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Abstract

In 1978, Thomas J. Sorensen defended a thesis in chemical engineering at the University

of California, Berkeley, where he proposed an extensive model of glucose-insulin control,

model which was thereafter widely employed for virtual patient simulation. The original

model, and even more so its subsequent implementations by other Authors, presented

however a few imprecisions in reporting the correct model equations and parameter val-

ues. The goal of the present work is to revise the original Sorensen’s model, to clearly

summarize its defining equations, to supplement it with a missing gastrio-intestinal glu-

cose absorption and to make an implementation of the revised model available on-line to

the scientific community.

Introduction

Diabetes is a metabolic disorder that affects millions of people worldwide and depends on the

reduced capacity or the complete failure of the pancreas to produce insulin, possibly combined

with the resistance of tissues to insulin action. People affected by diabetes, if not properly

treated, present elevated levels of glucose in the bloodstream (hyperglycemia), and if not well

controlled may develop long-term severe chronic complications such as retinopathy, stroke,

nephropathy, neuropathy, or even experience dangerous and potentially lethal episodes of

hypoglycemia [1–6].

In this framework, the need for developing tailored treatment approaches has led to the use

of mathematical models able to represent the glucose/insulin dynamic response of the single

patient, for instance with the objective of fully automating-insulin delivery. With the goal of

maintaining glucose levels inside a narrow range of values, a number of closed-loop control

methods have been designed, often relying on a limited or sparse number of observations,

approach that is often referred to with the general term artificial pancreas (see e.g. [7–12] and

references therein); these systems base their efficacy, in terms of in-silico testing, on reliable

mathematical models of glucose homeostasis.
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Over the last sixty years, several efforts have been made for the representation of the glu-

cose/insulin system through the use of compartmental models, some simpler (“minimal mod-

els”), with few equations and parameters [13–16], others more complex, including interactions

among many players (insulin, glucagon, free fatty acids‥). Among the most widely used com-

prehensive multi-compartment models of the glucose-insulin system there are the UVa-

Padova model [17–20], the Hovorka model [21, 22] and the model developed by Sorensen

[23]. In particular, the Sorensen model is perhaps the most complex among these, incorporat-

ing 22 differential equations (mostly nonlinear), representing glucose concentrations in the

brain, heart and lungs, liver, gut, kidney and periphery, with about 135 parameters (including

the initial conditions of the state variables). The values of the many model parameters were

decided on the basis of a careful literature research. Many researchers subsequently based their

work on the Sorensen model ([24–39] represent just an example), but because of its complexity

only few authors used it for the development of control algorithms [31, 35, 38, 39]. The model

delivers a detailed and well-documented representation of the physiological mechanisms, but,

possibly due to its complexity, several scientists who employed and implemented it did not

perform a sufficiently thorough, painstaking analysis of the model itself, thereby inheriting

some errors from the original Sorensen presentation.

Moreover, while intravenous glucose administration experiments and continuous glucose

infusion rate experiments can be explicitly represented by the original model, oral glucose

administration lacks such an explicit representation. In fact, the 100g oral glucose test

described by the Author in his original work is simulated by means of the direct introduction

of a gut glucose absorption rate term in the gut mass balance equation (roga), bypassing the glu-

cose pathway from stomach to gut and adopting an empirical functional formulation for the

time curve of the absorption rate. In the process of adapting the model to experimental data,

the Author adjusted the rate of gut glucose absorption in order to match observed blood glu-

cose concentrations with model-predicted peripheral blood glucose concentrations.

Another limitation of the Sorensen model is the inability of the pancreas sub-model to

appropriately secrete insulin in response to an oral glucose load, which would have required

some description of the action of incretin hormones. This limitation was bypassed by the

Author by empirically estimating the required rate of pancreatic insulin output to adjust pre-

dicted insulin concentrations with respect to observed insulin experimental data [23].

The objective of the present work is twofold: first, we want to highlight and correct the

errors appearing in the original version of the Sorensen’s model, to implement a carefully

revised version of the model, and to make the implementation available on-line to the scien-

tific community. The implementation is provided both in user-to-machine and machine-to-

machine versions at the address: http://biomatlab.iasi.cnr.it/models/login.php (access as a

Guest).

Matlab code is also downloadable from the same link.

The second objective is to enrich the model by introducing a description of the gastrointes-

tinal tract (to simulate alimentary glucose intake, digestion and absorption), exploiting a previ-

ously published glucose absorption formulation [40], which was demonstrated to adapt well to

experimental data from individuals ranging from normal subjects to type-2 diabetic patients.

Methods

Sorensen model analysis

The Sorensen model [23] is one of the most complex physiological models describing glucose

homeostasis. It has been vastly cited and used to simulate virtual patients with the aim of vali-

dating control algorithms in the framework of artificial pancreas development. It consists of
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three sub-models describing the glucose concentration time-course in brain, liver, heart and

lungs, periphery (tissue and muscles), gut and kidney and includes the pancreatic release of

insulin and glucagon. A scheme of the model is reported in Fig 1.

The original model is represented by the first two block diagrams; the third diagram repre-

sents instead the added gastrointestinal tract, whose output constitutes one of the inputs into

the GG Sorensen compartment. Appendix A1 reports the complete and corrected Sorensen

model along with all the parameter values and the initial conditions of the equations. In pre-

senting the model, Sorensen reported detailed reasoning and literature references for each

equation and parameter value adopted, justifying each single choice with an accurate and

broad discussion of the involved physiological aspects. A summary of the final model formula-

tion was reported at page 213 of his dissertation in the subsection “Summary of Model Equa-

tions, Parameter Values, and Mathematical Nomenclature”. Given its complexity, most of the

researchers who used the model in their activity referred this summary section without dou-

ble-checking the equations reported in the other sections of the original work. Some other

Authors then referred to previous publications based on the Sorensen model, thereby inherit-

ing the same imprecisions from their sources. Table 1 reports a list of errors we found in the

Fig 1. Schematic representation of the Sorensen model (block diagrams). With arrows representing flows between compartments, and block

diagram of the gastric intestinal tract. Output from the gastric intestinal model represents the input into the GG compartment; arrows represent mass

transfer.

https://doi.org/10.1371/journal.pone.0237215.g001

Table 1. Sorensen imprecisions and the relative corrections.

Sorensen Summary and Initial Condition Page Correct form ID

rKGE
mg
min

� �
¼ 71þ 71tanh½0:11ðGK � 460Þ� 216 rKGE

mg
min

� �
¼ 71þ 71tanh½0:011ðGK � 460Þ� (A)

0 < GK < 460
mg
min 216 0 < GK < 460

mg
dL (B)

rKIC ¼ FKIC½QI
KIK � 219 rKIC ¼ FKIC½QI

KIH � (C)

dQ
dt ¼ kðQ � Q0Þ þ gP � S 219 dQ

dt ¼ kðQ0 � QÞ þ gP � S (D)

GPI ¼ GPV �
rBGU
VPI

TG
P 264 GPI ¼ GPV �

rPGU
VPI

TG
P (E)

https://doi.org/10.1371/journal.pone.0237215.t001
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original dissertation and which were incorporated in later work using the model [26, 31, 35,

38, 39].

Model simulations highlight the fact that the identified errors produce a clearly different

model behavior: kidney glucose excretion appears to be slower (A), adopted initial conditions

do not appear to be at equilibrium (C and E), insulin secretion appears to be incorrect (D).

Error C was present for example in [26], [35], [38], [39] and in [31] where reference [35] was

used as source. Error A was inherited by [26] and [38]. We hypothesize that the problem

highlighted in this last publication, where equilibrium points appear to lie in a “non-feasible

region”, could in fact be due to the introduction of the above errors in the Sorensen model

implementation used.

Sorensen re-implementation

Implementation and test of the original version. The Sorensen model was implemented

by following the internal standard procedures of the CNR-IASI BioMatLab. Implementation

of the model equations was conducted following the MoSpec (model specification) approach,

an internally developed automatic system, which takes as input a spreadsheet containing all

the model specifications (description of the equations, parameter names, initial conditions,

parameter values, latex and matlab syntax) from which computational routines in Matlab [41],

R [42] and C++ [43] are automatically generated, along with a LaTeX document containing

the model equations as well as the program code produced for the implementation. Having

automated code development and automatic comparison of the original mathematical formu-

lation with the actual coding implementation allows fast and thorough code verification. In

order to compare predictions obtained by Sorensen in his original work and predictions

obtained by our system, a number of test cases presented by Sorensen were simulated:

• a standard 0.5 g/kg Intra Venous Glucose Tolerance Test (IVGTT);

• a variable-dose IVGTT comparison (0.05, 0.2, 0.5 and 0.75 g/kg);

• a 0.04 U/kg Intravenous Insulin Tolerance Test IVITT;

• a continuous intravenous insulin infusions (0.25, 0.4 mU/kg).

The next section reports the results obtained.

The updated original version: Modelling the oral glucose assumption. The original

work of Sorensen presents a series of simulations showing the good adaptation of the model to

experimental data. Some of the simulations were those described above and show the time

courses of glucose and insulin concentrations when glucose and/or insulin were administered

intravenously as a bolus or as a constant infusion.

Sorensen also tested the performance of the model when glucose was administered orally:

in this case he was forced to derive empirically both the rate of insulin secretion and the rate of

glucose appearance. Two major limitations are indeed present in the Sorensen model: both the

incretin effect and the rate of gastric uptake are not explicitly modeled. When glucose is

ingested orally, glucose-induced insulin secretion by pancreatic β-cells is potentiated with

respect to the case in which glucose is administered intravenously. This is due to the incretin

effect of at least two hormones, glucose-dependent insulinotropic polypeptide (GIP) and glu-

cagon-like peptide-1 (GLP-1), both released in the gut from enteroendocrine cells when glu-

cose goes through the intestinal tract. This potentiation effect is not explicitly modelled by

Sorensen and indeed the set of parameter values provided by Sorensen does not produce an

insulin secretion rate compatible with the insulin concentrations that are normally observed
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during an oral glucose load. In order to obviate this discrepancy, Sorensen bypassed

completely the pancreatic insulin release sub-model and iteratively adjusted the rate of

assumed pancreatic insulin secretion into the circulating insulin sub-model, until the pre-

dicted serum insulin concentrations matched the experimental data. The same procedure was

adopted for the rate of gut oral glucose absorption (roga, mg/min), for which an empirical func-

tion was used as input in the glucose gut compartment and then adjusted so as to match the

observed glucose concentrations with model predictions.

In the present work, an improved version of the Sorensen model is implemented, incorpo-

rating into the original 1978 version a previously published model of the Oral Glucose Toler-

ance Test, the SIMO model [40]. When choosing which representation of gastrointestinal

glucose absorption to use in order to integrate the original Sorensen model, we reviewed sev-

eral options from the literature. Appendix A2 describes the other gastrointestinal glucose

absorption models that we considered. We finally choose the SIMO model due to its relative

simplicity, to the fact that it represents mechanistically anatomical compartments and trans-

fers, and to the fact that it fits available observations well. The SIMO model is composed of

four compartments corresponding indicatively to Stomach, Jejunum and Ileum, plus a delay

compartment between Jejunum and Ileum. Although the original SIMO model explicitly

incorporates the incretin mechanism, making insulin secretion depend on the glucose content

in the Jejunum and Ileum, the part of the model used here is only that related to the glucose

absorption route. In the present formalization, stomach emptying and transfer from stomach

to proximal and distal intestinal tract are modelled by linear dynamics. This approach was suf-

ficient in the original SIMO model to obtain a very good adaptation of the model to data from

subjects with different degree of glycemic impairment (from normal glucose tolerance to

impaired fasting glucose and impaired glucose tolerance up to Type-2 Diabetes Mellitus). The

equations inherited from the SIMO model are reported below:

dS
dt
¼ � kjsS; Sð0Þ ¼ D ð1Þ

dJ
dt
¼ kjsS � kgjJ � krjJ; Jð0Þ ¼ 0 ð2Þ

dR
dt
¼ � klrRþ krjJ; Rð0Þ ¼ 0 ð3Þ

dL
dt
¼ klrR � kglL; Lð0Þ ¼ 0 ð4Þ

roga ¼ f ðkgjJ þ kglLÞ; rogað0Þ ¼ 0 ð5Þ

where D is the orally administered quantity of glucose whereas S, J and L represent the quan-

tity of glucose in the stomach, in the jejunum and in the ileum compartments respectively. R is

a delay compartment, necessary to approximate the absorption profile of glucose over time:

see [40] and [44] for details. The function roga represents the rate of gut oral glucose absorp-

tion, which acts as input into the original Sorensen model and which substitutes the empirical

test function described above. In other words, the function roga constitutes the link between

the SIMO model and the Sorensen model (see Fig 1) and is substituted into the Sorensen
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model equation

VG
G
dGG

dt
¼ QG

GGH � Q
G
GGG þ roga � rGGU: ð6Þ

The incretin effect was not explicitely modelled by Sorensen and the original insulin

model and pancreatic insulin release remain unchanged in the present formulation. Most of

the parameters related to insulin metabolism are allow to vary freely, in order to describe a

pancreatic insulin release able to produce a good fit to observed insulin concentrations. The

next section reports the procedure carried out to test the ability of this improved version of

the Sorensen model to reproduce an Oral Glucose Tolerance Test.

Model fitting and sensitivity analysis

The Sorensen insulin pancreatic release sub-model equations are reported below:

rPIR ¼
SðGHÞ

SðGB
HÞ
rBPIR ð7Þ

dP
dt
¼ a½P1 � P� ð8Þ

dI
dt
¼ b½X � I� ð9Þ

dQ
dt
¼ KðQ0 � QÞ þ gP � S ð10Þ

S ¼ ½M1Y þM2ðX � IÞ
0þ

�Q ð11Þ

X ¼
ðGHÞ

bpir1

ðbpir2Þ
bpir1 þ bpir3ðGHÞ

bpir4
ð12Þ

P1 ¼ Y ¼ ðXÞbpir5 ð13Þ

rBPIR ¼
QI
L

1 � FLIC
IBL � Q

I
GI

B
G � Q

I
AI

B
H ð14Þ

The free parameters to be estimated are those reported in Eqs [1–5; 7–14], except for

parameter Q0 which was kept fixed at its original value as identified by Sorensen. For a detailed

description of the Sorensen model variables and parameters refer to [23].

The parameter identification process was conducted according to four steps:

STEP 1 The roga time course, as empirically derived by Sorensen, was used as data input:

data were graphically extracted (27 data points) and used to estimate the SIMO model

parameters, so as to predict a curve that was as close as possible to the original Sorensen

roga function.

STEP 2 The SIMO model parameters were then kept fixed and one hundred optimization pro-

cedures were performed to estimate the free parameters of the Sorensen pancreatic insulin

release sub-model, using as data glucose and insulin concentrations as well as points
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extracted from the rPIR time course (25 data points). In each one of the 100 optimization

procedures the starting value used for each of the free parameter to be estimated was a ran-

dom realization from a normal distribution centered on the parameter value reported by

Sorensen with a standard deviation equal to 15% of the same parameter value.

STEP 3 A final optimization procedure was performed by letting all parameters from the

above two steps vary freely, using all available data points from the four “observed” state

variables (plasma glucose and insulin concentrations, roga and rPIR). This last optimization

procedure was carried out using as starting value the optimum parameter vector from

STEP 1 and the “best” optimum (the one producing the smallest loss function) among the

100 optimization procedures from STEP 2.

An approximation to the Variance-Covariance matrix of the model parameter vector has

been computed as [JT S−1 J]−1, where J represents the Jacobian in the obtained optimum

and S is Variance-Covariance matrix of the observation error vector, assumed to be diago-

nal (uncorrelated errors) with variances proportional to the square of the mean response:

Sði; jÞ ¼ s2f ðtj; yÞ
2
; i ¼ j

Sði; jÞ ¼ 0; i 6¼ j
ð15Þ

where σ, the scale parameter, is the coefficient of variation.

STEP 4 Two hundred optimization procedures were then performed to test model “a-posteri-

ori” identifiability: each of the free parameters of the Sorensen insulin pancreatic release

sub-model was initialized perturbing its optimum value from STEP 3: for each parameter

to be estimated the new starting value in each of the 200 optimization procedures was sam-

pled from a normal distribution centered on the parameter optimum value, with a standard

deviation equal to its 15%.

Each optimization process was performed by minimizing the sum of the weighted squared

residuals (weighted least-squares estimation, with weights the inverse of the squared expecta-

tions) over 5 free parameters in STEP 1 (Table 2 with parameter f kept fixed at 1), 11 free

parameters in STEP 2 (Table 3 with parameter Q0 fixed at its original value) and 16 parameters

in STEPs 3 and 4.

While it is true that the model incorporates a high number of free parameters to be simulta-

neously estimated and that this can lead to overfitting problems, STEPs 3 and 4 were executed

in order to have reasonable starting values and reasonable allowable values ranges for each

parameter (values for parameters can be assessed for “reasonableness” if each parameter has a

direct physiological meaning, which is a good motivation for the use of mechanistic models).

The results from STEP 4 give indications about both the variability of the parameter estimates

and the correlation between each couple of parameter estimates.

Table 2. STEP 1 results. Simo model parameters before (as reported in [40]) and after the optimization process for roga
data fitting.

Parameters [Units] Before After

Kjs [1/min] 0.25 0.028237

Kgl [1/min] 0.1 0.0180942

Kgj [1/min] 0.042 0.0329673

Krj [1/min] 0.09 0.0344046

Klr [1/min] 0.06 0.0513802

f [#] 0.7 1

https://doi.org/10.1371/journal.pone.0237215.t002
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Bayesian a-posteriori identifiability analysis

For parameters with high coefficients of variation, obtained from the estimated asymptotic

variance-covariance matrix of the model parameter vector (STEP 3), a bayesian approach was

also implemented in order to evaluate their a-posteriori identifiability with an alternative

approach to STEP 4, setting all the others parameters at their optimum value. A Monte Carlo

Markov Chain (MCMC) approach was followed, using a Metropolis-Hastings algorithm [45]

nested into the Gibbs sampling [46–49], making use of samples from the full conditional distri-

butions. The Bayesian model specification starts with the assignment of a distributional form

to the observation error vector, along with the specification of a variance-covariance structure.

We assume normally distributed errors, with zero mean and the same variance-covariance

matrix as the one adopted in the WLS approach:

yj ¼ f ðtj; yÞ þ �j; �j � Nð0; Sðj; jÞÞ ð16Þ

where yj is the observation at time tj, the errors �j, j = 1, . . ., n are assumed to be uncorrelated

and where, in analogy with Eq 15, S(jj) = σ2[f(tj, θ)]2.

An a-prior inverse gamma distribution was assumed for the parameter σ2 (σ2� GI(n
2
, t

2
)).

The parameter θ was log-transformed and a prior uniform distribution was assigned to the

parameter vector log(θ): p(log(θ))� UD, where D is the region delimited by the intervals cen-

tred on the logarithm of the parameter optimum values and with limits equal to ±100% of the

log-transformed values. The parameter vector, object of the bayesian inference, is therefore the

parameter ξ = (η, σ2) = (log(θ), σ2)).

The full conditional distribution for the scale parameter σ2 is still an inverse gamma:

pðs2jy; yÞ ¼ GIð
nþ n

2
;
1

2
½ðy � f ðt; yÞÞTF� 1ðy � f ðt; yÞÞ þ t�Þ ð17Þ

Table 3. STEP 3 results. Sorensen pancreatic insulin release model parameters before and after the optimization

process.

Parameters [Units] Before After

Kjs [1/min] 0.028 0.026

Kgl [1/min] 0.018 0.035

Kgj [1/min] 0.033 0.032

Krj [1/min] 0.034 0.029

Klr [1/min] 0.051 0.026

f [#] 0.7 1

α [1/min] 0.0482 0.014

β [1/min] 0.931 15.558

K [1/min] 0.00794 0.0145

Q0 [pmol] 44310 44310

γ [pmol/min] 4025 2138.76

M1 [1/min] 0.00747 0.00012

M2 [1/min] 0.0958 0.2488

βpir1 [#] 3.27 4.164

βpir2 [mM] 7.333 3.776

βpir3 [#] 2.879 1.837

βpir4 [#] 3.02 3.577

βpir5 [#] 1.11 2.876

https://doi.org/10.1371/journal.pone.0237215.t003
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with y being the observation vector, n the number of total observations and F the diagonal

matrix with elements F(jj) = [f(tj, θ)]2.

Due to non-linearity in the regression model, the full conditional distribution of η = log(θ)

cannot be calculated explicitly. However it can be written up to a proportionality constant:

pðZjyÞ ¼j Sj� 1
2expf�

1

2
½ðy � f ðt; eZÞÞTS� 1ðy � f ðt; eZÞÞ�ÞgUDðZÞ ð18Þ

The Metropolis-Hastings algorithm was used to obtain samples from the full conditional dis-

tribution of parameter the vector η = log(θ). At each iteration of the MCMC, a multinormal

distribution for η was used as proposal distribution. Mean and variance-covariance matrix of

the distribution were derived from the following considerations: using the first order Taylor

expansion of the logarithm function, we can approximate log(x) in a small neighborhood of x,

E(x) = x0:

logðxÞjx0
≊ logðx0Þ þ

1

x
jxoðx � x0Þ ð19Þ

EðlogðxÞÞ ¼ logðx0Þ ð20Þ

VarðlogðxÞÞ ¼
1

x2
jx0
VarðxÞ ¼ ½CVðxÞ�2 ð21Þ

With the appropriate substitutions, the proposal multinormal distribution was assumed to be

centred on the logarithm of the optimum values from the WLS procedure of STEP 3, while the

variance-covariance matrix of η was derived from the coefficients of variation computed from

the estimated asymptotic variance covariance matrix σ2[JT S−1 J]−1. While the variance-covari-

ance matrix remained unchanged during the MCMC algorithm, at each iteration of the algo-

rithm the proposal distribution was centred on the values obtained from the preceding

iteration. The MCMC algorithm was implemented by building nine independent chains of

10,000 samples, each one beginning from a different parameter starting point. The nine points

were chosen as the four vertices of the region D plus the mid points of the edges and the central

point of D. For each chain the first 1000 realizations were considered as “burn-in” to let the

Markov chains to reach equilibrium and get sufficiently close to the stationary distribution.

The characteristics of the empirical distribution of parameter θ can be derived from the char-

acteristics of the empirical distribution of η. For each couple of parameters, a Credibility

Region (CR) can be built from their bivariate empirical distribution: from a 20 × 20 bi-dimen-

sional frequency histogram (400 cells in total with relative frequencies fi,j), the frequency level ℓ
such that the sum of the frequencies for which fi,j> ℓ is equal to 95%, is found iteratively:

CRMCMCð95%Þ ¼ fcelli;j : fi;j > ‘;
X

i;j

fi;j ¼ 0:95g ð22Þ

Results

Fig 2, top panels, shows blood glucose and plasma insulin concentrations over time as pro-

duced by the CNR-IASI BioMatLab Sorensen model implementation, following a standard

0.5g/kg IVGTT experiment. These curves should be compared with the graphs reported in Fig

71 at page 270 of the original work [23].

Note that peripheral venous blood glucose concentrations were obtained by multiplying by

0.84 the model state variable “peripheral vascular blood water space glucose concentration”,
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following the indication of the Author. The curves obtained closely resemble the original

curves: small deviations, less than 0.20 mg/dl and 10mU/L occur for the maximal concentra-

tions of glucose and insulin respectively. From a qualitative point of view, the simulated curves

are perfectly comparable with the original ones.

The bottom panels of Fig 2 show the time courses obtained when simulating the adminis-

tration of variable IVGTT doses. In this experiment, starting glucose and insulin concentra-

tions were set to different values in correspondence of the different IVGTT doses (table

32 at page 275) and were also different from the values used in the experiment reported in

top panels of Fig 2 (89 mg/dl and 12.8 mU/l for glucose and insulin basal concentrations

respectively).

Deviations from the original time courses (Fig 73 at page 273 of [23]) are evident only for

the insulin concentration profile, which is estimated to be about 20 mU/L lower for the 0.5g/

kg IVGTT experiment.

Fig 2. IVGTT Sorensen simulations. Top panels: blood glucose and plasma insulin concentrations over time as derived from the

CNR-IASI BiomatLab Sorensen model implementation following a standard 0.5g/kg IVGTT experiment (comparison with Fig 71, page

270 of the original work [23]); bottom panels: blood glucose and plasma insulin concentrations over time obtained in correspondence of

variable IVGTT doses (comparison with Fig 73, page 273).

https://doi.org/10.1371/journal.pone.0237215.g002
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Fig 3 in the top panels shows the glucose and insulin trends following a 0.04 U/Kg Intrave-

nous Insulin Tolerance Test (IVITT) experiment, with insulin administered over 3 minutes.

Reference time courses are shown in Fig 74 at page 277 of [23].

Here the glucose state variable is multiplied by 0.925 to obtain venous plasma glucose con-

centration, according to the prescriptions of the Author. The curves obtained again closely

resemble, both quantitatively and qualitatively, the results by Sorensen.

Results related to the Continuous Intravenous Insulin Infusions experiment are reported in

the bottom panel of Fig 3. In this last experiment, 0.25 mU/kg of insulin is infused intrave-

nously for 150 minutes. Also in this case the state variable GPV (Glucose Periphery Vascular

blood water space) is multiplied by 0.925 to obtained venous plasma glucose concentrations.

From a comparison with Fig 75 at page 279 of [23], a very good superimposition of the

obtained curves with the original ones is apparent.

Table 2 reports the results derived from the first step of the identification process. Values in

the second column are the average values reported in [40], which represent the starting point

Fig 3. IVITT Sorensen simulations. Top panels: glucose and insulin trends following a 0.04 U/Kg Intravenous Insulin Tolerance Test

(IVITT) experiment, with insulin administration in 3 minute (comparison with Fig 74, page 277 of [23]). Bottom panels: glucose and

insulin trends following the 150 minutes of 0.25 mU/kg Continuous Intravenous Insulin Infusion experiment (comparison with Fig 75,

page 279 of [23]). The glucose state variable is multiplied by 0.925 to obtain the venous plasma glucose concentration.

https://doi.org/10.1371/journal.pone.0237215.g003
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for the optimization process; values in the third column are those obtained after fitting the var-

iables of the SIMO model onto the data extracted from the Sorensen roga function.

Fig 4 shows the median and the set of predicted curves obtained from the 200 optimization

procedures of STEP 4 starting from optimum of STEP 3.

The top panel on the left reports the “observed” data and the predicted rate of appearance,

showing the good adaptation of the SIMO model to the roga values. Top panel on the right

reports the “observed” (asterisks) and predicted values (continuous line) of pancreatic insulin

release. The bottom panels report observed and predicted values of peripheral glucose (on the

left) and insulin concentrations (on the right). The obtained predictions are very concentrated

around their median curve and show a good adaptation of the model to data points. Table 3

reports the insulin release sub-model parameters of the new version of the Sorensen model

(including the gastrointestinal tract) before (original values as reported in [23]) and after the

optimization procedure from STEP 3. Estimates of many of the insulin secretion sub-model

parameters differ from their original values, with a minimal difference of about 18.44% (βpir4)

Fig 4. OGTT Sorensen simulations. Panels show the median and the set of predicted curves obtained by the 200 optimization procedures of STEP 4

starting from optimum of STEP 3: top panel on the left reports “observed” (asterisks) data of the roga function and the SIMO model predicted rate of

appearance (continuous line); top panel on the right reports the “observed” (asterisks) and predicted values (continuous line) of the pancreatic insulin

release; bottom panels report observed and predicted values of peripheral glucose (on the left) and insulin (on the right) concentrations.

https://doi.org/10.1371/journal.pone.0237215.g004
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and a maximal difference of about 159.7% (M2). Fig 5 shows the time courses of the pancreatic

insulin release rate obtained from an OGTT experiment with parameters set at their original

values (column titled “before” in Table 3) and with the parameter values from STEP 3 (dashed

line and continuous line respectively).

Table 4 summarizes the 200 optimization procedures performed to check model identifia-

bility: it reports the mean, standard deviation and coefficient of variations (CVs) of the param-

eter estimates obtained in the 200 procedures. CVs range from a minimum of 3.9% to a

maximum of 22.2%.

Correlation coefficients (r) between each couple of parameters were computed from the

200 optimization procedures to assess if parameters can be uniquely estimated. Many pairs of

parameters showed significant correlation: the most correlated pairs (|r|� 0.5) were βpir1 and

βpir3 (r = 0.83); βpir1 and βpir4 (r = 0.99); βpir3 and βpir4 (r = 0.76); βpir2 and βpir5 (r = -0.76); βpir2
and M2 (r = -0.61); βpir5 and M2 (r = 0.54), P< 0.0001 for all these correlations. Fig 6 reports

the scatter diagram of the 200 estimated pairs (βpir1, βpir4).

The minimum and maximum values of the loss function obtained in the 200 optimization

procedures were 2.21 and 2.26 respectively, with an average value of 2.23 (SD = 0.007). Fig 7

shows the distribution of the loss function.

CVs obtained from the approximated Variance-Covariance matrix resulted to be generally

lower, except for parameters β and M2 as shown in Table 4. For these two parameters a

Fig 5. Pancreatic insulin release rate before against after. Pancreatic insulin release rate time courses obtained with parameters set at their

original values (dashed line) and with parameter values from STEP 3 (continuous line).

https://doi.org/10.1371/journal.pone.0237215.g005
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Bayesian a-posteriori identifiability analysis was also performed. The empirical a-posteriori
bivariate distribution of the logarithms of the two parameters is reported in Fig 8. The figure

shows also the empirical Credibility Region (CR). The mean values of the two parameters

from the 81,000 realizations of the nine chains are 2.38 and −1.93, for log(β) and log(M2)

respectively, which correspond to a value of 10.79 for β and to a value of 0.15 for M2.

Discussion

Much previous work addressed the need of developing glucose/insulin models, with different

levels of complexity, for a variety of reasons, such as the study of insulin sensitivity or for

controlled automatic insulin delivery (artificial pancreas) [7–12]. These models were to be

identified on each single patient and had therefore to incorporate the relevant physiological

mechanisms in a simplified fashion. More extended models, including a variety of interactions,

are in principle more representative of the physiology, and have potentially a greater predictive

ability. Such extended models, however, include a large number of parameters: most of them

must be fixed to values taken from the literature in order for the remaining ones to be esti-

mated from patient data.

As an example, the development of robust control algorithms for automatic glucose control,

capable of maintaining glycemia within a normal range under different perturbations while

minimizing the risk of dangerous hypoglicemic episodes, may make good use of adequate,

realistic models. Motivated, among other things, by the need to provide plausible virtual dia-

betic patients for the development of efficient automatic glucose control laws, several complex,

“extended” mathematical models of the glucose-insulin system have appeared in the last few

years ([17, 20, 23, 26]).

The Sorensen model ([23]) is perhaps the most detailed of these, in terms of documented

parameter values and detailed physiological mechanisms. With its 22 nonlinear differential

Table 4. STEP 4 results. Summary of the parameter estimate distributions and parameter standard deviations computed by approximation.

Parameters [Units] Mean SD1 CV2 SD1,3 CV2,3

Kjs [1/min] 0.026 0.003 11.8 1.99E-05 0.076

Kgl [1/min] 0.027 0.004 15.8 9.93-05 0.284

Kgj [1/min] 0.036 0.004 10.7 8.48E-05 0.265

Krj [1/min] 0.033 0.002 6.3 1.09E-04 0.375

Klr [1/min] 0.030 0.004 14.4 4.79E-05 0.184

α [1/min] 0.015 0.002 15.1 1.26E-04 0.90

β [1/min] 16.97 2.03 12.0 36.6 235.48

K [1/min] 0.015 0.002 14.4 2.14E-04 1.48

γ [pmol/min] 2569.6 522.2 20.3 32.5 1.52

M1 [1/min] 0.00015 3.13E-05 20.8 6.73E-07 0.561

M2 [1/min] 0.289 0.053 18.2 0.123 49.4

βpir1 [#] 5.148 0.777 15.1 0.094 2.25

βpir2 [mM] 3.746 0.146 3.9 0.017 0.453

βpir3 [#] 2.452 0.545 22.2 0.098 5.33

βpir4 [#] 4.477 0.717 16.0 0.072 2.02

βpir5 [#] 3.066 0.415 13.5 0.023 0.814

1 SD: standard Deviation.
2 CV: Percent Coefficient of Variation.
3 Calculated by ŝ2 [JT S−1 J]−1.

https://doi.org/10.1371/journal.pone.0237215.t004
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equations and 135 parameters it has been vastly used in glucose control research. This model

represents the time course of glucose concentrations in brain, liver, heart & lungs, periphery

(tissue and muscles), gut and kidney, and includes submodels for the pancreatic release of

insulin and glucagon.

A more recent model, also belonging to the category of extended models, is the UVa/

Padova Type 1 Diabetes (T1D) Simulator ([17–20]). Its last version incorporates some time-

varying parameters, such as an insulin sensitivity function that changes in order to account for

daily tissue glucose uptake variability or for the dawn phenomenon (observed elevated glucose

concentrations in the very early hours of the morning). The UVa/Padova Simulator, in almost

all of its several subsequent formulations, includes a glucose subsystem, a glucose rate of

appearance subsystem, different routes for administered insulin, and a submodel for the gluca-

gon kinetics and secretion.

The Hovorka model ([21]), while substantially simpler than either the Sorensen or the

UVa/Padova model, has also been used by several Authors for “closing the patient loop” in the

development of automatic control laws [22, 50–52].

The rationale for using the Sorensen model, in particular for using an updated and cor-

rected version of it, resides in the fact that it is a detailed, extended model for the simulation of

Fig 6. Correlation between Sorensen parameters. Scatter plot of the estimated values of parameters βpir1 and βpir4 obtained in the 200 optimization

procedures from STEP 4.

https://doi.org/10.1371/journal.pone.0237215.g006
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a virtual patient, that it is well documented (in terms of model equations and parameter val-

ues), and that is relatively easy to use it to replicate a wide range of experimental scenarios, as

reported in Sorensen’s original work.

Conversely, the UVa/Padova Simulator, which has been commercially distributed, is rela-

tively difficult to implement independently because of the difficulty in finding what parameter

Fig 7. Loss function. Distribution of the loss function values obtained from the 200 optimization procedures of STEP 4.

https://doi.org/10.1371/journal.pone.0237215.g007

Fig 8. MCMC a-posteriori distribution. Empirical a-posteriori bivariate distribution for parameter (log(β), log(M2)),

along with the 95% Credibility Region (CR).

https://doi.org/10.1371/journal.pone.0237215.g008
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values were used by the Authors in their simulations, and also because of the fact that some

model equations are only partially described. The UVa/Padova is a simulator for Type I Diabe-

tes Mellitus Patients, and for this reason it lacks any functional representation of the insulin

secretion mechanism. In contrast, the Sorensen model allows the simulation of normal sub-

jects, of type 2 Diabetes patients who still maintain some level of endogenous insulin secretion,

and of Type I Diabetes patients for which endogenous insulin production is completely

replaced by external inputs.

The Sorensen model however presents two major limitations: on one hand it lacks any

representation of oral glucose administration and of the corresponding glucose rate of appear-

ance in plasma; a second limitation is that insulin administration is foreseen only by means of

intravenous boli or infusions. This latter is an important shortcoming: in clinical practice, sub-

cutaneous delivery represents the normal route of insulin administration, by means of either

subcutaneous boli or of wearable pumps. The subcutaneous insulin administration route

could be introduced into the model as a further improvement.

In this work we begin with a thorough revision of the Sorensen model, obtaining a model

implementation without the several imprecisions reported in the original work and inherited

by the Authors who have used this model in their research activity. This corrected model

implementation is made available to the scientific community in user-to-machine and

machine-to-machine versions at the address: http://biomatlab.iasi.cnr.it/models/login.php

(access as a Guest).

Matlab code is also downloadable from the same link.

Moreover, with the aim of making the model more useful for researchers, we propose an

improved version supplemented with a mathematical representation of gastrointestinal glu-

cose absorption during oral administration. This updated version of the Sorensen model can

also be found at above mentioned address. Following internal BioMatLab standards, the two

model versions have been automatically implemented in Matlab, R and C++ starting from

formal detailed instructions collected in a Model Specification (MoSpec) spreadsheet. The

production documentation includes side-by-side computational code and mathematical

description of the model equations, thus allowing a direct check of the correspondence of the

computation with the intended mathematical formulation. In the final configuration, Matlab

or R user interfaces (with good graphical capabilities and a potentially vast set of ready-made

functions for post processing) exploit an underlying compiled fast C++ numerical integration

engine. The compiled C++ engine also supports a Visualizer environment, where the user can

quickly explore model behaviour corresponding to parameter changes.

The implementations in different languages and the Visualizer environment represent, col-

lectively, a robust approach to verify the correctness of model implementation, which is the

BioMatLab standard for model description, implementation and verification.

A series of simulations presented by Sorensen were replicated with our system in order to

compare the two implementations. Simulations performed with the corrected version of the

Sorensen model closely resemble the curves produced by the original model (see Figs 2 and 3),

with very small deviations from what was reported in his work [23]. Small divergences are due

to differences in some parameter values: some parameters used by Sorensen (such as basal gly-

cemia or insulinemia) were said to derive from observed population average values but the

actual numerical values adopted in the simulations were not reported.

In order to test the ability of the model, supplemented with the gastrointestinal tract sub-

model, to reproduce insulinemia and glycemia time courses from Oral Glucose Tolerance

Tests (OGTTs), the improved version of the Sorensen model was tested on a set of OGTT data

already presented by the Sorensen [23]. Fitting the improved model onto OGTT data shows a

good qualitative behavior of the model solution with a good adaptation of the curves to
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experimental points (see Fig 4). We believe that two reasons are responsible for these good

results: the first reason is that the Sorensen model, although built on a knowledge basis dating

from the Eighties, is a well researched model, incorporating fundamental physiological mecha-

nisms with reasonable mathematical representations. The second reason is that the added gas-

trointestinal model was taken from the SIMO publication ([40]), where it was demonstrated

that linear stomach emptying and linear glucose transfer to the intestine were sufficient to

obtain a good representation of glycemia and insulinemia time courses data from subjects

with different degree of glycemic impairment undergoing OGTT’s [40].

Adapting the improved model to OGTT data required appropriate changes of some key

parameter values of the Sorensen sub-model for insulin secretion. These changes were due to

the fact that the Sorensen model does not include explicit modelling of the incretin effect [23].

Modifications of some parameter values however can compensate for this deficiency. It is well

known ([53–57]), in fact, that when administering glucose orally, the release of insulin by the

pancreas is enhanced with respect to the same amount of glucose administered intravenously.

This effect is due to the release of incretin hormones (GIP, GLP1) by the gut when it comes in

contact with intraluminal glucose. The Sorensen insulin secretion sub-model does not con-

template an incretin effect, therefore, when using this model with its original parameter values,

the model forecast of the insulin levels following oral glucose administration is lower than

appropriate. On the other hand, since the glycemic increase after oral administration is slower

than after intravenous administration, expected insulin release is also slower. In this case, a

better approximation to the actual insulin levels can be obtained by allowing some of the

parameter values to change; Table 3 reports the original parameter values and the values

obtained after fitting the improved model onto OGTT data. For example, the parameter γ (Eq

10) which regulates glucose-driven transfer of insulin to the labile compartment is here esti-

mated, in the case of an OGTT, to roughly half of the original value provided by Sorensen.

This result is expected, and depends on the fact that when glucose is infused intravenously its

absorption into the bloodstream occurs more rapidly, producing higher peak concentrations

than when it is given orally. On the other hand, while γ is reduced, producing a slower increase

of the releasable insulin Q, parameters βpir5 and βpir1 (Eqs 12 and 13 related to glucose driven

early insulin release and to the potentiator factor respectively) are increased, producing a

higher total release of the hormone.

The changes made to the parameter values determine changes in the dependent variables.

For example, the total amount of labile insulin provision resulted to be increased (since for

example βpir5 was increased). Changes in parameter βpir1 also determined large changes in

glucose-enhanced early insulin release, X(G)): since the relationship is highly non-linear, an

increment of about 30% of βpir1 results in a large increase of X(G). A higher release of insulin,

in turn, requires a higher insulin inhibition in order to avoid hypoglycemias; this is repre-

sented in Sorensen’s model by the dynamics of the inhibitor I (Eq 9), which is made to follow

the insulin release X much faster by increasing the value of the parameter β.

The insulin secretion function (Eq 11) is governed by two terms: one acting at the early

stage (M2(X − I)) and one acting at a later stage (M1 Y). Optimization produced a smaller esti-

mate for M1 resulting in the function Y (the secretory effect of glucose on late insulin release,

Eq 13) increasing more slowly for small values of GH (which occur at the beginning of the

experiment), and more quickly when GH reaches higher concentrations (which, in OGTT’s are

maintained for a longer time in comparison with IVGTT’s, requiring therefore an enhanced

insulin production; see Eq 12). The reduction in the M1 parameter may be necessary in order

to balance the large increase in Y determined by the increase in βpir5, particularly at high glyce-

mias (at low glycemias the effects of changes in M1 are negligible).
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Moreover, a decrement of the parameter α in Eq 8, which represents the speed with which

the potentiator factor P moves towards its target P1, contributes to maintain high level of

insulin at later times.

Since the Sorensen model is very complex, even more so with the proposed addition of a

gastrointestinal absorption submodel, it clearly presents identifiability problems. In fact,

repeated fitting has shown that some parameter estimates are strongly correlated. In particular,

parameters βpir1 and βpir4 present with a correlation coefficient of 0.99 (see Fig 6). Fig 7 shows

that the empirical distribution of the loss function values is very concentrated, indicating that

different combinations of parameter values produce essentially comparable model predictions

and loss function values.

This phenomenon is evident also by observing the results of the bayesian a-posteriori iden-

tifiability procedure, where the a-posteriori distribution of the two parameters that exhibit the

largest coefficients of variation (β and M2) is empirically derived. The 95% Credibility Region

shows that in correspondence of small values of the parameter M2, the parameter β assumes

indistinguishably small or large values. This is likely due to the fact that the action of the insu-

lin inhibitor (which is expressed through the β parameter) exerts little influence for low insulin

secretion (low values of parameter M2), in particular during the initial stages of the experi-

ments, where M2 is most relevant, and where glucose concentrations have not yet reached

high levels. Conversely, its contribution becomes more and more important as the secretion

increases, so that an increase in M2 makes an increase of β necessary. The descendent tract of

the horseshoe corresponds to large values of β, when the Inhibitor equals the insulin release

X(G) and the parameter M2 has little influence (see Eq 11) and may take any value. We can see

therefore how the bayesian approach helped to better identify the credible region for these two

parameters.

It should finally be noticed that the Sorensen model makes use of hyperbolic tangent (tanh)

functions, which are numerically effective, but which could be replaced by appropriate Hill

functions, more immediately understandable by physiologists and clinicians.

In conclusion, in spite of its limits, the Sorensen model appears to be a flexible and well

studied model, able to reproduce realistic physiological behavior from different experiments,

particularly in the improved version discussed here. It is hoped that it will be found a useful

instrument for the simulation of glucose/insulin system of virtual patients.

Appendix A1: The Sorensen model

The Sorensen Model

Mass Balance—Glucose

BRAIN.

VG
BV
dGBV

dt
¼ QG

BðGH � GBVÞ �
VBI

TB
ðGBV � GBIÞ ð23Þ

VBI
dGBI

dt
¼
VBI

TB
ðGBV � GBIÞ � rBGU ð24Þ

HEART AND LUNGS.

VG
H
dGH

dt
¼ QG

BGBV þ Q
G
LGL þ Q

G
KGK þ Q

G
PGPV � Q

G
HGH � rRBCU ð25Þ
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GUT.

VG
J

dGJ

dt
¼ QG

J ðGH � GJÞ � rJGU ð26Þ

LIVER.

VG
L
dGL

dt
¼ QG

AGH þ Q
G
J GJ � Q

G
LGL þ rHGP � rHGU ð27Þ

KIDNEY.

VG
K
dGK

dt
¼ QG

KðGH � GKÞ � rKGE ð28Þ

PERIPHERY.

VG
PV
dGPV

dt
¼ QG

P ðGH � GPVÞ �
VPI

TG
P

ðGPV � GPIÞ ð29Þ

VPI
dGPI

dt
¼
VPI

TG
P

ðGPV � GPIÞ � rPGU ð30Þ

Metabolic Source and Sinks—Glucose

rBGU ¼ 70
mg
min

½constant� ð31Þ

rRBCU ¼ 10
mg
min

½constant� ð32Þ

rJGU ¼ 20
mg
min

½constant� ð33Þ

rPGU ¼ MI
PGUM

G
PGUr

B
PGU ð34Þ

rBPGU ¼ 35
mg
min

ð35Þ

MI
PGU ¼ 7:03þ 6:52tanh½0:338ðINPI � 5:82Þ� ð36Þ

MG
PGU ¼ GN

PI ð37Þ

rHGP ¼ MI
HGPM

G
HGPM

G
HGPr

B
HGP ð38Þ

rBHGP ¼ 155
mg
min

ð39Þ
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dMI
HGP

dt
¼

1

tI
½MI1

HGP � MI
HGP� ð40Þ

tI ¼ 25min ð41Þ

MI1
HGP ¼ 1:21 � 1:14tanh½1:66ðINL � 0:89Þ� ð42Þ

MG
HGP ¼ MG0

HGP � f2 ð43Þ

MG0

HGP ¼ 2:7tanh½0:39GN � ð44Þ

df2
dt
¼

1

tG
ð
MG0

HGP � 1

2
� f2Þ ð45Þ

tG ¼ 65min ð46Þ

MG
HGP ¼ 1:42 � 1:41tanh½0:62ðGN

L � 0:497Þ� ð47Þ

rHGU ¼ MI
HGUM

G
HGUr

B
HGU ð48Þ

rBHGU ¼ 20
mg
min

ð49Þ

dMI
HGU

dt
¼

1

tI
½MI1

HGU � MI
HGU � ð50Þ

MI1
HGU ¼ 2tanh½0:55INL � ð51Þ

MG
HGU ¼ 5:66þ 5:66tanh½2:44ðGN

L � 1:48Þ� ð52Þ

rKGE ¼

(
71þ 71tanh½0:011ðGK � 460Þ� 0 < GK < 460

mg
min

� 330þ 0:872GK GK � 460
mg
min

ð53Þ

Mass Balance—Insulin

BRAIN.

VI
B
dIB
dt
¼ QI

BðIH � IBÞ ð54Þ

HEART AND LUNGS.

VI
H
dIH
dt
¼ QI

BIB þ Q
I
LIL þ Q

I
KIK þ Q

I
PIPV � Q

I
HIH ð55Þ
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GUT.

VI
J

dIJ
dt
¼ QI

JðIH � IJÞ ð56Þ

LIVER.

VI
L
dIL
dt
¼ QI

AIH þ Q
I
JIJ � Q

I
LIL þ rPIR � rLIC ð57Þ

KIDNEY.

VI
K
dIK
dt
¼ QI

KðIH � IKÞ � rKIC ð58Þ

PERIPHERY.

VI
PV
dIPV
dt
¼ QI

PðIH � IPVÞ �
VPI

TI
PI

ðIPV � IPIÞ ð59Þ

VPI
dIPI
dt
¼
VPI

TI
P

ðIPV � IPIÞ � rPIC ð60Þ

Metabolic Source and Sinks—Insulin

rLIC ¼ FLIC½QI
AIH þ Q

I
JIJ þ rPIR ð61Þ

FLIC ¼ 0:40 ð62Þ

rKIC ¼ FKIC½QI
KIH� ð63Þ

FKIC ¼ 0:30 ð64Þ

rPIC ¼
IPI

1� FPIC
FPIC

� �
1

QIP

� �
�

TIP
VPI

h i
ð65Þ

FPIC ¼ 0:15 ð66Þ

rPIR ¼
SðGHÞ

SðGB
HÞ
rBPIR ð67Þ

dP
dt
¼ a½P1 � P� ð68Þ

dI
dt
¼ b½X � I� ð69Þ
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dQ
dt
¼ KðQ0 � QÞ þ gP � S ð70Þ

S ¼ ½M1Y þM2ðX � IÞ
0þ

�Q ð71Þ

X ¼
ðGHÞ

bpir1

ðbpir2Þ
bpir1 þ bpir3ðGHÞ

bpir4
ð72Þ

P1 ¼ Y ¼ ðXÞ1:11 ð73Þ

Mass Balance—Glucagon

VG
dG
dt
¼ rPGR � rPGC ð74Þ

Metabolic Source and Sinks—Glucagon

rPGR ¼ rMGCG ð75Þ

rMGC ¼ 9:10
ml
min

ð76Þ

rPGR ¼ MG
PGRM

I
PGRr

B
PGR ð77Þ

MG
PGR ¼ 2:93 � 2:10tanh½4:18ðGN

H � 0:61Þ� ð78Þ

MI
PGR ¼ 1:31 � 0:61tanh½1:06ðINH � 0:47Þ� ð79Þ

Parameter values

Glucose.

VG
BV ¼ 3:5dl QG

B ¼ 5:9 dl
min TB ¼ 2:1min

VBI ¼ 4:5dl QG
B ¼ 43:7 dl

min TG
P ¼ 5:0min

VG
H ¼ 13:8dl QG

A ¼ 2:5 dl
min

VG
L ¼ 25:1dl QG

L ¼ 12:6 dl
min

VG
G ¼ 11:2dl QG

G ¼ 10:1 dl
min

VG
K ¼ 6:6dl QG

K ¼ 10:1 dl
min

VG
PV ¼ 10:4dl QG

PV ¼ 15:1 dl
min

VPI ¼ 67:4dl
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Insulin.

VI
B ¼ 0:26l QI

B ¼ 0:45 l
min TI

P ¼ 20min

VI
H ¼ 0:99l QI

H ¼ 3:12 l
min bpir1 ¼ 3:27

VI
G ¼ 0:94l QI

A ¼ 0:18 l
min bpir2 ¼ 132

mg
dl

VI
L ¼ 1:14l QI

K ¼ 0:72 l
min bpir3 ¼ 5:93

VI
K ¼ 0:51l QI

P ¼ 1:05 l
min bpir4 ¼ 3:02

VI
PV ¼ 0:74l QI

G ¼ 0:72 l
min bpir5 ¼ 1:11

VI
PI ¼ 6:74l QI

L ¼ 0:90 l
min

VPI ¼ 6:74l

M1 ¼ 0:00747min� 1 M2 ¼ 0:0958min� 1 Q0 ¼ 6:33U

a ¼ 0:0482min� 1 b ¼ 0:931min� 1 K ¼ 0:575 U
min

Glucagon.

VG ¼ 11310ml

Initial Conditions—Glucose

Mass Balance.

GB
PV ¼ ½input glucose concentration� ð80Þ

GB
H ¼ GB

PV þ
rBPGU
GG
P

ð81Þ

GB
K ¼ GB

H ð82Þ

GB
BV ¼ GB

H �
rBGU
GG
B

ð83Þ

GB
G ¼ GB

H �
rBGGU
GG
G

ð84Þ

GB
L ¼

1

GB
L

ðQG
AG

B
H þ Q

G
GG

B
G þ r

B
HGP � r

B
HGUÞ ð85Þ

GB
BI ¼ GB

BV �
rBGUTB
VBI

ð86Þ

GB
PI ¼ GB

PV �
rBPGUT

G
P

VPI
ð87Þ

Metabolism.

MI
HGP ¼ 1 ð88Þ

MI
HGU ¼ 1 ð89Þ

f2 ¼ 0 ð90Þ
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Initial Conditions—Insulin

Mass Balance.

IBPV ¼ ½input insulin concentration� ð91Þ

IBH ¼
IBPV

1 � FPIC
ð92Þ

IBK ¼ IBHð1 � FKICÞ ð93Þ

IBB ¼ IBH ð94Þ

IBG ¼ IBH ð95Þ

IBPI ¼ IBPV � ½
QI
PT

I
P

VPI
ðIBH � I

B
PVÞ� ð96Þ

IBL ¼
1

QI
L

ðQI
HI

B
H þ Q

I
BI

B
B þ Q

I
KI

B
K þ Q

I
PI

B
PVÞ ð97Þ

rBPIR ¼
QI
L

1 � FLIC
IBL � Q

I
GI

B
G � Q

I
AI

B
H ð98Þ

Model Pancreas.

XB ¼
ðGB

HÞ
bpir1

ðbpir2Þ
bpir1 þ bpir3ðGB

HÞ
bpir4

ð99Þ

P1 ¼ ðXBÞ
bpir5 ð100Þ

YB ¼ ðXBÞ
bpir5 ð101Þ

PB ¼ P1 ð102Þ

IB ¼ XB ð103Þ

QB ¼
HQ0 þ gP1
H þM1YB ð104Þ

Initial Conditions—Glucagon

Mass Balance.

GB ¼ ½input plasma glucagon concentration� ð105Þ

Appendix A2: Gastrointestinal models

Dalla Man et al. model

One of the most known gastric-intestinal models is presented in the work of Dalla Man et al.

[58]. This model is composed of three compartments: stomach liquid phase, stomach solid

phase and intestine. Glucose oral assumption, its transit through the stomach and the upper

small intestine and its absorption in the bloodstream are represented by means of three differ-

ential equations and three algebraic functions. The emptying of the stomach is described by a

function that depends on the total amount of glucose in the stomach. The system equations
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are reported below:

dqsto1ðtÞ
dt ¼ � k21qsto1ðtÞ þ DdðtÞ

dqsto2ðtÞ
dt ¼ � kemptqsto2ðtÞ þ k21qsto1ðtÞ

dqgutðtÞ
dt ¼ � kabsqgutðtÞ þ kemptqsto2

RaðtÞ ¼ fkabsqgutðtÞ

kemptðqstoðtÞÞ ¼ kmin þ
kmax� kmin

2
ftanh½aðqstoðtÞ � bDÞ� � tanh½bðqstoðtÞ � cDÞ� þ 2g

qstoðtÞ ¼ qsto1ðtÞ þ qsto2ðtÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð106Þ

where:

• qsto1(t) and qsto2(t) are the amounts of glucose in the stomach (solid phase and liquid phase,

respectively);

• δ(t) is the impulse function;

• D is the amount of ingested glucose;

• qgut is the glucose mass in the intestine;

• k21 is the rate of grinding;

• kempt is the rate of gastric emptying;

• kabs is the rate constant of glucose-intestinal absorption;

• f is the fraction of glucose-intestinal absorption which appears in plasma;

• kmax is the maximum value for kempt;

• kmin is the minimum value for kempt;

• α and β are the rates of decrease and increase, respectively, for the kempt function;

Elashoff model

The Elashoff model [59] assumed that the fraction of glucose in the duodenum compartment

increases following a power exponential function. The equation system is as it follows:

dqduoðtÞ
dt ¼ Dbkbtb� 1e� ðktÞb

qduoðtÞ ¼ D½1 � e� ðktÞb �

8
<

:
ð107Þ

where:

• qduo(t) is the glucose mass in the duodenum;

• D is the amount of ingested glucose;

• qgut is the glucose mass in the intestine;

• k is the rate of emptying;

• β is the shape factor.
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Salinari et al. model

In the model reported in Salinari et al. [44], the transit of glucose through the intestine is repre-

sented by a mono-dimensional process where the glucose particles are transported from the prox-

imal region to the distal region with a constant velocity. The system equation is the following:

@q
@t þ u

@q
@z ¼ � gq z � 0 t � 0 ð108Þ

where:

• q is the glucose density;

• γ is the rate of glucose absorption.

The gastric emptying is given by the boundary condition in z = 0:

qð0; tÞ ¼

( 1

u ZðtÞ 0 � t � 0

0 t � 0
ð109Þ

where:

• ZðtÞ ¼ Dbkbtb� 1e� ðktÞb is the rate of glucose delivery in the duodenum;

• D is the glucose dose;

• u is the constant velocity with which the glucose particles are transported from the proximal

region to the distal region.

Lehmann & Deutsch model

The Lehmann & Deutsch model [60] describes glucose absorption by the gut, assuming that

the gastric emptying process is represented by a trapezoidal function. The absorption in the

intestine follows a first order kinetics. The system equations are:

dqgutðtÞ
dt ¼ � kabsqgutðtÞ þ GemptðtÞ

RaðtÞ ¼ fkabsqgutðtÞ

8
<

:
ð110Þ

where

• qgut(t) is the amount of glucose in the gut;

• kabs is the rate constant of glucose intestinal absorption;

• f is the fraction of the glucose intestinal absorption which appears in plasma;

• Ra is the rate of glucose absorption.
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