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Abstract: Many systems with distributed dynamics are described by partial differential equations
(PDEs). Coupled reaction-diffusion equations are a particular type of these systems. The measurement
of the state over the entire spatial domain is usually required for their control. However, it is often
impossible to obtain full state information with physical sensors only. For this problem, observers are
developed to estimate the state based on boundary measurements. The method presented applies
the so-called modulating function method, relying on an orthonormal function basis representation.
Auxiliary systems are generated from the original system by applying modulating functions and
formulating annihilation conditions. It is extended by a decoupling matrix step. The calculated
kernels are utilized for modulating the input and output signals over a receding time window
to obtain the coefficients for the basis expansion for the desired state estimation. The developed
algorithm and its real-time functionality are verified via simulation of an example system related to
the dynamics of chemical tubular reactors and compared to the conventional backstepping observer.
The method achieves a successful state reconstruction of the system while mitigating white noise
induced by the sensor. Ultimately, the modulating function approach represents a solution for the
distributed state estimation problem without solving a PDE online.

Keywords: state estimation; boundary observer; modulating function method; reaction-diffusion
partial differential equations; coupled partial differential equations

1. Introduction

Many systems are modeled by partial differential equations (PDEs). Typical examples
are solar collector systems [1], drilling systems [2,3], chemical reaction systems [4], medical
imaging, seismic imaging, oil exploration, and computer tomography [5].

As stated in [6], state estimators are used to derive estimates of system variables that
are difficult to measure directly and provide what is also called soft sensing of the state
variable. Their recent applications extend across manufacturing and industrial processes.

A particular type of this kind of system are coupled reaction-diffusion PDEs. This
type of system is characterized by a coupling between the system states in the PDEs. Every
equation has the form of a reaction-diffusion PDE and is dependent on the other ones,
making the system more complex in comparison to a normal PDE.

An example of such system is chemical tubular reactors [7] where the state variables,
temperature and concentration, are coupled by the PDE related to each of these states.

For the control of this kind of system, a measurement of the whole spatial domain is
often required and this requisite is nearly impossible with physical sensors. Because of
this, observers are developed in order to estimate the whole state only with boundary
measurements. An observer in combination with a control strategy can enable an output
feedback control to achieve its goal with only boundary measurements that can be done
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with a sensor collocated at the boundary. Different kinds of observers, such as adaptive and
iterative observers have been proposed in [8] and recursive observers-based methods have
been introduced in [9]. Different other types of observers have been proposed for coupled
dynamical cascade systems including ordinary differential equations (ODE) and PDEs, for
example see [10]. An overall review of state estimation techniques in [11] shows the use of
late lumping, optimal estimation, semi-group theory, the Lyapunov method, backstepping
technique, and robust state estimation in real application scenarios.

One of the early attempts to the solution of the problem for coupled reaction-diffusion
PDEs was done in [12]. The work was devoted to the solution of the stabilization problem
with the same diffusivity parameters. In [13], using an approach similar to [12], the problem
of state estimation for coupled reaction-diffusion PDEs with the same diffusivity parameters
is addressed. The observer is designed in order to have a convergence in the estimation
error system, transforming the original system through the use of the Kernel matrix. In [14]
the extension is done for coupled reaction-advection-diffusion equations also with the same
restriction of the same diffusivity parameters through the backstepping method. In [15]
some of the results from [13] are used to design an observer for a coupled reaction-diffusion
system with constant parameters that are used for an output feedback stabilization of
this system.

Then, in [16,17] a next step in generalizing the type of systems approached is made
by solving the stabilization and estimation for coupled reaction-diffusion systems with
spatially varying reaction terms. In [17], the estimation is done for a 2-coupled reaction-
diffusion PDE with spatially varying coefficients, which can be used to model the diffusion
phenomena in lithium-ion batteries with electrodes that comprise multiple active materials.
In [18], the approach is generalized to an n-coupled reaction-diffusion PDE with spatially
varying coefficients.

The approach of the work here is based on the so-called modulating function (MF),
introduced in the early 1950s by Shinbrot [19,20], to be used for parameter identification
of ODEs. In this case, modulating functions are used for state estimation. This method
reduces the original problem to a calculation of the coefficients that are used in the basis rep-
resentation of the actual state through the solution of a linear system of equations, making
the process of estimation much simpler to calculate and also less computationally intensive.

The modulating function-based method conceptionally differs from the PDE backstep-
ping approach. It involves approximating the signals in a function basis representation,
using specific properties of the modulating functions when applying a modulation opera-
tion to the original system, and transforming the original system into a series of algebraic
relations. Often this process also involves some restrictions in the modulating functions
that can be understood as an auxiliary system (also called signal modeling) to be resolved
in a pre-processing before the estimation.

The method has been used for parameters and source estimation for one-dimensional
first-order hyperbolic PDEs [21]. In this work, the modulating function method is used to
estimate the source function and velocity for the wave equation. The work also explores
the influence of different parameters in the method, such as the length of the basis, the size
of the time window, and the type of basis functions chosen. The results also show the
behavior of the estimation with respect to noise on the output of the system, featuring a
good performance and robustness of the method. Ref. [22] developed fault detection and
isolation for a parabolic PDE system using modulating functions, applying the method
for a faulty heat conducting rod. This method traces back the fault detection problem to a
trajectory planning problem using modulating functions obtained by the realization of a
set-point change for their signal models and, using previous results on motion planning for
distributed parameter systems, fault detection and isolation can be achieved.

The most recent result [23] is related to the state estimation for reaction-diffusion PDE
with constant parameters. There the whole state is estimated from a measurement on the
boundary. Through the use of modulating functions, the estimation problem is transformed
into a linear system of equations for the coefficients of the basis expansion that represents
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the whole state. The resulting auxiliary system has a form very similar to the original
system. This work constitutes the foundation for the present work since it demonstrates
that the modulating function approach may successfully be used for reaction-diffusion PDE
systems and how the state estimation can be achieved. In the present work, these results
have been inspiring to formulate the problem for coupled reaction-diffusion PDE systems.

In this paper we provide an extension of the modulating function method to coupled
reaction-diffusion PDE systems with spatially varying coefficients for state estimation.
The method only requires the inputs of the system and a measurement of the state at one
of the boundaries, achieving the objective of the soft sensor. This soft sensor provides
the complete state information at any time and gives the representation of the state as a
function basis expansion. The method provides an alternative solution to the problem of
state estimation without need to calculate a PDE solution in real time. On the contrary,
the modulating function-based method requires less computational cost enabling a real-
time implementation for application.

The method presents advantages with respect to other observers such as the back-
stepping observers due to the efficient calculation of the state estimates, requiring only
numerical integrations and matrix multiplications, whereas the backstepping observer
requires an online calculation of a coupled PDE. The method also presents robustness
against noise and is non-asymptotic by design, unlike asymptotic observers such as back-
stepping observers.

The paper is organized as follows: Section 2 presents the problem statement and
some definitions that are useful in the solution of the problem. The use of modulating
functions for the state estimation of an n-coupled reaction-diffusion PDE with spatially
varying coefficients is proposed in Section 3. In Section 4, an implementation of the method
developed in the last section is provided. Different parameters of the observer are tested
in order to analyze their influence on the estimation, simulation results are presented and
compared with other results. Finally, Section 5 holds our conclusions.

2. Estimation Problem Definition

The central subject of soft sensor design for coupled PDE systems involves a precise
characterization of the considered PDE structure. In order to extract the state information
from measured data, an adequate representation of the solution function in the form of
a separable series expansion is established. It builds the foundation for extracting state
information by means of the modulating function method by building a suitable input-
output relation. The underlying modulation operator is defined with respect to time
and space.

2.1. Coupled Reaction-Advection-Diffusion PDE

This work deals with the following class of linear systems modeled by n-coupled
advection-diffusion-reaction equations with spatially varying coefficients:

∂W
∂t

(x, t) = Σ(x)
∂2W
∂x2 (x, t) + Φ(x)

∂W
∂x

(x, t) + Λ(x)W(x, t) (1)

where
W(x, t) =

[
w1(x, t) . . . wn(x, t)

]>
is the state vector and x ∈ Ω := [0, L], t ≥ 0. The coupling matrices Σ(x), Φ(x), Λ(x) ∈
Rn×n with corresponding component functions εij ∈ C2(Ω), φij ∈ C1(Ω), λij ∈ C0(Ω) for
i, j = 1, . . . , n, are the diffusion, advection, and reaction term coefficients, respectively. The
system has the mixed-type boundary condition

P1
∂W
∂x

(0, t) + P0W(0, t) = F(t)
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that can be a Dirichlet or Neumann-type boundary condition choosing either P1 = 0 or
P0 = 0. Additionally, we have known actuation at the boundary, i.e.,

Q1
∂W
∂x

(L, t) + Q0W(L, t) = U(t) (2)

with inputs U(t) ∈ Rn and measurements Y(t) ∈ Rn as

Y(t) = R1
∂W
∂x

(x∗, t) + R0W(x∗, t)

at the boundary with x∗ = 0 or L. The task is to estimate the state W(x, t) with the
measurements Y(t) and the inputs U(t) in the case of unknown initial conditions W(x, 0).

2.2. Function Basis Expansion

Similar to the strategy in [23], a series expansion of the solution of system (1) is utilized
for extracting the unknown state information. In the present work, it is assumed that the
subsystem states wl(x, t), l ∈ {1, . . . , n}, can be represented as

wl(x, t) =
∞

∑
k=0

ck
l (t)ψk(x) (3)

with ψk as the k-th element of the orthonormal basis

Ψ = {ψk ∈ L2(Ω) | k ∈ N0, ‖ψk‖v = 1∧ 〈ψk, ψj〉v = 0 for k 6= j} (4)

with respect to the function space X ⊆ L2(Ω) with the positive weight function v : Ω→ R:

X : = { f : Ω→ R, ‖ f ‖2
v < ∞} = span(Ψ) ,

〈 f , g〉v =
∫

Ω
v(x) f (x)g(x)dx .

(5)

The weight v serves as a degree of freedom within the upcoming problem-solving
process. A reduced basis is utilized for approximating the solution space by exploiting
orthonormality with respect to the spatial component resulting in a boundary estimation
by algebraic means.

2.3. Modulating Functions

An extension of the modulating functions method to distributed systems can be
obtained by defining the kernel function in both time and spatial domain [22,24].

Definition 1 (Modulation Functional). The state modulation functional is defined by

M[h] =
∫ t

t−T

∫ L

0
ϕ(x, τ − t + T)h(x, τ)dxdτ (6)

where h: [0, L]×R+
0 → R and ϕ: [0, L]× [0, T]→ R is the modulating function to be constructed.

For simplicity the inner product notation

〈ϕ, h〉Ω,I := M[h]

is used where the moving time horizon is denoted by I := [t − T, t] with the receding
horizon length T > 0, also called the time window. If the integration only concerns the
temporal or spatial variable, 〈ϕ, h〉I and 〈ϕ, h〉Ω are used. In the following, an application
of the operator (6) leads to a similar construction of conditions for the modulation kernel ϕ
with a more systematic auxiliary problem than in the ODE case.
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3. Non-Asymptotic Observer Design for Coupled PDE System

The major research goal of the contribution is related to the extension of the non-
asymptotic observer design approach for PDEs by using modulating functions from [23]
towards coupled PDE systems. In order to construct a relationship between the known
measurements and the parameterization of the unmeasured state variable, the modulation
functional is applied to the dynamics of the system and suitable conditions for neglecting
unknown terms are formulated. To this end, a system of auxiliary equations is built for
calculating the modulation kernels offline which resemble the form of the original system
in an adjoint way. The whole operation results in an estimator equation for obtaining the
series expansion coefficients that solely relies on an integration-based time filter operation
on the sensor data.

3.1. Derivation of the Auxiliary System

For the derivation of the auxiliary system, the modulation functional (6) is applied
to the dynamics of the system (1). The following calculations are performed in a similar
fashion as in [23]. First, the modulation functional is applied to the second spatial derivative
of the state with ϕ as the modulation function defined in (6). Considering each particular
derivative for every state component wl(x, t) of W with l ∈ {1, . . . , n} and using derivation
by parts leads to

〈ϕ,
∂2wl
∂x2 〉Ω,I =

∫ t

t−T
ϕ(x, τ − t + T)

∂wl
∂x

(x, τ)dτ
∣∣∣x=L

x=0
−
∫ t

t−T

∂ϕ

∂x
(x, τ − t + T)wl(x, τ)dτ

∣∣∣x=L

x=0
+ 〈∂

2 ϕ

∂x2 , wl〉Ω,I

⇒ 〈ϕ,
∂2wl
∂x2 〉Ω,I =

∫ t

t−T
(M2

L + M2
0)[ϕ, wl ]dτ + 〈∂

2 ϕ

∂x2 , wl〉Ω,I (7)

with the substituted function kernel operations

M2
L[ϕ, wl ] = ϕ(L, τ − t + T)

∂wl
∂x

(L, τ)− ∂ϕ

∂x
(L, τ − t + T)wl(L, τ)

M2
0[ϕ, wl ] = −ϕ(0, τ − t + T)

∂wl
∂x

(0, τ) +
∂ϕ

∂x
(0, τ − t + T)wl(0, τ).

Now, the modulation functional is applied to the first spatial derivative of the state.
Using derivation by parts again we get

〈ϕ,
∂wl
∂x
〉Ω,I =

∫ t

t−T
ϕ(x, τ − t + T)wl(x, τ)

∣∣∣x=L

x=0
+ 〈∂ϕ

∂x
, wl〉Ω,I =

∫ t

t−T
(M1

L + M1
0)(ϕ, wl)dτ + 〈∂ϕ

∂x
, wl〉Ω,I (8)

where
M1

L(ϕ, wl) = ϕ(L, τ − t + T)wl(L, τ)

M1
0(ϕ, wl) = −ϕ(0, τ − t + T)wl(0, τ).

Furthermore, the modulation functional is applied to the time derivative of the state.
Similarly, using derivation by parts leads to

〈ϕ,
∂wl
∂t
〉Ω,I =

∫ L

0
ϕ(x, τ − t + T)wl(x, τ)dx

∣∣∣τ=t

τ=t−T
− 〈∂ϕ

∂τ
, wl〉Ω,I .

Selecting the following initial and final temporal conditions for the modulating function
with reduced function basis {ψm, m ∈ 0, 1, . . . , N}, N ∈ N, from (4) for estimation, i.e.,{

ϕm(x, 0) = 0

ϕm(x, T) = v(x)ψm(x)
(9)

we use the basis expansion from (3) and the spatial integration term becomes

∫ L

0
ϕm(x, τ − t + T)wl(x, τ)dx

∣∣∣τ=t

τ=t−T
=
∫ L

0
ϕm(x, T)wl(x, t)dx =

∞

∑
i=0

ci
l(t)〈ψm, ψi〉v = cm

l (t).
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Finally, the conditions of (9) establish the relation

〈ϕm,
∂wl
∂t
〉Ω,I = cm

l (t)− 〈
∂ϕm

∂τ
, wl〉Ω,I . (10)

Applying the modulating functions ϕm
i , i ∈ {1, . . . , n}, to the i-th equation of (1) and

utilizing the former calculations we obtain

〈ϕm
i ,

∂wi
∂t
〉Ω,I =

n

∑
j=1
〈ϕm

i , εij(x)
∂2wj

∂x2 〉+
n

∑
j=1
〈ϕm

i , φij(x)
∂wj

∂x
〉+

n

∑
j=1
〈ϕm

i , λij(x)wj〉

which using the associative properties of the modulation functions yields

〈ϕm
i ,

∂wi
∂t
〉Ω,I =

n

∑
j=1
〈εij(x)ϕm

i ,
∂2wj

∂x2 〉+
n

∑
j=1
〈φij(x)ϕm

i ,
∂wj

∂x
〉+

n

∑
j=1
〈λij(x)ϕm

i , wj〉.

From the previous results, (7), (8) and (10), we first draw

cm
i (t) = 〈

∂ϕm
i

∂τ
, wi〉Ω,I +

n

∑
j=1

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ

+
n

∑
j=1
〈

∂2(εij(x)ϕm
i )

∂x2 −
∂(φij(x)ϕm

i )

∂x
+ λij(x)ϕm

i , wj〉Ω,I

that by expanding the spatial derivations in the left part leads to

cm
i (t) = 〈

∂ϕm
i

∂τ
, wi〉Ω,I +

n

∑
j=1

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ

+
n

∑
j=1
〈εij(x)

∂2 ϕm
i

∂x2 + (2
∂εij

∂x
− φij)(x)

∂ϕm
i

∂x
+ (

∂2εij

∂x2 −
∂φij

∂x
+ λij)(x)ϕm

i , wj〉Ω,I .

(11)

Up to this part, the procedure is applied along [23]. It is worth noticing that for
eliminating the part of the inner product brackets multiplied with the unknown state wj, n
auxiliary PDE equations would have to be solved for ϕm

i with only one solution. As this is
an ill-posed problem, more equations need to be generated. Multiplying every line of (11)
by ki ∈ R and summing up the components first generates the set of equations

n

∑
i=1

kicm
i (t) =

n

∑
i,j=1

ki

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ

+
n

∑
i=1

ki〈
∂ϕm

i
∂τ

, wi〉Ω,I +
n

∑
i=1

ki

n

∑
j=1
〈εij(x)

∂2 ϕm
i

∂x2 + (2
∂εij

∂x
− φij)(x)

∂ϕm
i

∂x
+ (

∂2εij

∂x2 −
∂φij

∂x
+ λij)(x)ϕm

i , wj〉Ω,I

which taking ki into the brackets and switching the index i with j in the last sum gives
n

∑
i=1

kicm
i (t) =

n

∑
i,j=1

ki

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ

+
n

∑
i=1

ki〈
∂ϕm

i
∂τ

, wi〉Ω,I +
n

∑
i,j=1
〈k jεji(x)

∂2 ϕm
i

∂x2 + k j(2
∂εji

∂x
− φji)(x)

∂ϕm
i

∂x
+ k j(

∂2εji

∂x2 −
∂φji

∂x
+ λji)(x)ϕm

i , wi〉Ω,I .

Then, first exchanging the order of summation leads to
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n

∑
i=1

kicm
i (t) =

n

∑
i,j=1

ki

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ

+
n

∑
i=1
〈ki

∂ϕm
i

∂τ
+

n

∑
j=1

(k jεji(x)
∂2 ϕm

i
∂x2 + k j(2

∂εji

∂x
− φji)(x)

∂ϕm
i

∂x
+ k j(

∂2εji

∂x2 −
∂φji

∂x
+ λji)(x)ϕm

i ), wi〉Ω,I ,

finally, dividing and multiplying the term within the inner product brackets by ki 6= 0 to
n

∑
i=1

kicm
i (t) =

n

∑
i,j=1

ki

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ

+
n

∑
i=1

ki〈
∂ϕm

i
∂τ

+
n

∑
j=1

(
k j

ki
εji(x)

∂2 ϕm
i

∂x2 +
k j

ki
(2

∂εji

∂x
− φji)(x)

∂ϕm
i

∂x
+

k j

ki
(

∂2εji

∂x2 −
∂φji

∂x
+ λji)(x)ϕm

i ), wi〉Ω,I .

(12)

For now, it is assumed that the terms M2
L, M2

0, M1
L, M1

0 can be calculated (are known).
This is demonstrated in Section 3.2. In order to annihilate the term in brackets and thus,
leaving the left part of (12) with only known terms, the following condition is needed:

−
∂ϕm

i
∂τ

=
n

∑
j=1

k j

ki
εji(x)

∂2 ϕm
i

∂x2 +
n

∑
j=1

k j

ki
(2

∂εji

∂x
− φji)(x)

∂ϕm
i

∂x
+

n

∑
j=1

k j

ki
(

∂2εji

∂x2 −
∂φji

∂x
+ λji)(x)ϕm

i , i = 1, . . . , n.

The following adjoint coupled PDE is constructed to determine the modulating func-
tions: 

−∂ϕm

∂τ
(x, τ) = Σ̄(x)

∂2 ϕm

∂x2 (x, τ) + Φ̄(x)
∂ϕm

∂x
(x, τ) + Λ̄(x)ϕm(x, τ)

Σ̄(x) = [
k j

ki
εji(x)]

Φ̄(x) = [
k j

ki
(2

∂εji

∂x
− φji)(x)]

Λ̄(x) = [
k j

ki
(

∂2εji

∂x2 −
∂φji

∂x
+ λji)(x)]

with τ ∈ [0, T] and the initial and final condition given by (9).
The boundary conditions remain degrees of freedom. However, the main challenge

is that the final condition needs to be met precisely. To this end, the following boundary
condition is added to the auxiliary problem as an extra degree of freedom:

ϕm(0, τ) = ηm(τ).

Note that the negative sign in front of the spatial derivative implies non-causal nature
of the distributed dynamics. For that reason, a transformation to forward time is used
similar to [23] with σ ∈ [0, T]:

ξm(x, σ) := ϕm(x, T − σ). (13)

This results in a transformed auxiliary problem with an added boundary condition for
the signal model control to fulfill the specifications

∂ξm

∂σ
(x, σ) = Σ̄(x)

∂2ξm

∂x2 (x, σ) + Φ̄(x)
∂ξm

∂x
(x, σ) + Λ̄(x)ξm(x, σ)

ξm(x, 0) = v(x)ψm(x)

ξm(x, T) = 0

ξm(0, σ) = η̃m(σ).

(14)

The specified goal of ξm(x, T) = 0 is the main reason for the added boundary condition
for the auxiliary model control η̃m. This specification implies that the auxiliary model has
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to be stabilized to zero within the time window of length T. If that is not achieved,
the approximation of the coefficient cm

j includes a significant error and in consequence
the estimation has an induced error. As a consequence, (14) implies that (12) becomes

n

∑
i=1

kicm
i (t) =

n

∑
i,j=1

ki

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ. (15)

In order to determine each cm
i value, further (n− 1) equations can be generated similar

to (15) with different ki to form a system of n equations. Since (12) holds true for any of
these relations, we get

n

∑
i=1

khicm
i (t) =

n

∑
i,j=1

khi

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

i , wj] + (M1
L + M1

0)[φij(x)ϕm
i , wj]dτ, h = 1, . . . , n. (16)

If the function basis approximation order is N, then N + 1 systems exist with the
form of (14). In total, n(N + 1) auxiliary systems are generated and need to be solved,
and n(N + 1)2 modulating functions result in total. It is also worth noticing that after
solving (14), an inverse time transformation has to be made to obtain the modulating
functions ϕm

i . This transformation is

ϕm(x, σ) := ξm(x, T − σ). (17)

For the reconstruction of the states, it has to be ensured that the auxiliary system
requirements are fulfilled. Once the auxiliary problem is solved, after the inverse time
transformation (17), the modulating functions ϕm

hi for 1 ≤ h, i ≤ n and 0 ≤ m ≤ N are
obtained. Then (16) can be rewritten in a linear system of equations as per

[
kh1 . . . khn

]cm
1 (t)

...
cm

n (t)

 =Mm
h (t)

where

Mm
h (t) =

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

hi, wj] + (M1
L + M1

0)[φij(x)ϕm
hi, wj]dτ . (18)

Using

K =

k11 . . . k1n
...

. . .
...

kn1 . . . knn

, C(t) =

c0
1(t) . . . cN

1 (t)
...

. . .
...

c0
n(t) . . . cN

n (t)

 ,

a decoupling follows if K is invertible, thus

C(t) = K−1

M
0
1(t) . . . MN

1 (t)
...

. . .
...

M0
n(t) . . . MN

n (t)

 = K−1M(t). (19)

With these coefficients, the state can be reconstructed using the function expansion
representation from (3):

W(x, t) =

∑∞
k=0 ck

1(t)ψk(x)
...

∑∞
k=0 ck

n(t)ψk(x)

 ≈
∑N

k=0 ck
1(t)ψk(x)

...
∑N

k=0 ck
n(t)ψk(x)

 = C(t)Ψ(x) = K−1M(t)Ψ(x). (20)
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With this expression the state can be reconstructed, solving the estimation problem. It
shall be noted that for the reconstruction of state, the calculation of the coefficients of the
basis expansion is required. The calculation follows (19) and depends on matrix K andM.

The main idea for the procedure is to use a different modulating function for every
equation of the system. Then, to overcome the coupling that exists in the system, all
the equations are added up to get the coupling into the modulating function equation.
Finally, more coupled systems can be constructed by adding up the equations but with
different constants.

3.2. Calculation of the Modulation Operators

Now, M2
L, M1

L, M2
0, and M1

0 are calculated from known terms. Without loss of general-
ity, it is assumed that x∗ = 0. Then, the following system of equations is obtained:

P1
∂W
∂x

(0, t) + P0W(0, t) = F(t)

R1
∂W
∂x

(0, t) + R0W(0, t) = Y(t).

If P1 and R1 or P0 and R0 are linearly independent, then W(0, t) and ∂W
∂x (0, t) satisfy[

∂W
∂x (0, t)
W(0, t)

]
=

[
P1 P0
R1 R0

]−1[F(t)
Y(t)

]
. (21)

With additional knowledge of the modulating function ϕ, M2
0 and M1

0 are known and
can be calculated from (18), leading to

n

∑
i,j=1

khi

∫ t

t−T
(M2

0[εij(x)ϕm
hi, wj] + M1

0[φij(x)ϕm
hi, wj])dτ =

n

∑
i,j=1

khi

∫ t

t−T
(−(εij ϕ

m
hi)(0, τ − t + T)

∂wj

∂x
(0, τ)

+(
∂(εij ϕ

m
hi)

∂x
− φij ϕ

m
hi)(0, τ − t + T)wj(0, τ))dτ.

Arranging the equation in a vectorial form

n

∑
i,j=1

khi

∫ t

t−T
(M2

0[εij(x)ϕm
hi, wj] + M1

0[φij(x)ϕm
hi, wj])dτ =

∫ t

t−T

[
−Σ̃h(0, τ − t + T) ( ∂Σ̃h

∂x − Φ̃h)(0, τ − t + T)
][ ∂W

∂x (0, τ)
W(0, τ)

]
dτ

(22)

where
Σ̃h(x, τ − t + T) = {khi(ϕhiεij)(x, τ − t + T)}1≤i,j≤n

Φ̃h(x, τ − t + T) = {khi(φij ϕhi)(x, τ − t + T)}1≤i,j≤n.

and using (21) yields

n

∑
i,j=1

khi

∫ t

t−T
(M2

0[εij(x)ϕm
hi, wj] + M1

0[φij(x)ϕm
hi, wj])dτ =

∫ t

t−T

[
−Σ̃h(0, τ − t + T) ( ∂Σ̃h

∂x − Φ̃h)(0, τ − t + T)
][P1 P0

R1 R0

]−1[F(τ)
Y(τ)

]
dτ.

(23)

For M2
L, M1

L, the equation can be rewritten similarly:

n

∑
i,j=1

khi

∫ t

t−T
(M2

L[εij(x)ϕm
hi, wj] + M1

L[φij(x)ϕm
hi, wj])dτ =

∫ t

t−T
(Σ̃h(L, τ − t + T)Wx(L, τ)− (

∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T)W(L, τ))dτ.

(24)
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From here, (2) can be used only involving known terms.
If Q1 is invertible, then ∂W

∂x (L, t) = Q−1
1 (U(t)−Q0W(L, t)) and using (24) results in

n

∑
i,j=1

khi

∫ t

t−T
(M2

L[εij(x)ϕm
hi, wj] + M1

L[φij(x)ϕm
hi, wj])dτ

=
∫ t

t−T
(Σ̃h(L, τ − t + T)Q−1

1 U(τ)− ((
∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T) + Σ̃h(L, τ − t + T)Q−1
1 Q0)W(L, τ))dτ.

and imposing

(
∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T) + Σ̃h(L, τ − t + T)Q−1
1 Q0 = 0 (25)

then
n

∑
i,j=1

khi

∫ t

t−T
(M2

L[εij(x)ϕm
hi, wj] + M1

L[φij(x)ϕm
hi, wj])dτ =

∫ t

t−T
(Σ̃h(L, τ − t + T)Q−1

1 U(τ))dτ .

Finally, in addition to (23) we have

n

∑
i,j=1

khi

∫ t

t−T
(M2

L + M1
L)[εij(x)ϕm

hi, wj] + (M2
0 + M1

0)[φij(x)ϕm
hi, wj]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) ( ∂Σ̃h

∂x − Φ̃h)(0, τ − t + T)
][P1 P0

R1 R0

]−1[F(τ)
Y(τ)

]
dτ

+
∫ t

t−T
(Σ̃h(L, τ − t + T)Q−1

1 U(τ))dτ .

If Q0 is invertible, then W(L, t) = Q−1
0 (U(t)−Q1

∂W
∂x (L, t)) and hence

n

∑
i,j=1

khi

∫ t

t−T
M2

L[εij(x)ϕm
hi, wj] + M1

L[φij(x)ϕm
hi, wj]dτ

=
∫ t

t−T
−((∂Σ̃h

∂x
+ Φ̃h)(L, τ − t + T)Q−1

0 U(τ)) + (Σ̃h(L, τ − t + T) + (
∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T)Q−1
0 Q1)Wx(L, τ)dτ

and imposing

Σ̃h(L, τ − t + T) + (
∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T)Q−1
0 Q1 = 0 (26)

then
n

∑
i,j=1

khi

∫ t

t−T
(M2

L[εij(x)ϕm
hi, wj] + M1

L[φij(x)ϕm
hi, wj])dτ = −

∫ t

t−T
((

∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T)Q−1
0 U(τ))dτ .

Finally, in addition to (23) we have

n

∑
i,j=1

khi

∫ t

t−T
(M2

L + M1
L)[εij(x)ϕm

hi, wj] + (M2
0 + M1

0)[φij(x)ϕm
hi, wj])dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) ( ∂Σ̃h

∂x − Φ̃h)(0, τ − t + T)
][P1 P0

R1 R0

]−1[F(τ)
Y(τ)

]
dτ

−
∫ t

t−T
((

∂Σ̃h
∂x

+ Φ̃h)(L, τ − t + T)Q−1
0 U(τ))dτ .

Note that in both cases, M2
L, M1

L, M2
0, and M1

0 can be expressed in known terms from
the problem statement and also with the modulating functions obtained from the auxiliary
models. Also note that (25) and (26) add a boundary condition to the auxiliary systems.
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For implementing the method, the procedure can be divided into two parts: offline
and online, because there are some steps in the procedure that do not need to be iterated as
Figure 1 demonstrates. The procedure can be resumed in the following steps:

Offline part

1. Define parameters for orthonormal basis calculation: approximation order N, function
basis, weight function v(x);

2. Gram–Schmidt procedure to obtain the orthonormal basis Ψ(x) = [ψ0(x), . . . , ψN(x)];
3. Create and solve auxiliary models (14) with initial condition v(x)Ψ(x) and control

scheme η to achieve ξ(x, T) = 0. The solution is ξ(x, σ);
4. Inverse time transformation (17) to obtain modulating functions ϕ(x, τ).

Online part

1. Measurement in the system;
2. Calculation of the modulation kernels with (18);
3. Decoupling of the coefficients with (19);
4. Calculation of the states with (20).

The heaviest computational part of the whole process is the solution of the auxiliary
models since it is a coupled PDE solution. However, it can be done offline. In the online
part, the decoupling and calculation of the states are matrix multiplications without further
complications. Also the matrices K−1 and Ψ(x) can be calculated offline, with no need for
actualization in the online section. The modulation part implies a numerical integration
that is a heavier computational part to do online. This integration is done with numerical
methods such as the trapezoidal rule or Newton–Cotes formulas for further improvement.

U(t)

ϕ(x, τ)

K

Ψ(x)

System

Y(t)

∂W
∂t (x, t) = Σ(x) ∂2W

∂x2 (x, t) + Φ(x) ∂W
∂x (x, t) + Λ(x)W(x, t)

Modulation Mj
i(t)

Decoupling K−1M(t)

Reconstruction C(t)Ψ(x)

Ŵ(x, t)

C(t)

Figure 1. Diagram of the online implementation. Values calculated offline are in orange color.

4. Real-Time Implementation and Simulation Results

The method presented in the last section provides a solution to the state estimation
problem. In this section, an implementation is presented in order to exemplify the capabili-
ties and the lower computational cost of the method. Simulations show the performance of
the observer and a comparison with the conventional backstepping observer.

4.1. Example Problem Setup

In order to exemplify the use and efficiency of the method, a linearized chemical
tubular reactor model is used for the simulation. The coupled temperature-concentration
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system of chemical tubular reactors is given by [25]. Linearization about the steady state
and taking the average values of the coefficients yields

∂W
∂t

= Σ
∂2W
∂x2 + ΛW

Σ =

[
0.14 0

0 0.16

]
, Λ =

[
−0.065 −0.146
−0.130 −0.293

]
W(x, t) =

[
w1(x, t) w2(x, t)

]>
(27)

with Neumann boundary condition

∂W
∂x

(0, t) = 0, (28)

known actuation at the boundary

W(L, t) = U(t) (29)

and measurement at the boundary

Y(t) =
∂W
∂x

(L, t). (30)

The problem is to estimate the distributed state W(x, t) based on the knowledge of the
actuation U(t) and the measurement Y(t).

4.2. Solution of the Problem

For the solution of the problem the same argument explored in Section 3 is used,
but with x∗ = L. In this case, the auxiliary systems are similar to (14) and read as follows:

∂ξm

∂σ
(x, σ) = Σ̄

∂2ξm

∂x2 (x, σ) + Λ̄ξm(x, σ)

Σ̄ =

[ k1
k1

ε11
k2
k1

ε21
k1
k2

ε21
k2
k2

ε22

]
=

[
ε11 0
0 ε22

]

Λ̄ =

[
λ11

k2
k1

λ12
k1
k2

λ21 λ22

]
ξm(x, 0) = v(x)ψm(x)

ξm(x, T) = 0

ξm(0, σ) = η̃m(σ).

(31)

For the present problem with x∗ = L the modulation kernel can be reformulated as

n

∑
i,j=1

khi

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

hi, wj] + (M1
L + M1

0)[φij(x)ϕm
hi, wj]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) ∂Σ̃h

∂x (0, τ − t + T)
][ ∂W

∂x (0, τ)
W(0, τ)

]
dτ

+
∫ t

t−T

[
Σ̃h(L, τ − t + T) − ∂Σ̃h

∂x (L, τ − t + T)
][ ∂W

∂x (L, τ)
W(L, τ)

]
dτ
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and using the problem conditions from (2), (28) and (30) we get

n

∑
i,j=1

khi

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

hi, wj]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) ∂Σ̃h

∂x (0, τ − t + T)
][ 0

W(0, τ)

]
dτ

+
∫ t

t−T

[
Σ̃h(L, τ − t + T) − ∂Σ̃h

∂x (L, τ − t + T)
][Y(τ)

U(τ)

]
dτ.

Imposing on the modulating functions the boundary conditions

∂ϕm
hi

∂x
(0, τ) = 0, 1 ≤ h, i ≤ 2, (32)

then ∂Σ̃h
∂x = 0 and consequently the modulation kernel can be reduced to

n

∑
i,j=1

khi

∫ t

t−T
(M2

L + M2
0)[εij(x)ϕm

hi, wj]dτ =
∫ t

t−T

[
Σ̃h(L, τ − t + T) − ∂Σ̃h

∂x (L, τ − t + T)
][Y(τ)

U(τ)

]
dτ .

Adding the boundary condition of (32), the auxiliary system in (31) becomes

∂ξm

∂σ
(x, σ) = Σ̄

∂2ξm

∂x2 (x, σ) + Λ̄ξm(x, σ)

Σ̄ =

[
ε11 0
0 ε22

]
, Λ̄ =

[
λ11

k2
k1

λ12
k1
k2

λ21 λ22

]
ξm(x, 0) = v(x)ψm(x)

ξm
x (0, σ) = 0

ξm(L, σ) = η̃m(σ)

ξm(x, T) = 0.

(33)

Meeting the conditions in (33) and applying the backwards time transformation (17),
we obtain the modulating functions ϕm

hi, and thus Σ̃h and ∂Σ̃h
∂x . Finally, with

Mm
h (t) =

∫ t

t−T

[
Σ̃m

h (L, τ − t + T) − ∂Σ̃h
∂x

m
(L, τ − t + T)

][Y(τ)
U(τ)

]
dτ

the reconstruction is possible along

W(x, t) ≈ C(t)Ψ(x) = K−1
[
M0

1(t) . . . MN
1 (t)

M0
2(t) . . . MN

2 (t)

]
Ψ(x).

4.3. Simulations

With the solution of the problem, explained in the last subsection, a simulation of the
problem with different scenarios regarding the boundary conditions and noise presence
is explored and also compared to the observer presented in [26]. The programming and
graphical representations have been developed in MATLAB®.

In the following, the simulations and plots for the system have been done using the fol-
lowing actuation and initial condition, similar to [26], in order to keep the comparison fair:

W(1, t) = U(t) =
[

5 sin(t)
10 sin(2t)

]
W(x, 0) =

[
sin(πx) + sin(3πx)
sin(πx) + sin(3πx)

]
.

(34)
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The canonical polynomial basis {1, x, . . . , xN} and weight function v(x) = x(L− x)2

are used in the Gram–Schmidt procedure to obtain the orthonormal basis. Then, the terms
v(x)ψm(x) are calculated to create and solve the auxiliary models described in (14). For this
purpose we use

K =

[
1 1
1 −1

]
.

Note that another value of K can be chosen, but be invertible to render possible the
decoupling in (19). An other choice that has to be made is the control η̃m(σ) from (14) in
order to stabilize the system in the time window [0, T] and fulfill the condition ξ(x, T) = 0.
For this, a backstepping controller, similar to [26] is used.

In order to demonstrate the effect of this degree of freedom, three cases are considered:
No control (called Orig), a more aggressive control (called Cont1), and a more conservative
control (called Cont2). For this, the backstepping control is used with different k̃ values.

The first comparison to be explored is the use of different control strategies for the
signal model control on the solution of the auxiliary systems from (14). In the presented
example the three control strategies from the last subsection are used. For the simulation
we have used a time grid resolution of Ts = 10−3 and a space grid resolution Xs = 2× 10−2

with a time horizon length T = 4. The results are illustrated in Figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4
t

0

0.2

0.4

0.6

0.8

1
ISE1

0 0.5 1 1.5 2 2.5 3 3.5 4
t
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0.6

0.8

1
ISE2

(a)
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t
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0.008

0.01
ISE1

4 4.5 5 5.5 6 6.5 7 7.5 8
t

0

0.02

0.04

0.06
ISE2

(b)

Figure 2. ISE with different control strategies for solving the MF on a stable coupled reaction-
diffusion system. (a) Before T; (b) After T.

The whole estimated state and the comparison with the real states can be seen in
Figure 3. The estimated states are very similar, as confirmed by the ISE values.

Another important factor to take into account is the effect of noise in the measurement
during the state estimation. For this purpose, white noise with different SNRs was induced
onto the measurement signal for the state estimation and the results are presented in
Figure 4.
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Figure 3. Comparison between real states (top) and estimated states (bottom).
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(a)
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t

0
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-3 ISE
2

(b)
Figure 4. ISE with different SNRs on the measurement for the state estimation on a stable coupled
reaction-diffusion system. (a) ISE of w1 before and after T; (b) ISE of w2 before and after T.

Naturally, the noise has an impact on the error as shown in the plots. This effect is
also a deviation from the ISE, which with induced noise increases as the SNR increases.
The effect of the noise is more visible in Figure 5 where the above figure is the absolute
error for each state (sampling time of 1 × 10−3) and the row below is the absolute error
(sampling time of 1 × 10−4) with an SNR of 0.1 in the measurement for each case. It can
be seen that with increasing sampling time the error decreases in the middle of the space
axis, while the error at the boundary practically does not. There also the noise impact is
much clearer.
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Figure 5. Absolute error for the estimation with SNR = 0.1 and Ts = 10−3 (top) and Ts = 10−4

(bottom) on a stable coupled reaction-diffusion system.

Finally, under the same conditions the backstepping observer described in [26] is
compared with the modulating function-based state estimation presented in this work.
The same observer was applied as in [26]. For the sake of a fair comparison, the simulations
are run with the same boundary conditions, that is (34). For the backstepping observer,
the parameter k̃ has been set to k̃ = 8 according to [26], to k̃ = 0.5 according to Condition
1 in [26] and to k̃ = 1 according to Algorithm 2 in [26], in order to achieve a better
performance of the observer. The MF observer uses a sampling time of Ts = 10−4, a time
window of T = 4, and the control strategy “Cont2” described before. The results of the
comparison are shown in Figure 6.

In the comparison it can be observed that the MF observer converges after t = 4
faster as can be seen in Table 1, with the ISE error for the first state and the second being
smaller than the other observers. On the other hand, in the section before the time window,
the backstepping observer keeps converging whereas the MF observer stops converging
as it is by design. This is explained by the ISE error at t = 8 for the MF observer being
greater than the backstepping observers. The plot of the ISE error in Figure 6 shows this
behavior and the influence of the values of the state at the boundary in the error of the MF
observer after the time window T. This comparison shows the main differences between
each approach and how the MF observer behaves with its non-asymptotic nature.

Table 1. ISE of w1 at different times for the stable coupled reaction-diffusion PDE.

Observer (t = 2) (t = 4) (t = 8)

MF 1.6× 10−3 4.0× 10−4 1.6× 10−4

Backstepping (k̃ = 1) 6.5× 10−3 7.1× 10−4 3.0× 10−6

Backstepping (k̃ = 0.5) 8.8× 10−3 1.1× 10−3 2.5× 10−5
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Figure 6. Comparison of ISE for the backstepping and MF observer in the state estimation on a stable
coupled reaction-diffusion system. (a) ISE of w1; (b) ISE of w2; (c) ISE of w1 after T; (d) ISE of w2 after T.

The results of the method in the unstable coupled reaction-diffusion system and with
spatially varying coefficients are shown in Appendix A and the performance illustrates the
application of the observer for these systems.

5. Conclusions

The presented modulating function-based observer achieves algebraic state estimation
for linear coupled reaction-diffusion PDEs in finite time. Only boundary measurements as
well as knowledge of the actuation signal is required. The modulating functions result from
solving the corresponding auxiliary problems. They serve as kernels of the FIR filter real-
ization for the reconstruction the modal state representation. The method constitutes a soft
sensor for obtaining internal information on the coupled distributed processes, especially
since measurements of the entire spatial domain are nearly impossible and the presented
observer is capable of providing the state information with a boundary measurement. The
algorithm has been implemented and its functionality is validated via simulation.

The observer approximates the original states based on a series expansion formulation
of the PDE solution. In order to achieve this, the temporal coefficients of the respective basis
expansion need to be calculated. In comparison to the original work [23], this calculation
cannot be done straightforwardly by applying the modulation operator due to the coupling
between states. To overcome this problem, a linear combination of every dynamic equation
is constructed prior to the application of the modulation operator. The resulting auxiliary
systems need to be solved offline for connecting the measurement information to the
state representation. The auxiliary systems are adjoint to the original ones with modified
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coefficients related to the decoupling matrix K that is chosen appropriately. The modulating
functionsare required to be zero at the end of the time window which is achieved by a
signal model controller, transforming the problem into a stabilization task.

The central tuning parameters for the observer design are the sampling time Ts,
used for the time integration and the sampling of the measured signals; the moving time
horizon length T, adjusting the filtering properties of the algorithm; the approximation
order N, that determines the accuracy of the state projection as well as the number of
modulating functions.

There are three major sources of estimation errors. First, numerical errors are related
to the accuracy of the numerical integration which depends on the sampling time Ts. It can
be reduced using higher precision and thus, smaller values of Ts. Secondly, the projection
error from the basis expansion approximation can be reduced by increasing the basis order
and the grid resolution in x. Lastly, measurement noise affects the solution of the algebraic
equations and is conversely amplified by higher projection orders as well as by a shorter
horizon length T.

The method explained in the paper shows certain advantages with respect to other
PDE observers such as the backstepping observers, as described in Table 2. This includes
computationally lighter calculations for the state estimation since it only requires numerical
integration and matrix multiplication in comparison to the backstepping observer that
relies on the online solution of a coupled PDE for each time step. This advantage allows for
an efficient real-time implementation of the modulating function-based method realized
by FIR filter implementation as described in [23]. The robustness against sensor noise is
demonstrated by the simulation results.

The main drawback of the presented approach is the sensitivity with respect to the
sampling time affecting the performance of the observer. The simulative investigation
shows that smaller values of the sampling time Ts are crucial in order to achieve accurate
results due to the numerical integration. This, however, raises the allocated memory size
for storing past signal values and increases the number of processor operations. Another
challenge is the state values dependency of the error since backstepping controllers with
their convergence do not have this issue.

Table 2. Advantages, issues, inaccuracies, and future ideas for the method.

Advantages Issues

• Simple algebraic state estimator equations • Dependency on sampling time
• Good level of noise mitigation • Error depending on state values
• Real-time implementation

Inaccuracies Future Ideas

• Basis expansion approximation • Advanced signal model control
• Error at the boundaries • Consideration of non-linear terms

Next steps include the development of better signal model control methods for each
auxiliary system in order to reduce the error of the estimated coefficients in relation to the
moving time window length T. Furthermore, the influence and selection of the matrix K
should be elaborated thoroughly in addition to the basic constraints established in this
work. Another area of interest is the generation of even more algebraic equations in order
to form an over-determined system of equations eventually leading to a higher robustness
of the estimation procedure. Ultimately, an extension of the approach towards the inclusion
of non-linear coupled systems could be explored as well as systems with time-varying
coefficients in order to expand the methodology to a wider class of applicable systems.
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Appendix A

The following section presents more simulation results for the method in further
scenarios and systems.

Appendix A.1. Unstable Coupled Reaction-Diffusion PDE

The following linear 2-coupled reaction-diffusion PDE is used to demonstrate the
performance of the MF observer in an unstable system:

∂W
∂t

= Σ
∂2W
∂x2 + ΛW

Σ =

[
2 0
0 2

]
, Λ =

[
1 2
4 5

]
W(x, t) =

[
w1(x, t) w2(x, t)

]>.

(A1)

For the simulation, the same boundary conditions as for the former systems have been
used. It is worth remarking that the system is unstable as can be noted in Figure A2, thus
making necessary the use of a control strategy (Cont4) for the auxiliary system. This can be
observed in Figure A1.
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Figure A1. ISE with different control strategy for the MF solution for the state estimation on an
unstable coupled reaction diffusion system. (a) ISE of w1; (b) ISE of w2.

The error for the estimation without a control is much larger than the one with control
for each state, which is due to the necessity to fulfill the condition ξ(x, T) = 0. The results
of the estimation can also be seen in Figure A2 where the original states are in the above
figures and the estimated states in the lower figures, both showing similarity.

Figure A2. Original states (top) and estimated states (bottom) of an unstable coupled reaction
diffusion system.

The effect of noise was also tested and the results are shown in Figure A3.
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Figure A3. ISE for the state estimation on an unstable coupled reaction diffusion system.

The absolute error is shown in Figure A4. The major error lies on the spatial boundaries,
similar to the former system. It is also worth noticing that the error seems to increase as
time increases since the state values also increase (see Figure A2). According to the error
induced by the approximation of the condition ξ(x, T) = 0, resulting from (9) and (10), an
error is induced in the coefficient calculation and therefore an error in the state estimation.
The distribution of the absolute error in the time and spatial axis can be seen in Figure A4.

Figure A4. Comparison of the original and estimated state of an unstable coupled reaction diffu-
sion system.

Appendix A.2. Coupled Reaction-Diffusion with Spatially Varying Coefficients PDE

The following linear 2-coupled reaction-diffusion PDE with spatially varying coeffi-
cients is used to demonstrate the performance of the MF observer in an unstable system:

∂W
∂t

= Σ
∂2W
∂x2 + ΛW

Σ =

[
1 0
0 3

]
, Λ =

[
1 x
x 1

]
W(x, t) =

[
w1(x, t) w2(x, t)

]>.

(A2)

The results with a sampling time of 1× 10−3 and 1 × 10−4 are shown in Figure A5.
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Figure A5. Effect of sampling time Ts on the ISE for a coupled reaction diffusion system with spatially
varying coefficients.

Performance of the observer also improves with a smaller sampling time such as the
other systems, especially notable in the ISE of the second state.

The absolute error of the estimation is shown in Figure A6 and the comparison of the
original and estimated state are shown in Figure A7.

Figure A6. Absolute error of the estimation for each state on a coupled reaction diffusion system
with spatially varying coefficients.

Figure A7. Comparison of the original and estimated state for the state estimation on a coupled
reaction diffusion system with spatially varying coefficients.

The influence of noise shown in Figure A8, where the noise seems to have a smaller
impact compared to the former systems, even increasing the SNR value as the plots indicate.



Sensors 2022, 22, 5008 23 of 24

t

ISE
1

t

ISE
1

t

ISE
2

t

ISE
2

Figure A8. Effect of the noise on the ISE for each state on a coupled reaction diffusion system with
spatially varying coefficients.

The appendix has shown the performance of the observer in further coupled reaction-
diffusion PDEs and demonstrates how the MF observer can be applied in such cases with
the different parameters.
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