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Introduction

As with many intracellular infectious agents, the protozoan

Toxoplasma gondii has a quiver of effectors that it uses to co-opt host

cell functions. These are injected during invasion and intersect several

host pathways key to the immune response, such as STAT signaling

and immunity-related GTPases (IRGs or p47 GTPases). Among the

effectors so far identified, several are from a paralogous family of

protein kinases and pseudokinases that are injected into the host cell

from the apical secretory organelles known as rhoptries. These so-

called ROP kinases are polymorphic and account for much of the

difference in virulence, at least in mouse infections, found with different

strains of Toxoplasma. How these ROPs were found and the current

state of knowledge on what each does is presented in this brief review.

1. What Is Toxoplasma and What Symptoms Does It
Produce?

Toxoplasma is a genus of obligate intracellular parasites within the

phylum Apicomplexa [1,2]. There is only one well-recognized species

in the genus, T. gondii, which is found worldwide and has an

enormous intermediate host range comprising almost any bird or

mammal, including humans. Its definitive host (i.e., the one in which

the sexual cycle occurs) is any feline. Human infection occurs either

through eating undercooked meat from an infected intermediate

host, like lamb, or through ingesting oocysts shed by an infected cat

and present in drinking water or soil-contaminated vegetables.

The symptoms associated with Toxoplasma infection range from

none to severe, even fatal. The factors that determine the severity

include the immune status of the host and, at least in experimental

animals, the particular strain initiating the infection. In humans,

the data for strain-specific differences in virulence are much less

clear, but several studies have suggested such an effect [3–5].

2. When and How Does Toxoplasma Inject Proteins
into the Host Cell?

Within the invasive stages of Toxoplasma there are many secretory

organelles [1]. One such set is the apically situated rhoptries, the

bulk of whose contents are found within their bulbous base, and

these are generally termed ROPs. ROPs are introduced into a host

cell during invasion and traffic to the host nucleus, the nascent

parasitophorous vacuole membrane (PVM), and probably other

places within the infected host cell yet to be determined [6]. Despite

much important work on the phenomenon, the precise mechanism

by which ROPs are injected is essentially unknown.

3. What Comprises the ROP Cargo and What Do
the ROPs Do?

Most ROP proteins so far characterized show clear homology to

protein kinases [7–9]. Some are active kinases, while others are

predicted to be pseudokinases—i.e., catalytically inactive. The

best-studied active kinases are ROP16 and ROP18. ROP16 is a

tyrosine kinase that mimics the action of host JAKs by

phosphorylating the key tyrosine needed for activation of STATs

[10–13]. This is an extremely rapid process such that within one

minute of the commencement of invasion, STAT3 and STAT6 (at

least) are activated and translocated to the nucleus where they turn

on many immune response genes and downregulate the expression

of others.

ROP18 is a serine/threonine kinase whose targets include the

interferon-gamma-inducible p47 GTPases encoded by immune-

response genes (IRGs; [14,15]). In the absence of ROP18, IRGs

can multimerize on the PVM, somehow causing it and the

parasites within to be destroyed. ROP18’s phosphorylation of

IRGs occurs within the nucleotide-binding site, causing them to

lose the ability to oligomerize and, thus, to lose activity. ROP18

also has been reported to bind and inactivate ATF6b, a

transcription factor with a role in the interferon-gamma response

[16]. A complete inventory of the targets of ROP16 and ROP18

has yet to be generated, but it is likely an extensive list.

The complete sequence of the Toxoplasma genome reveals that,

in addition to ROP16 and ROP18, the ROP kinase family

comprises more than 30 additional genes, many of which are

under diversifying selection [9]. One of these, ROP38, is

represented by three tandemly duplicated genes and appears to

play a role in modulating MAPK signaling in host cells [9]. The

actual target for the ROP38 kinase has yet to be determined.

Within the overall family of ROP ‘‘kinases,’’ most are predicted

to be pseudokinases. Interestingly, these have been subject to gene

duplication such that clusters of 3–12 nearly identical genes are

often found at a given chromosomal location. The function of

most of these pseudokinases is not yet known, but one, ROP5, has

recently been shown to play a key role in the strain-specific

differences in virulence in mice [17,18]. Two nonmutually

exclusive mechanisms for how ROP5 functions have been
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described. In the first, ROP5 binds to and thereby interferes with

the oligomerization of the IRGs mentioned above [19,20]. This

both interferes with their action and makes them more susceptible

to phosphorylation and, thus, permanent inactivation by ROP18.

The second mechanism involves ROP5’s ability to directly

regulate the catalytic activity of ROP18 by allosteric means and

independent of the substrate being phosphorylated [21].

Many of the ROP kinase family, including ROP5 and ROP18,

are found specifically associated with the PVM. This association is

mediated by an arginine-rich, amphipathic, helical domain found

toward the N-terminus of the mature protein [22,23]. At least in

the case of ROP18, the proper localization provided by this

domain is required for biological function—i.e., ROP18’s ability to

phosphorylate IRGs [22]. The N-terminal region is also necessary

for ROP18’s ability to bind to ATF6b [16].

4. How Were the ROP Kinases/Pseudokinases
Discovered and What Evolutionary Pressures Led
to These Strain-Specific Differences?

As stated above, strains clearly differ in their virulence in mice.

Given the well-described sexual cycle of Toxoplasma, it is possible to

cross strains by giving cats a mixed infection and then isolate and

analyze the resulting F1 progeny. Such analyses revealed that

mouse virulence is a multigene trait [24,25], and several of the loci

responsible for strain-specific differences in virulence have been

mapped [18,26,27]. About the same time, microarray analysis of

infected host cells revealed that strains also differ dramatically in

their effects on host gene expression [28]. Hence, the Toxoplasma

loci responsible for these differences could be mapped, as well.

Collectively, these genetic studies led to the identification of

ROP16, ROP18, and ROP5 as key virulence genes [18,26,27],

and ROP16 was simultaneously identified as also a key mediator

of host gene expression [28].

A small number of strains have come to dominate in many

regions [29,30], raising the question of what evolutionary forces

might have led to their emergence. One attractive model is that

different strains evolved for different host species and that allelic

differences in the various ‘‘virulence’’ factors are a reflection of

similar differences in their respective targets in those hosts. A

priori, this could be a difference between host species such that

Toxoplasma strain A carries versions of ROP5, ROP16, and

ROP18 that are perfectly ‘‘tuned’’ to the IRGs, ATF6b, and

STATs of, say, a mouse, while strain B carries alleles of these

ROPs that are optimized for the corresponding molecules in a

sparrow. This possibility has been tested by comparing the

different efficiencies with which ROP16s of different strains

activate their STAT targets in mammals (mice and humans) vs.

birds (chickens). The results showed that, contrary to the model,

the strain-specific differences in ROP16’s effect were independent

of host species, at least in vitro [10]! This led to a friendly

amendment to the model—i.e., that the differences between the

hosts that the strains have evolved to infect might be in the

environment experienced by that host rather than the species of

host, per se. For example, it could be that strain A evolved in hosts

that were simultaneously infected with worms or microflora that

pushed the immune system in a particular direction, while strain B

evolved in hosts that differed in this key respect. This could explain

why one version of ROP16 can drive a macrophage toward the

classical, inflammatory state of activation, while another pushes

them toward the alternative, wound-healing state [31]; a host

population that is chronically infected with worms is expected to

be more in the latter state, and this might select for a strain of

Toxoplasma that pushes against this to ensure there is a balanced

response to the parasite. If such a strain infected a worm-free

population of hosts, i.e., one that is tilted more toward an

inflammatory (Th1-type) response, the result might be a hyperin-

flammatory cytokine storm that was lethal to the host, resulting in

little if any transmission of the parasite.

5. What Is the Significance of the ROPs to Human
Health and Our Understanding of Host-Pathogen
Interactions in General?

Clinically, most Toxoplasma infections in humans result in little if

any disease. If the exceptions to this scenario are due to strain type,

knowing the mechanism responsible for the severe disease would

enable us to treat the infection appropriately. For example,

infection with a strain that drives a hyperinflammatory infection

might best be treated by a regimen that includes steroids or other

anti-inflammatory agents. Such treatment in a patient with a strain

that already down-modulates inflammation might be disastrously

counterproductive.

Most of the ROPs remain mysterious in their function. In fact, it

is mostly only the ones that have a major, strain-specific impact on

virulence or gene expression that have so far had functions

ascribed. This has led to discovery of an intersection with

previously known host pathways like those mediated by STAT

or IRG proteins. It is likely that the nonpolymorphic ROPs have

equally important functions and very possible that the targets of

these are not pathways that are currently understood in the

immunology world. Proteins like the diverse NOD-like receptors

(NLRs) that are presumed to function in innate immunity but a

majority of which have no known ligand are but some of many

possible targets for the yet-to-be-studied ROPs. Toxoplasma has had

millennia to evolve an impressive array of effectors, and they are

likely far more ‘‘aware’’ of host immune defenses than are we.
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