the genome-wide average FST value was 0.42 for SNPs with MAF > 0.3).
(c) Contiguous regions of high and low divergence throughout the genome identified by analysis of FST values of windows of 500 consecutive
SNPs converted to standardized z-scores. Thresholds of 0.5 standard deviations above and below the genome-wide average FST demarcate the
regions of high divergence (red blocks) and low divergence (dark blue blocks) [Colour figure can be viewed at wileyonlinelibrary.com]
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(Kruskal–Wallis p = 8.4 9 10�5) compared to the Cluster 2 subpopu-

lation (Kruskal–Wallis p = 1.6 9 10�16) (Figure 4c).

The mosaic pattern of genomic diversity in the Cluster 2 subpop-

ulation suggests that a genome-wide scan to identify individual

genes with exceptionally high values of Tajima’s D may not be a

robust means of identifying genes under balancing selection within

this subpopulation, although the approach may be more straightfor-

wardly applied to the Cluster 1 subpopulation (Assefa et al., 2015).

However, the msp1 merozoite surface protein antigen gene that was

previously shown to have a high Tajima’s D value in Cluster 1 also

had a high value in the Cluster 2 subpopulation (D = 1.01), suggest-

ing it is likely to be under balancing selection in both. Interestingly,

the ama1 apical membrane antigen gene that did not have a high

value in Cluster 1 had an exceptionally high value in Cluster 2 here

(D = 1.64). The csp circumsporozoite protein gene, that had the

highest Tajima’s D value of all genes in Cluster 1, did not have any

detected nonrepeat sequence SNPs in Cluster 2. Thus, although an

unbiased comparison cannot be straightforwardly performed, these

examples indicate that there are some similarities as well as differ-

ences in the strength or targets of balancing selection on antigens in

the two different parasite subpopulations.

3.5 | Phylogeny and introgression of extra-
chromosomal genomes

The analyses of population structure were extended using the mater-

nally inherited extra-chromosomal genomes. Combination of the 5.9-

kb mitochondrial sequences generated in this study with previously

published sequences yielded a sample size of 129 in total and identifi-

cation of 77 SNPs. These mitochondrial sequences had a global aver-

age nucleotide diversity (p) of 7.9 9 10�4, with higher values in

samples from parasites in Cluster 1 (p = 6.8 9 10�4, n = 74) than in

Cluster 2 (p = 4.9 9 10�4, n = 46). The genealogical network of mito-

chondrial genomes contained 56 different haplotypes (Figure 5). The

most common and central core haplotype was detected mainly in para-

sites of the Cluster 1 subpopulation (25 of 28 isolates). A second com-

mon haplotype that was more peripheral in the network was seen

mostly in the Cluster 2 subpopulation (15 of 21 isolates), while the

third common haplotype was distantly related to this and detected

only in Cluster 1 (nine isolates). Most of the closely related haplotypes

to each of these were also seen only in the corresponding subpopula-

tion clusters, but there is a group of closely related haplotypes internal

in the network seen in parasites of Cluster 1 (13 isolates) which is

embedded in part of the network that is otherwise only seen in Cluster

2 parasites (Figure 5). Conversely, a few Cluster 2 isolates have haplo-

types that are related to those only seen in Cluster 1. A separate

branch of haplotypes was seen in laboratory isolates that had mostly

been collected from Peninsular Malaysia. Maximum-likelihood phylo-

genetic analysis yielded a similar pattern, with haplotype clades being

associated but not completely fixed between the Cluster 1 and Cluster

2 subpopulations (Figure S3).

Polymorphism in 30.6 kb of the apicoplast genome could be charac-

terized using the Illumina short read sequence data to identify 520 poly-

morphic SNPs. With these data, 65 of the 80 isolates were analysed in

detail as they had less than 20% missing SNPs, while the remaining 15

samples with more missing SNP data were excluded. The overall

nucleotide diversity (p) was 1.79 9 10�3, and this was higher among

the Cluster 1 samples (p = 1.77 9 10�3) than Cluster 2 samples

(p = 1.12 9 10�3). Two major lineages were seen, one of which con-

sisted predominantly of Cluster 1 samples, and the othermainly of Clus-

ter 2 samples (Figure S4), although there were several isolates that had

haplotypes of the opposite type to that expected for each cluster.

4 | DISCUSSION

This study analyses the largest ecological sample of sequences repre-

senting different subpopulations of a zoonotic eukaryotic parasite

F IGURE 3 Sequence diversity of Plasmodium knowlesi Cluster 2 is lowest in regions of the genome that have highest fixation indices in
comparison with Cluster 1. Scatterplots show nucleotide diversity in discrete 10-kb windows genome-wide, with red points (left) showing
windows in high divergence regions (HDR) and blue points showing windows in low divergence regions (LDR). For HDR, mean
p = 5.80 9 10�3 for Cluster 1 and 2.08 9 10�3 for Cluster 2. For LDR, mean p = 5.60 9 10�3 for Cluster 1 and 4.14 9 10�3 for Cluster 2
[Colour figure can be viewed at wileyonlinelibrary.com]
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species. Whole-genome sequencing of new samples from one of the

major genetic subpopulations of P. knowlesi has clearly revealed the

genome-wide patterns of divergence between the sympatric subpop-

ulations, which illuminates aspects of their population history and is

essential for understanding their adaptive potential. This provides

the most informative overall analysis of population structure of

P. knowlesi to date, extending the understanding of defined subpop-

ulation clusters that were previously described (Assefa et al., 2015;

Divis et al., 2017). These results confirm the distinctness of the two

sympatric divergent P. knowlesi subpopulations in Malaysian Borneo,

supporting the occurrence of independent zoonotic cycles associated

with different macaque reservoir host species (Divis et al., 2015;

Muehlenbein et al., 2015).

The high differentiation between these two sympatric subpopula-

tions indicates minimal or no ongoing gene flow occurring between

them, and a large number of SNPs showed complete fixation of

alternative alleles. However, the pattern of divergence was heteroge-

neous and bimodally distributed, with large regions of exceptionally

high or low divergence interspersed throughout the genome.

Reduced genetic diversity of the Cluster 2 subpopulation in highly

diverged regions suggests there may have been an initial bottleneck

in the formation of this subpopulation. The overall allele frequency

spectra were negativly skewed for both subpopulations, signifying

long-term population growth, although this was more extreme for

the Cluster 2 subpopulation. This gives a more detailed perspective

than that previously obtained by analysis of mitochondrial genome

sequences, which had already indicated a historical population

expansion (Lee et al., 2011). The mitochondrial and apicoplast gen-

omes in Plasmodium are inherited together through the female para-

site gamete in each transmission cycle (Lim & McFadden, 2010) with

F IGURE 4 Comparison of genome-wide Tajima’s D distributions between the two major Plasmodium knowlesi genetic subpopulations in
Malaysian Borneo. (a) Frequency distribution of Tajima’s D values in nonoverlapping 10-kb windows for Cluster 2 shows more negatively
skewed values compared to Cluster 1. (b) Tajima’s D values for individual 10-kb windows show a weak correlation between the two
subpopulations (Spearman’s q = 0.25), although this is highly significant (p < 10�16). (c) Distribution of Tajima’s D values in nonoverlapping 10-
kb windows across all 14 chromosomes presented in alternate dark and light grey blocks. The mean genome-wide value for Cluster 1 is �1.77
and for Cluster 2 is �2.37 [Colour figure can be viewed at wileyonlinelibrary.com]
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negligible recombination at the population level, but analyses of

these extra-chromosomal genomes here indicates some sharing of

different haplotypes between the P. knowlesi subpopulations. The

mosaic pattern with adjacent large regions of alternating high and

low diversity in the genome sequences of the Cluster 2 subpopula-

tion, in contrast to the more consistent high diversity throughout

the genome for the Cluster 1 subpopulation, suggests that introgres-

sion has probably occurred recently from Cluster 1 into the Cluster

2 population.

Despite the differences at the genomic level, it is not yet known

whether these two major sympatric subpopulations exhibit signifi-

cant phenotypic differences, apart from the previously described

association with different macaque reservoir host species (Divis

et al., 2015, 2017; Lee et al., 2011). Human P. knowlesi infections

have been associated with a wide spectrum of disease (Cox-Singh

et al., 2010; Daneshvar et al., 2009; Rajahram et al., 2012; William

et al., 2011), and there is recent evidence that asymptomatic infec-

tions may be more common than previously expected (Fornace et al.,

2015; Lubis et al., 2017; Siner et al., 2017), so conducting detailed

clinical studies on individuals infected with each parasite subpopula-

tion type is now a priority.

A recent study suggests a link between local deforestation and

incidence of P. knowlesi infections in an area of Sabah state within

Malaysian Borneo (Fornace et al., 2016). Of relevance to this,

long-tailed macaques and pig-tailed macaques show different habi-

tat ranges in forested and nonforested areas (Moyes et al., 2016),

suggesting that there may be micro foci of infection for each sub-

population cluster, and highlighting the need to examine changes

over time. It is clear that future research should include monitor-

ing the proportions of the different P. knowlesi subpopulations

over time, and potential changes in their genetic composition.

Sequencing of P. knowlesi genomes from natural macaque infec-

tions would be more challenging, given that these are usually

coinfections together with other primate malaria parasite species

(Lee et al., 2011), although new methods of sequencing genomes

from single parasites could be adapted to address the issue (Tre-

vino et al., 2017). This would ideally be done alongside sampling

of infections in local mosquito vector species that could poten-

tially be maintaining the separate zoonotic transmission cycles.

The genome-wide mosaicism, showing bimodal levels of diver-

gence as well as limited discordant occurrence of extra-chromosomal

genome lineages, indicate that introgression is likely to have

occurred recently between these parasite subpopulations. The

recombinant genomes that are now circulating offer a great diversity

on which selection may operate, but there is no evidence yet of

specific adaptation at introgressed loci. A recent re-analysis of previ-

ously published data identified a common shared haplotype in a

chromosomal region with low divergence between the subpopula-

tions (Diez Benavente et al., 2017), although an observation that the

region had a slightly higher than background proportion of genes

predicted to be expressed at a particular developmental stage may

not be relevant, as an extended haplotype may result from selection

on a single locus rather than on multiple genes.

In contrast, it is likely that at least one of the chromosomal

regions showing fixed differences between the clusters contains a

locus responsible for maintaining genetic isolation of the sympatric

subpopulations, potentially due to transmission in different mos-

quito vectors, as well as likely adaptation to the different reservoir

macaque hosts. Parasites from these sympatric subpopulations

have not yet been studied in laboratory infections or adapted to

culture, which will be necessary to define phenotypes and enable

experimental analyses of differences between them. Despite major

technical challenges of such work, efforts should prove worth-

while, as they are likely to reveal parasite phenotypes not present

in the old laboratory lines which were sampled from a different

part of the parasite species range (Dankwa et al., 2016; Moon

F IGURE 5 Genealogical network based on 129 Plasmodium knowlesi mitochondrial DNA genome sequences showing 56 different
haplotypes. Sizes of the circles represent relative numbers of samples with each haplotype, with numbers specified where this is more than
one. Connecting lines each represent one mutational step, and black dots represent missing intermediate haplotypes [Colour figure can be
viewed at wileyonlinelibrary.com]
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et al., 2016). If there are no parasite subpopulation-specific barri-

ers to infection of mosquito vectors that may be experimentally

used, such as Anopheles cracens (Amir, Sum, Lau, Vythilingam, &

Fong, 2013), it may ultimately be possible to map loci controlling

key phenotypes by performing genetic crosses between parental

parasites representing the different subpopulations.
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