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Microglia cells are the main mediators of neuroinflammation. Activation of microglia often aggravates the
pathological process of various neurological diseases. Natural chemicals have unique advantages in
inhibiting microglia-mediated neuroinflammation and improving neuronal function. Here, we examined
the effects of asperosaponin VI (ASA VI) on LPS-activated primary microglia. Microglia were isolated from
mice and pretreated with different doses of ASA VI, following lipopolysaccharide (LPS) administration.
Activation and inflammatory response of microglia cells were evaluated by real-time fluorescence quan-

ﬁy Vevgf::omn VI titative polymerase chain reaction (q-PCR), immunohistochemistry and enzyme-linked immunosorbent
Mi[c)r ogli ap assay (ELISA). Signaling pathways were detected by western blotting. We found that the ASA VI inhibited

the morphological expansion of microglia cells, decreased the expression and release of proinflammatory
cytokines, and promoted the expression of antiinflammatory cytokines in a dose-dependent manner. ASA
VI also activated PPAR-vy signaling pathway in LPS-treated microglia. The anti-inflammatory effects of
ASA VI in microglia were blocked by treating PPAR-y antagonist (GW9662). These results showed that
ASA VI promote the transition of microglia cells from proinflammatory to anti-inflammatory by regulat-
ing PPAR-y pathway.
© 2020 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Neuroinflammation
Lipopolysaccharide

1. Introduction strategy for Alzheimer’s disease and depression (Zhang et al.,
2018).

Microglia are the only glial cells that derive from a restricted Peroxisome proliferator activated receptor gamma (PPAR-7y)

subpopulation of yolk sac erythromyeloid progenitors. Microglia
play central roles in immune surveillance and inflammatory-
related neuropathology (Yirmiya et al., 2015). Dysfunction of
microglia has been associated with a variety of psychiatric disor-
ders, including depression, autism, and schizophrenia (Yirmiya
et al,, 2015; Brites and Fernandes, 2015). The cascade of microglial
activation could promote the synthesis and secretion of a large
number of inflammatory mediators, resulting in nerve damage
and accelerating the pathological progression of neurodegenera-
tive diseases (Zhang et al., 2016; Zhang et al., 2018). Inhibiting
the microglia-mediated neuroinflammation will be an important
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plays an important role in regulating transcription expression of
anti-inflammatory cytokines (Han et al., 2017). Studies have
shown that PPAR-y agonists (pioglitazone or rosiglitazone) can
switch the transition of microglia cells from a proinflammatory
to an anti-inflammatory state (Zhao et al.,, 2016; Wen et al,,
2018). Natural compounds have broad prospects in neuroimmune
regulation. Many studies have shown that natural products,
including ginsenoside Rb1 and salvianolic acid B, etc. have a good
inhibitory effect on microglia-mediated neuroinflammation,
which could promote the expression of anti-inflammatory cytoki-
nes by activating PPAR-y signaling pathways (Lu et al.,, 2017;
Zhang et al., 2018).

Dipsaci Radix (DR), the desiccative radix of Dipsacus asper., is an
important and common traditional Chinese medicine, has a long
application history on clinical. The current research showed DR
has multiple pharmaco-activities, and the main effective part is
the saponins (Gao et al., 2016). Among them, asperosaponin VI
(ASA VI) is the one of the highest content of saponins (Ding et al.,
2019). The effects of ASA VI on proliferation and differentiation
of osteoblasts has been widely reported (Gao et al., 2016;

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.sjbs.2020.07.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sjbs.2020.07.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:taozhou88@163.com
https://doi.org/10.1016/j.sjbs.2020.07.013
http://www.sciencedirect.com/science/journal/1319562X
http://www.sciencedirect.com

J. Zhang et al./Saudi Journal of Biological Sciences 27 (2020) 3138-3144 3139

Liu et al., 2019). However, the role of ASA VI in innate immune
regulation is unclear. In this study, we identified the regulatory
effect of ASA VI on microglia cells and explored its molecular
mechanism, laying a foundation for further studies on develop-
ment of its pharmacological potential.

2. Materials and methods
2.1. Primary microglia culture

Microglia cells were cultured as previously described (Zhang
et al., 2017). In brief, mixed glial cells were isolated from the brain
of PO-P3 C57BL/6] mice. These mixed glial cells were maintained
for 10-14 d in DMEM (Invitrogen Gibco, USA) containing 10% FBS
(Invitrogen Gibco, USA). Microglia cells are separated from the
mixed glia by shock.

2.2. LPS administration and pharmacological intervention

The asperosaponin VI (ASA VI) standard (purity = 99.92%) was
purchased from Chengdu Alfa Biotechnology Co., Ltd. The asperos-
aponin VI was dissolved in sterile phosphate belanced solution
(PBS). The microglia were pretreated with ASA VI of 10 uM,
50 uM, 100 uM and 200 puM. After 30 min, these microglia were
treated 100 ng/mL LPS (Sigma, USA) for 24 h. Following the
immunocytochemistry, RT-PCR analysis, ELISA and western blot
analysis were performed.

2.3. Immunocytochemistry and image analysis

The purified microglia cells were cultured in 24 well plates at
1 x 10° cells. These microglia cells were incubated with primary
antibodies (mouse anti-Ibal antibody, abcam, 1:400; rabbit anti-
CD68 antibody, AbD Serotec, 1:100; rabbit anti-iNOS antibody,
abcam, 1:50; rabbit anti-CD206 antibody, abcam, 1:200; rabbit
anti-PPAR-y antibody, Cell Signaling Technology, 1:200) for 24 h
and the secondary antibodies (anti-rabbit IgG-conjugated Alexa
Fluorochrome or anti-mouse IgG conjugated Alexa Fluorochrome,
Invitrogen; 1:500) for 2 h at room temperature.

Fluorescence micrographs of microglia cells were captured by a
fluorescence microscopy (Olympus BX51). Image ] software (ver-
sion 1.45]) was used to measure the area, perimeter and fluores-
cence intensity of microglia.

2.4. Quantitative PCR

The purified microglia were cultured in 6-well plates at 1 x 10°
cells. 24 h after LPS treatment, total RNA was extracted using Trizol
(Invitrogen Life Technologies, USA). Using the reverse transcription
kit (TaKaRa, Japan) to get the cDNA in strict accordance with the
steps in the experimental instructions. The RT-PCR reaction
mixture contains 1 puL of template cDNA, 5 pL MasterMix and
1 pL primer (Sangon Biotech, Sichuan, China), add DEPC water to
a total reaction volume of 10 pL. After mixing, put it into the
7500 Real-Time PCR System (Applied Biosystems, USA). The inter-
nal reference gene is B-actin and the expression of related genes
are calculated according to the method of —AA Ct. Primer
sequences have been listed in Table S1.

2.5. Enzyme-linked immunosorbent assay (ELISA)

The purified microglia cells were cultured in 6-well plates at
1 x 10° cells. The supernatant is collected and centrifuged to
remove the precipitate for testing secretion of inflammatory cyto-
kines. BCA (Sangon Biotech, Sichuan, China) was used to determine

the concentration of total protein, diluted to the same concentra-
tion, and then operated in strict accordance with the instructions
of the ELISA Kit (BOSTER, Wuhan, China) to determine the levels
of IL-10, IL-1B and TNF-o.

2.6. Western blot analysis

The purified microglia cells were cultured at 1 x 10° cells and
lysed using RIAP lysis (Solarbio, China). The protein concentra-
tion of the lysates solution was tested by BCA method. 12%
SDS polyacrylamide gel was used to resolve protein. The PVDF
membranes which transformed with protein were blocked with
5% skimmed milk. Primary antibodies (rabbit anti-PPAR-y
antibody, Cell Signaling Technology, 1:1000) and the secondary
antibodies (goat anti-rabbit IgG) were incubated with the PVDF
membranes. The proteins levels of PVDF membranes were mea-
sured with the chemiluminescence detection system (Amersham,
Berkshire, UK).

2.7. Statistic analysis

All of the data are showed as the Means + SEM. Graph drawing
was used GraphPad Prism (version 7.0). SPSS software was used for
significance analysis. Potential differences between the mean val-
ues were evaluated using Independent-Sample t test and one/
two-way analysis of variance (ANOVA) followed by Tukey’s multi-
ple comparison test for post hoc comparisons. P < 0.05 was consid-
ered to indicate a statistically significant difference. Each sample
was repeated 3 times for g-PCR, ELISA and western blot, 5
immunofluorescence images of each simple were used to image
analysis. The mean value of the parallel repeated data was used
for significance statistical analysis.

3. Results

3.1. ASA VI inhibits LPS-induced activation of microglia and
proinflammatory production

The microglia were treated with LPS to induce the inflamma-
tory response. The results from immunohistochemistry showed
that LPS treatment results in the morphological change of
microglia, including the increased area, perimeter, TI value
and CD68" area. The ASA VI inhibited LPS-induced activation
of microglia in a dose-dependent manner. When the microglia
were pretreated with ASA VI (100 pM, 200 uM) before LPS
administration, the area, perimeter, TI value and CD68"* area
of microglia were significantly inhibited. The 10uM and
50 uM ASA VI did not significantly affect the morphology of
microglia (Fig. 1A-F).

The expression of inflammatory cytokines is usually
synchronized with changes in microglial morphology. The
pro-inflammatory cytokines expressions were evaluated in LPS-
treated microglia. The results from g-PCR showed that the
100 uM and 200 uM ASA VI significantly suppressed the the gene
expression of IL-1B, iNOS, TNF-o. and IL-6 in microglia. And the
50 uM ASA VI only suppressed the expression of IL-18 and IL-6
but not iNOS and TNF-a (Fig. 1G-]). ELISA was performed to mea-
sure the concentration of IL-18 and TNF-o. which secreted by
microglia cells in the medium. The results showed that 100 uM
and 200 uM ASA VI significantly reduced the secretion of IL-1p
and TNF-o in LPS-treated microglia (Fig. 1K and L). The immuno-
histochemistry was performed to measure the intracellular expres-
sion of iNOS in microglia. The result showed 50 uM, 100 uM and
200 uM ASA VI significantly inhibited the intracellular expression
of iNOS (Fig. 1M and N).
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Fig. 1. ASA VI inhibits LPS-induced activation of microglia and proinflammatory production. (A) Immunohistochemistry detects the morphological changes and
phagolysosome of microglia cells in LPS-induced primary microglia after pretreating different doses of ASA VI. Microglia cells are labeled with IBA1 (red), phagolysosome is
labeled with CD68 (green), and nucleus is labeled DAPI. Scale bar, 50 um. (B) Quantification of the relative area of each microglia. Data are standardized to control group.. (C)
Quantification of the perimeter of each microglia.. (D) Quantification of the TI value of each microglia.. (E) Quantification of the relative area of CD68" staining in each
microglia. Data are standardized to control group.. (F) Quantification of the percentage of CD68" staining out of IBA1* staining in each microglia. (G-]) Quantitative PCR detects
the mRNA expression of proinflammatory cytokines (IL-1p, iNOS, TNF-a and IL-6). Data are showed the fold change relative to control group. (K and L) ELISA detects the
extracellular protein levels of proinflammatory cytokines (IL-1p and TNF-o.). (M) Immunohistochemistry detects iNOS (green) expression in LPS-induced primary microglia
after pretreating different doses of ASA VI. Scale bar, 10 um. (N) Quantification of the relative fluorescence intensity of iNOS. Data are standardized to control group. Data are
mean = SEM (n = 3-5 per group), each sample was repeated 3 times for q-PCR and ELISA, 5 immunofluorescence images of each simple were used to analysis. * P < 0.05,
** P<0.01, *** P <0.005 when compared with control group, * P <0.05, *# P < 0.01, *** P < 0.005 when compared with LPS group (one-way ANOVA with LSD test).
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3.2. ASA VI promotes anti-inflammatory production in LPS-induced
microglia

We next examined the effects of ASA VI on antiinflammatory
cytokines expression in LPS-induced microglia. The results from
g-PCR showed that the 100 pM and 200 pM ASA VI significantly
increased the CD206 and IL-10 expression in LPS-induced micro-
glia. The 50 uM ASA VI upregulated the expression of IL-10 but
not CD206 (Fig. 2A and B). ELISA was performed to measure the
concentration of IL-10 which secreted by microglia cells in the med-
ium. The results showed that 100 pM ASA VI significantly upregu-
lated the secretion of IL-10 in LPS-treated microglia (Fig. 2C). The
result from immunohistochemistry showed 50 uM, 100 uM and
200 uM ASA VI significantly increased the relative fluorescence
intensity of CD206 in LPS-treated microglia (Fig. 2D and E).

3.3. ASA Vl increases the expression and nuclear translocation of PPAR-
y in a dose manner

To further explore the molecular mechanism by which ASA VI
inhibit microglial activation, we examined the transcriptional
expression and activation of nuclear transcription factors PPAR-y
in ASA VI-treated microglia. We found that ASA VI increased the
transcriptional expression of PPAR-y in LPS-induced microglia
(Fig. 3A). And the IL-1p expression was negatively correlated with
the PPAR-vy transcriptional expression (Fig. 3B). We next examined
nuclear translocation of PPAR-y after ASA VI treatment in LPS-
induced microglia. The results showed ASA VI significantly
increased the percentage of nuclear translocation of PPAR-y in
LPS-induced microglia (Fig. 3C and D).

3.4. The anti-inflammatory effects of ASA VI in microglia can be
blocked by GW9662

In order to further verify that nuclear transcription factors
PPAR-y are necessary for the anti-inflammatory activity of ASA

3141

VI in microglia, the antagonists of PPAR-y (GW9662) are used to
block the activation of PPAR-y signaling pathways in ASA VI-
treated microglia (Fig. 4A-E). The results showed that the effect
of ASA VI on microglial morphology was blocked by GW9662 treat-
ment (Fig. 4F and G). GW9662 treatment also blocked the inhibi-
tory effect of ASA VI on proinflammatory cytokines (IL-1B)
expression and secretion in LPS-induced microglia (Fig. 4H and I).
Moreover, the increase in expression and secretion of IL-10
induced by ASA VI were blocked by GW9662 treatment in LPS-
treated microglia (Fig. 4] and K).

4. Discussion

Although there has been no report on the neuroimmunomodu-
lation of ASA VI, according to the reducing swelling, antioxidant
and relieving pain properties of Dipsaci Radix, we boldly specu-
lated ASA VI that the chemical components with the highest con-
tent in Dipsaci Radix might have the effect of inhibiting
inflammatory response. And for all we know this study is the first
to demonstrate ASA VI suppresses LPS-induced activation of micro-
glia by activating PPAR-y pathway.

Microglia are thought to be macrophages that resident in the
brain (Wolf et al.,, 2017). They are a class of innate immune
cells which play an important role in neuroimmunomodulation
(Colonna and Butovsky, 2017). In recent years, the role of
microglia cells in neurological diseases has received more and
more attention. Inhibiting the activation of microglia cells is
one of the effective ways to prevent neuroinflammatory injury
(Zhang et al., 2016). Activation of microglia cells is usually
characterized by increased cell body and phagolysosome, as
well as increased release of proinflammatory cytokines (Zhang
et al., 2017). In this study, LPS-treated microglia showed
significant activation characteristics. The ASA VI suppressed
the LPS-induced increase in the diameter and area of microglia,
area of phagolysosome, and synthesis and secretion of
pro-inflammatory mediators. These data indicated that ASA VI
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Fig. 2. ASA VI promotes anti-inflammatory production in LPS-induced microglia. (A and B) Quantitative PCR detects the mRNA expression of anti-inflammatory cytokines
(IL-10 and CD206). Data are showed the fold change relative to control group.. (C) ELISA detects the extracellular protein levels of anti-inflammatory cytokines (IL-10).
(D) Immunohistochemistry detects CD206 (green) expression in LPS-induced primary microglia after pretreating different doses of ASA VI. Scale bar, 10 pm. (E) Quantification
of the relative fluorescence intensity of CD206. Data are standardized to control group. Data are mean + SEM (n = 3-5 per group), each sample was repeated 3 times for q-PCR

and ELISA, 5 immunofluorescence images of each simple were used to analysis.
LSD test).

#P<0.05, ¥ P <0.01, ¥* P <0.005 when compared with LPS group (one-way ANOVA with
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immunofluorescence images of each simple were used to analysis. *** P < 0.005 when compared with control group, * P < 0.05, ** P < 0.01, *** P < 0.005 when compared with

LPS group (one-way ANOVA with LSD test).

inhibits LPS-induced activation of microglia and proinflamma-
tory production.

In addition to inhibiting proinflammatory cytokines, the upreg-
ulating the anti-inflammatory cytokines expression also plays an
important role in anti-inflammatory effect of drugs (Schain and
Kreisl, 2017; Carlessi et al., 2019). In this study, we found that
ASA VI could increase the expression and secretion of IL-10, a
classic anti-inflammatory cytokine. The anti-inflammatory pheno-
typic marker (CD206) of microglia cells also increased signifi-
cantly after ASA VI treatment. These findings suggested that
ASA VI promoted the phenotypic transition of LPS-treated micro-
glia from M1 to M2.

PPAR-v, as one of nuclear transcription factors, usually needs to
bind to their corresponding ligands and transfer to the nucleus to
initiate transcription (Yao et al., 2019). Activation of PPAR-y usu-
ally inhibits pro-inflammatory signaling pathways, such as TLR4/
NF-kb, JAK/STATI1, etc., thereby inhibiting the gene transcriptional
expression of pro-inflammatory cytokines (Machado et al., 2019).
On the other hand, activation of PPAR-y increases the gene tran-
scriptional expression of anti-inflammatory genes (Lecca et al,,
2018; Tian et al., 2019). In this study, we found ASA VI promoted
the transcriptional expression of PPAR-y gene in LPS-treated micro-
glia. Simultaneously, ASA VI promotes nuclear transfer of PPAR-y
in LPS-induced microglia (Gao et al.,, 2017; Gao et al.,, 2017,
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(two-way ANOVA with LSD test).

decreased anti-

Gao et al., 2017; Li et al., 2019). These data indicated that ASA VI
activated the PPAR-vy signaling pathway in LPS-induced microglia.
Activation of PPAR-y negatively regulates the synthesis and secre-
tion of proinflammatory cytokines.

Finally, we used the antagonists of PPAR-y (GW9662) to block
activation of PPAR-y signaling pathways in ASA VI-treated micro-
glia. Our data showed that GW9662 blocked inhibitory effect of
ASA VI on microglia activation and proinflammatory cytokines

expression and secretion, as well as
proinflammatory cytokines expression in LPS-induced microglia.
These results indicated that activation of PPAR-vy is necessary for
anti-inflammatory activity of ASA VI, which plays an important
role in ASA VI-promoted phenotype from M1 to M2.

In conclusion, the ASA VI promotes the transformation of LPS-
induced microglia from proinflammatory to anti-inflammatory
phenotype by activating PPAR-y pathway.
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