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Public health organizations increasingly use social media advertising campaigns in
pursuit of public health goals. In this paper, we evaluate the impact of about $40
million of social media advertisements that were run and experimentally tested on
Facebook and Instagram, aimed at increasing COVID-19 vaccination rates in the first
year of the vaccine roll-out. The 819 randomized experiments in our sample were
run by 174 different public health organizations and collectively reached 2.1 billion
individuals in 15 languages. We find that these campaigns are, on average, effective at
influencing self-reported beliefs—shifting opinions close to 1% at baseline with a cost
per influenced person of about $3.41. Combining this result with an estimate of the
relationship between survey outcomes and vaccination rates derived from observational
data yields an estimated cost per additional vaccination of about $5.68. There is further
evidence that campaigns are especially effective at influencing users’ knowledge of how
to get vaccines. Our results represent, to the best of our knowledge, the largest set of
online public health interventions analyzed to date.

public health advertising | meta-analysis | COVID-19 vaccine | randomized experiment

Throughout the rapidly evolving COVID-19 pandemic, policymakers and public health
agencies needed to communicate with citizens about mitigation measures ranging from
mask wearing and social distancing to vaccines. Advertising on social media emerged as
a popular channel to quickly reach large numbers of people and has been used by public
health organizations in nearly every country both to convey information and influence
behavior. An understanding of the expected impact of these campaigns is important
as such organizations continue to engage in interventions as the pandemic unfolds.
Assessing these campaigns is further valuable as digital public health interventions become
increasingly used to address broader health-related outcomes.

To speak to these questions, this paper aims to evaluate the impact of social media
advertisements on a variety of COVID-19-related outcomes. Analyzing advertising
campaigns run on Facebook and Instagram by 174 public health organizations around
the world, we investigate three main questions. First, what effect did these social media
advertising campaigns have? Second, how cost-effective were they? Third, which types of
outcomes have the campaigns been most effective at influencing?

The campaigns in our sample were run between December 2020 and November 2021,
reached users in nearly every country, and in aggregate consist of $39.4 million dollars of
advertising spending. They include a wide range of public health organizations that span
major multinational nonprofits, public health ministries, and local nongovernmental
organizations. The identities of the individual advertisers are not included in this article
to protect their confidentiality. Importantly, our dataset contains the near universe
of relevant experiments that were run on Facebook and Instagram over this period.*
This feature of our sample allows us to draw conclusions that are not vulnerable to
selection biases that commonly arise in meta-analyses, such as publication bias, whereby
experiments with positive outcomes are more likely to be included in the sample. To our
knowledge, the dataset we analyze is the largest set of online public health interventions
studied to date.

∗We discuss the nature of these experiments in more detail below and in SI Appendix. We are able to identify all campaigns
that made use of the platform’s standardized “Brand Lift Study" infrastructure as defined later and asked one or more
questions about COVID-19 vaccines. The vast majority of experiments identified this way are included in our analysis;
the only ones that were excluded were a small number of experiments that chose to ask customized COVID-related
questions that do not fall into the seven types that we study. We note that a primary alternative approach for advertisers
to conduct randomized experiments is to randomize advertising exposure by geographical region and then compare
aggregate outcomes, measured separately, across geographies. We are aware of a handful of such experiments that were
run during the time window we consider; these are not included in our analysis because we do not have access to the
details of these experiments.

Significance

This paper analyzes whether
social media advertising can be
a cost-effective tool to influence
attitudes and beliefs about
COVID-19 vaccines and ultimately
vaccinations. We conduct a
meta-analysis of more than
800 experiments conducted by
174 public health-related
organizations. Each experiment
randomly assigned
advertisements to a subset
of users and measured the
outcome, attitudes, and beliefs,
through surveys. Although each
experiment individually has too
few subjects to reliably detect
small effects, by pooling the data,
we obtain more precise estimates
of the overall average effect. The
estimated average cost per
additional influenced person,
$3.41, and the estimated cost per
additional vaccination, $5.68,
can be compared to the social
benefit when evaluating the
cost-effectiveness of public health
campaigns.
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The data have two key features relevant to our analysis.
First, we have data from a large number of the campaigns
that conducted experiments where exposure to the ads was
randomized at the user level, allowing us to assess the causal
effect of each campaign. This is especially important in the
context of online advertisements, where selection bias is a
significant obstacle in nonexperimental data (1–4). Randomized
experiments have become more common in online advertising,
and companies (including Meta) have developed standardized
experimentation tools to facilitate testing. The campaigns we
analyze all used these tools to conduct experiments.

Second, we are able to combine the experiments with user-
level survey data for a subset of users. The surveys ask a variety
of questions, namely, a user’s willingness to get a COVID-19
vaccine, belief in the importance of vaccination, belief in vaccine
effectiveness, belief in vaccine safety, whether the advertiser is a
trustworthy source of COVID-19 information, how knowledge-
able the user feels about how to get the vaccines, and whether
they think vaccines are socially acceptable (in this paper, we will
refer to these questions shorthand as Willingness, Importance,
Effectiveness, Safety, Trustworthy Source, Knowledgeable, and
Social Norms, respectively). While not all advertisers asked all
questions, the survey questions were largely standardized across
campaigns, facilitating comparisons. As is common practice with
such experiments, we classify responses into a binary outcome
according to whether respondents were engaging in the public
health behavior of interest (for instance, intending to get the
vaccine) or had the relevant public health information (for
instance, knowing where to get the vaccine). Looking across all
studies, we can then see whether interventions had an impact on
the binary outcome of interest (the wording of each question,
possible responses, and how answers were classified are all listed
in SI Appendix). This approach is similar in spirit to the approach
taken by other papers that aggregate a set of experiments with
distinct outcomes.†

Overall, our combined findings suggest that these campaigns
were effective at influencing peoples’ attitudes and beliefs about
the vaccine. We find an average increase in the fraction of positive
responses of 0.55% points (P = 2e-13) across all experiments, with
a baseline 55.7% positive rate. While this point estimate is small
on a per-person basis, the reach of the campaigns implies that even
under conservative assumptions, around 11.6 million individuals
were influenced by these campaigns alone, at a cost of about
$3.41 per incremental person. Translating this estimate into a
cost for incremental vaccinations requires additional assumptions
and data; the survey outcome can be considered a “surrogate” for
the outcome of interest, vaccination (8).‡ In SI Appendix, we
present the results of an analysis where we use data from the
United States to estimate the correlation between county-level
vaccination rates and county-level survey responses, finding a
correlation of .6 (standard error .0174) in a sample of 2,710
counties with more than 20 survey responses. Using this estimate

†For instance, (5) aggregates a variety of distinct binary outcomes, corresponding to
whether an action was taken or not, from a large set of behavioral experiments. Examples
include whether or not someone filled out a government form or whether or not someone
paid a fine. Two other studies that similarly use meta-analytic methods to combine
different treatments and outcomes are refs. 6 and 7.
‡One required assumption is that the effect of the treatment is fully captured by the
survey question; since the treatment is unlikely to have a negative effect on vaccination,
a violation of this assumption would likely lead to a conservative estimate. A second
requirement is that the treatment does not directly change the relationship between
the survey outcome and vaccination. This requirement could be violated if treatment
induced individuals to respond positively to the survey, e.g., in an attempt to please the
experimenting organization. This problem is unlikely because the survey is given at a
separate time and format than the advertising exposure and is not associated with the
public health organization.

together with the result of our meta-analysis implies that the
cost of an incremental vaccine is $5.68. These estimates suggest
that campaigns may be an easily scalable intervention that can in
aggregate shape the public health outcomes of a large number of
citizens.§ A limitation of this cross-validation approach is that we
are ultimately interested in the relationship between marginal
survey responses and marginal vaccination rates in response
to the ads, whereas we observe a cross-sectional relationship
between average survey responses and average vaccination rates
at the county level. Our cost calculation approach is based
on an assumption that a change in survey responses due to
treatment would lead to a change in vaccination rates matching
the observed cross-sectional correlation. Since we cannot link
treatment to changes in vaccination status, we cannot directly
assess whether a change in survey responses due to treatment
would lead to a change in vaccination rates that matches the
observed cross-sectional correlation. This requirement would fail
if, for example, the effect of advertising was very short-lived or
if there are barriers to vaccinations among individuals close to
the margin of getting vaccinated that are not reflected in the
average relationship between survey responses and vaccination
decisions.

These results can be broadly compared to those from other
initiatives aimed at influencing vaccination decisions.¶ Barber
and West (11) and Sehgal (12) estimate a $68 and $49 cost per
incremental COVID-19 vaccination in Ohio from the Vax-a-
Million lottery (though see refs. 13 and 14); in a separate study,
Campos-Mercade (15) find a cost per incremental vaccination on
the order of $400; and Krieger et al. (16) estimate costs of $88
to $380 for incremental flu vaccinations in seniors in the United
States. Larsen et al. (17) find a much lower cost, specifically
$1 per incremental COVID-19 vaccination from a location-
randomized YouTube advertising experiment in select counties
in the United States. The World Health Organization (18) has
also explored methods of effective communication for influencing
health outcomes, including through randomized experiments run
on Meta. Since our data do not include information about actual
vaccination decisions, it is hard to directly contrast our estimates
to those. However, such estimates highlight how challenging
it can be to influence health behaviors and the potential
value of identifying low-cost, scalable interventions. When
considering such interventions to influence vaccine uptake, there
has been much advocacy for behaviorally informed promotions
(19, 20). The campaigns we analyze broadly fit into this
category.

Our findings also connect to the literature on health nudges,
which similarly tends to focus on low-cost, scalable interventions.
Much of this literature has focused on text-based interventions,
which have shown potential across a number of domains,
ranging from flu appointments to court appearances (21–23).
Specifically, in the context of COVID-19, Dai et al. (24)
sent participants in California text-based reminders to make
vaccination salient and easy to remember. They find that
reminders sent 1 d and 8 d after notification of vaccine eligibility
increased vaccination rates by 3.57% points and 1.06% points,
respectively. Banerjee et al. (25) analyze the effect of a video

§This scalability includes not just reaching more people but also reaching individuals
who may be hard or costly to reach via other means. This may be particularly important
for some subpopulations where there is evidence of a disproportionate impact of the
pandemic (9).
¶A separate branch of literature has evaluated impacts of interventions on other COVID-

related behaviors. For example, Chen et al. (10) use smartphone data from 10 million
devices and find large effects of stay-at-home orders on both movement and transmission
rates.
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message randomly distributed via SMS to millions of individuals
in West Bengal, India; they find substantial effects on both the
treated individuals as well as nontreated community members
on a broad range of COVID-related outcomes. One advantage
of text-based interventions is that they may be more salient
and thus have a larger effect relative to our effects. On the
other hand, advertising campaigns do not require gathering
phone numbers and may thus be more easily scaled to a large
population.#

Our results can be related to prior large-scale meta-analyses
of online advertising. The literature has highlighted major
challenges due to low statistical power (28). Meta-analysis is
a natural way to address this challenge, but it requires access
to data from the experiments of many advertisers and also
creates challenges comparing effectiveness across heterogeneous
advertising objectives. We are aware of only three other meta-
analyses of digital advertisements that have a comparable scale
to our study.|| First, Johnson et al. (29) used internal data
from Google’s display advertising platform to study the effect of
digital advertisements on website visits for 432 digital advertising
campaigns, finding effects of 8% of baseline website visits.
Second, Goldfarb and Tucker (32) analyzed 2,892 experiments
carried out by a brand research firm, each using a similar survey
methodology and sample size to the experiments considered here,
finding an effect of about 10% of the baseline on survey responses
concerning intention to purchase. Third, Gordon et al. (33)
analyze more than 600 advertising experiments on Facebook,
comparing the estimated effects for different measures along what
is referred to as a “funnel” or a customer’s journey to a final action
of interest. They find effects of 28%, 19%, and 6% for measured
outcomes that capture consumer behavior at the top, middle, and
lower parts of the funnel. In our paper, we conduct a large-scale
meta-analysis of online public health campaigns across multiple
outcomes. Our estimated effects (about 1% over baseline) are
substantially smaller than the effects found in these studies,
suggesting that it is more difficult to change attitudes and beliefs
about vaccination than it is to increase more standard advertising
outcomes. Similar to ref. 33, we find smaller effects for outcome
measures that are closer to the ultimate outcome of interest,
vaccination.

Building on our main results, we next look across the different
survey outcomes to see which ones are most impacted by the
campaigns. We find significant effects on Knowledge, Safety,
Social Norms, and Importance (all have P < 0.001), while no
significant effects on Willingness, Effectiveness, or Trustworthy
Source. There were individual campaigns that were able to
significantly move these last three metrics, but we could not
detect an overall average effect. Finally, we find evidence that
the campaigns may have been particularly effective at shifting
users’ knowledge around the vaccines. Knowledge has the largest
treatment effect point estimate (1.23% points, P = 5e-7), and it
is significantly higher than nearly all the other coefficients.**

#A related vein of literature has focused on identifying mechanisms for effective
communication around COVID-19 that could then be implemented at scale. For example,
holding a wide range of factors constant, Alsan and Eichmeyer (26) vary characteristics of
the messenger and signal content in a video infomercial and find evidence of substantial
heterogeneity in effectiveness only by shifting those attributes. Similarly, Jordan et al. (27)
find evidence that prosocial framings are important for shifting COVID-related outcomes
across a range of experiments. Insights from studies such as these two could help inform
both digital and nondigital interventions.

||Ref. 29 provides an overview of the literature, including related meta-analyses in other
forms of advertising such as online search advertising and television; see also ref. 30 that
analyzed 54 mobile advertising campaigns and ref. 31 that studied social ads across 74
products.
**In a two-sided t-test, the coefficient for Knowledge is significantly greater than that for
Effectiveness (P = 0.038), Importance (P = 0.003), Safety (P = 0.034), Trustworthy Source

This suggests that, on average, the digital advertisements in
our sample may have been a particularly cost-effective channel
for information dissemination or that information is easier to
retain. In interpreting these comparisons, it is important to recall
that different campaigns were designed for different purposes,
and some campaigns may have conducted experiments on both
primary and secondary outcomes so that smaller impacts might
be expected for secondary outcomes. For example, a campaign
focused on providing information might have evaluated its im-
pact on Knowledge but also on Willingness. If Knowledge was less
commonly included as a secondary outcome, it might be expected
that the measured impact would be higher. In SI Appendix, we
investigate this hypothesis by manually classifying advertisements
as to which outcomes are their primary ones, and we find similar
patterns (our manually labeled sample is smaller, but we see that
the point estimate for Knowledge is again significantly larger than
that for Importance, Safety, and Willingness; it is nonsignificantly
different from that for Effectiveness and Social Norms).

Overall, our results suggest that social media advertising
campaigns can be an important component of public health
initiatives. Over the course of the past 2 y, health-oriented
organizations have engaged in a wide range of tactics in an
effort to shift attitudes and behaviors (see https://www.nga.
org/center/publications/covid-19-vaccine-incentives/ for a list of
different incentives offered in the United States alone, ranging
from Girl Scout cookies to laps on a NASCAR track); key
challenges with many of these include scalability, measurement,
and generalizability. Digital advertising can help overcome these
challenges. However, the small per-person impact highlights that
these campaigns are best thought of as part of a broader set
of strategies. To this end, our paper complements the growing
literature on designing effective public health interventions for
COVID-19.

The rest of our paper is organized as follows. The Data
describes our sample, the outcome variables, and the approach
we use to analyze the campaigns; the Results presents findings
in greater detail; and the Conclusion summarizes. Additional
analyses are provided in SI Appendix.

Data

Overview. We analyze a set of 819 randomized experiments that
were conducted between December, 2020, and November, 2021.
The experiments in our sample are derived from 376 distinct
advertising campaigns and 174 organizations. The advertising
experiments and surveys were conducted by Meta and the
public health agencies prior to our analysis. There are often
multiple experiments associated within a single ad campaign,
where each experiment corresponds to a specific survey outcome.
For example, an advertiser may take one campaign and run three
separate experiments that measure the impact of the campaign
on Willingness, Importance, and Effectiveness. The average
campaign in our data ran slightly more than two experiments; in
other words, advertisers measured the impact of their campaigns
on an average of about two outcome metrics each (the platform
normally caps the number of questions per campaign at three).

The studies were all conducted using Meta’s infrastructure for
conducting advertising effectiveness experiments across Facebook
and Instagram; through the rest of this paper, we refer to
this infrastructure as “the platform.” We focus specifically on
experiments that measure the extent to which advertisements

(P = 0.002), Willingness (P = 0.020), and our overall estimate (P = 0.008), including when
dropping Knowledge studies (P = 0.006). It is not significantly different from our estimate
for Social Norms, though it is close in a one-sided test (P = 0.109).
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Table 1. Summary statistics by outcome metric
Social Trustworthy

Category Effectiveness Importance Knowledge Safety norms source Willingness Overall

# Experiments 64 237 94 218 107 59 40 819
# Unique campaigns 48 234 73 218 107 59 40 376
# Unique organizations 32 109 57 100 50 30 17 174
Earliest campaign start 2021-02-17 2020-12-08 2021-02-19 2020-12-15 2021-02-03 2021-02-24 2020-12-08 2020-12-08
Latest campaign end 2021-11-15 2021-11-12 2021-11-03 2021-11-15 2021-11-14 2021-10-21 2021-06-15 2021-11-15
Avg. # people reached 17,932,855 12,833,435 15,341,751 11,959,068 12,497,147 9,510,847 27,297,621 12,913,047

(3,216,101) (1,353,134) (2,957,774) (1,746,021) (2,396,430) (1,971,257) (6,773,069) (1,225,276)
Avg. # survey resp per experiment 1,753.53 2,130.65 1,734.60 1,931.67 1,510.58 1,762.17 1,429.00 1,860.94

(151.09) (90.27) (128.96) (90.81) (120.24) (148.21) (155.72) (45.75)
Avg. campaign cost $136,807 $65,487 $122,796 $132,491 $63,556 $104,177 $392,678 $105,183

($41,543) ($6,376) ($36,000) ($26,694) ($13,409) ($24,353) ($142,627) ($16,872)
# Experiments rejecting no effect (0.1) 7 23 22 29 14 3 1 99
# Experiments rejecting no effect (0.05) 5 16 17 20 8 3 1 70
Implied false discovery rate (0.1) 0.914 1.000 0.427 0.752 0.764 1.000 1.000 0.827
Implied false discovery rate (.05) 0.640 0.741 0.276 0.545 0.669 0.983 1.000 0.585
# FDR survivor experiments (10% FDR) 2 14 5 5 1 2 0 27

Note: Standard errors in parentheses. # Experiments Rejecting No Effect (0.1) references the number of studies that are significant at the 0.1 level in a two-tailed t-test against the null of
no treatment effect. Implied False Discovery Rate (0.1) estimates the false discovery rate if we accepted all experiments that were significant at the 0.1 level, as FDR(0.1) = (0.1∗ne)/(nrej),
where 0.1 is the level of significance, ne is the number of experiments, and nrej is the number of experiments rejecting no effect at 0.1. # FDR Survivor Experiments is the number of
experiments determined via the Benjamini–Hochberg algorithm to survive a false discovery rate of 10% (34).

affect individuals’ attitude or beliefs as measured by survey
questions.††

We limit the set of experiments to those measuring outcomes
in one of seven categories mentioned earlier (SI Appendix
for details).‡‡ Though not an exhaustive set of COVID-19
ad experiments, these seven categories were selected because
they are the most prevalent across COVID-19 vaccine-related
experiments. We use all studies that asked these questions and,
following the platform’s policy (see https://www.facebook.com/
business/help/2396060560411130), restrict to users aged 18 y
and older. For our analysis, we used deidentified data for all
campaigns.

The campaigns we study total $39.4 million in ad spend,
with a reach of 2.1 billion unique users translated across 15
languages. The average campaign costs more than $100,000
and reached nearly 13 million people; these were substantive
efforts, but importantly also not beyond the budget of what
many public health organizations could conceivably spend on
similar campaigns in the future. Table 1 provides summary
statistics.

Although the campaigns we study reached billions of users,
as we can see in Table 1, we observe a much smaller number
of survey responses. The platform provides the experimentation
service to enable advertisers to estimate the incremental impact
of their campaigns on survey-based outcomes; however, the
number of responses per experiment is limited by the platform.

††These experiments are known as “Brand Lift Studies” in advertiser-facing documenta-
tion. There are many companies that offer Brand Lift experiments to advertisers, each
with slightly different implementations and methodologies. These studies are commonly
used to measure effects on outcomes such as ad recall, brand sentiment, or intent to
purchase but have become popular during the pandemic to also look at health-related
outcomes that may not be observable in log data). We note that not all advertisers
run these experiments, so our results are underestimates of the total impact of digital
advertising interventions on Facebook and Instagram (Meta imposes minimum budgets
to run one of these studies that vary across country; for example, in the Unites States, it
is currently $30,000, which is more than many advertisers’ budgets.
‡‡While the platform proposed standardized questions to the advertisers, they did have
autonomy to adjust the language for the questions if they wished, so that we see some
heterogeneity of questions asked within the seven categories we study. In our data, there
are no instances where the same campaign ran multiple experiments that each asked the
exact same survey question. However, 38 campaigns ran multiple experiments measuring
the same outcome variable using distinct questions. For example, a campaign may have
run two separate experiments that both measured its impact on Knowledge, with different
survey questions, such as Do you know your order of priority to get the COVID-19 vaccine?
and Do you know where to go to get a COVID-19 vaccine for yourself? Omitting these
campaigns yields no material shift in our results, and in SI Appendix, we conduct additional
analyses that factor in this within-campaign heterogeneity.

The limits are presumably motivated by the fact that users may
be willing to engage in only a small number of surveys, and
the user experience may be negatively impacted by too many
surveys. Thus, the platform caps the number of respondents
per study to balance the tradeoff between statistical power and
user experience (SI Appendix for more details on how these
experiments are implemented).

In total, our dataset incorporates 1.5 million total responses
across all experiments. Per experiment, the number of responses
ranges from 300 to 4,507, split across test and control groups.
This does not give us too much power for each individual
experiment. If an experiment of average sample size (1861 in our
sample) and average baseline positive response rate (55%) were
to be analyzed using a difference in means between treatment
and control, the minimum detectable effect size with 80% power
and a 10% significance level would be about 0.06, close to 10%
of the baseline. The average effects we find below are an order of
magnitude lower than that (in response to an early draft of this
manuscript, the platform started granting more exceptions to the
normal response caps on these experiments in order to deliver
better-powered results). Indeed, we see that only 99 out of the
819 experiments rejected the null at the 10% level, just slightly
greater than the 10% of experiments that would be expected if
there were no treatment effects.

Only 27 experiments on their own are included in a set of
experiments determined to have a 10% false discovery rate using
the Benjamini–Hochberg procedure (34). We also report the
implied false discovery rate for the set of experiments that are
individually significant at the 5% level, and we repeat this for
the 10% level. This exercise is motivated by the idea that an
organization might choose to further scale a campaign after seeing
a statistically significant impact. We see that if organizations used
the 5% threshold for scaling, for the Knowledge outcome, the
false discovery rate would be about 1/4, while for the Importance
outcome, the rate would be about 3/4. Although such a false
discovery rate might not be problematic, as it is unlikely that the
campaigns would be harmful and in aggregate these campaigns
would be cost-effective, our findings as a whole suggest that
we are not well powered to well identify individually effective
campaigns. This motivates the approach we pursue in this
paper of conducting a meta-analysis of hundreds of experiments
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Table 2. Overview of survey questions
Question category Wording

Importance How important do you feel a vaccine is to prevent the spread of COVID-19?
Safety How safe do you think a COVID-19 vaccine is for people like you?
Willingness How likely are you to get vaccinated for COVID-19 when the vaccine is available to you?
Effectiveness How effective do you think the COVID-19 vaccination is in preventing COVID-19?
Knowledge Do you know where people in your local community can go to get a COVID-19 vaccine?
Social norms When you think of most people whose opinion you value, how much would they approve

of people getting a COVID-19 vaccine?
Trustworthy source Do you agree or disagree that [advertiser name] is a trustworthy source of COVID-19 vaccine

facts and information?

together rather than seeking to identify individual campaigns
with positive effects.

In SI Appendix, we provide graphs of the CDFs of P-values
both overall and for each metric, where we can see that overall and
particularly for the Knowledge outcome, the CDFs of P-values
depart from the uniform distribution that would be expected if
there were no effects.

Survey Questions. We provide more detail on the questions,
their possible responses, and their coding in SI Appendix. In
Table 2 we provide text from our standardized survey questions
as a reference.

Validity of Survey-Based Outcomes. We now turn to consider
the validity of the survey-based outcome measures, and in
particular, the extent to which they (or changes in them) do
not capture changes in beliefs or knowledge. Privacy and legal
constraints prevent advertisers from asking about or measuring
some ultimate quantities of interest on platform (e.g., health
or vaccination status), but the self-reported measures may still
be meaningful.§§ Here, we discuss two categories of potential
concerns about these measures.

A first category of concerns relates to whether the survey
outcomes as entered in the platform reflect beliefs and behaviors
in the physical world. There are several considerations. Following
established practice for social media brand campaigns, survey
outcomes are a primary outcome that public health organizations
have been using to evaluate their campaigns. Campaigns start,
stop, and change based on the results of these experiments,
dictating how entire ad budgets of COVID-19 interventions
are spent. Hence, it is important to understand how these
outcomes have responded to campaigns to date and to add to the
understanding of public health organizations whose individual
experiments to date have been underpowered to detect small
effects.

Relatedly, a common goal of public health organizations is to
simply shift attitudes and beliefs. Akin to traditional advertisers
where campaigns may target different levels of the conversion
funnel, many of these advertisers are aiming to move awareness
or basic beliefs and may invest in complementary tactics to change
behavior once beliefs have been influenced. To the extent that
the implementation details and survey responses provide insight
into awareness and beliefs, the campaign experiment outcomes
are informative.

Finally, for social media campaigns in general, there is evidence
that responses to platform surveys correlate reasonably well

§§Breza et al. (35) ran a location-randomized experiment where different regions were
targeted with ad campaigns on Facebook. This experimental design allowed measurement
and detection of significant effects on off-platform outcomes namely, travel and actual
COVID-19 cases. This result, though from a single experiment, demonstrates the potential
for relevant offline effects from similar digital ads.

with behaviors of interest. Moehring et al. (36) find an R2 of
0.83 in a regression of country-level vaccine uptake on self-
reported vaccine status collected from a survey on Facebook.
And Astley et al. (37) find a correlation between survey metrics
on Facebook and off-platform COVID-19 cases (see refs. 38
and 39 for further discussions and caveats). Alekseev et al.
(40) find a high degree of correlation between characteristics
of businesses that Facebook users self-report to own and offline
statistics from the US Census. Although the contexts and analyses
from these studies are different, together, they suggest that there
does appear to be informative signal in social media survey
outcomes.

In SI Appendix, we explore the relationship between survey
response positivity and county-level vaccine takeup and find
that the two are strongly correlated. We use these findings to
extrapolate an estimated cost of each additional vaccination.

A second category of concerns about survey results relates
to whether the differences in survey outcomes between treated
and control groups can be interpreted as the causal effect of the
advertisements (1). One issue is that there can be systematic
differences between the treatment and the control group due to
the implementation of the randomized advertising experiment.
Details are provided in SI Appendix, but in short, randomization
of assignment to ads takes place just before an ad was intended
to be shown to a user, so that whether a user is sent an ad is
random within the experiment. However, after seeing an ad,
whether a user in the treatment group is subsequently shown a
survey depends on an additional factor that is not present for
the control group. In particular, if after randomization into the
treatment group, the platform intends to show the user an ad but
the user scrolls past it or does not scroll to it at all, the user will
not be sent a survey. This is done to only capture survey responses
from users in the treatment group who actually saw the ad, but
to the extent to which this behavior is correlated with the survey
outcome, it could lead to confounding and thus biased estimates
of treatment effects.

In addition, even if the set of users who were sent surveys was
perfectly randomized within each experiment, there still is the
potential for differential survey response between the treatment
and the control group. This might occur if individuals influenced
by the ads were more likely to respond to the survey. We address
both of these issues in SI Appendix, where we show that along
several observable dimensions, the treatment and control groups
are similar. We further address these concerns by adjusting for
several observable characteristics of individual respondents in our
analysis.

A final concern is that the population answering the surveys
differs from the overall target population along unobservables
correlated with our outcome variable. For example, certain age
groups may be more likely to answer the surveys. Poststratifying
our results by age and gender (as we do) is an industry
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standard approach to address this concern; in addition, in
SI Appendix, we also compare observables from a poststratified
sample with those from the target population and find reasonable
overlap.

Methods

We conduct a meta-analysis by first analyzing each experiment
separately and then using inverse variance weighting to generate
the average effect for each outcome and overall.

Meta-Analysis of Experiments. We begin by analyzing each
experiment separately using the following weighted linear model:

responsei = (X̃ ′i β + β0)Wi + X̃ ′i γ + εi, [1]

where responsei is an indicator for whether individual i gave
a positive response, X̃i is a matrix of de-meaned controls that
could potentially be related to outcomes (age bucket, gender,
expected click-through rate, and expected conversion rate), and
Wi is a dummy variable denoting whether i was in the treatment
or control group. The expected click-through and conversion
rates are platform-generated estimates age buckets are 18 to 24,
25 to 34, 35 to 44, 45 to 54, 55 to 64, and 65+. We de-mean
and interact our covariates with the treatment indicator so that
β̂0 remains an unbiased and consistent estimate of the average
treatment effect even in the presence of heterogeneous treatment
effects by our covariates (41).

In our regression, each response is weighted with poststratifi-
cation weights by age bucket and gender within the treatment
and control group, such that both arms of each experiment
are representative of the population reached by the relevant
campaign. That is, we obtain the proportion of users in each age
bracket and gender group reached by the campaign associated
with a given experiment and divide it by the proportion of
responses to obtain the weight for each response (to reduce
variance, they are trimmed to an upper bound of 3 and a lower
bound of 0.3 to decrease the influence of outlying observations.
Rerunning without any trimming yields no material difference
in the results). We poststratify by these two variables as age
and gender are basic demographics that advertisers are both
frequently interested in and where heterogeneous effects are often
observed.¶¶ In SI Appendix, we explore robustness to different
weighting schema and find no material difference in the results.

This procedure is based on the one that Meta uses to analyze
results from these survey-based experiments for advertisers.
Repeating this approach for each of the experiments in our
dataset, we are left with 819 estimates of average treatment effects
and standard errors. The next step in the analysis is to combine
these point estimates into estimated effects by outcome metric
and to generate an overall, combined estimate, following standard
meta-analytic methods (42, 43).

Specifically, to generate the average effect for each outcome
and overall, we combine the respective experiments using
inverse variance weighting. This approach estimates a single,
homogeneous effect per category while minimizing variance. We
present this approach due to its simplicity and the fact that there is
no evidence of heterogeneity across all outcomes; in SI Appendix,
we report several alternative specifications that allow for greater
heterogeneity across experiments and outcomes and find very
similar results.
¶¶At the experiment level, we observe many significant positive and negative coefficients
on our age and gender interaction terms; rerunning our meta-analyses on these
coefficients yields insignificant average effects, however.

Results

We now turn to our main results, which we break into two
categories. First, we describe for each survey outcome, the average
effect across all experiments that focused on that outcome.
Second, we combine the treatment effect estimates with data
about the number of unique people who received advertisements
as well as the total cost of the campaigns to estimate how many
people have been influenced and what the cost per influenced
person is.

The results of our meta-analysis, including the average effect
for each outcome and overall, are described in Table 3.

Several comments are salient to the interpretation of these
results. First, this dataset is very broad. Past efforts to understand
what has and has not worked with shifting behaviors around
COVID-19 have often by necessity studied a small number of
treatments at modest scale or been one off ex post analyses.
External validity with such studies is frequently a concern
and potentially helps explain why studies to date have found
conflicting results (e.g., refs. 12–15, 44 on effects of financial
incentives on vaccination rates). In contrast, here, pooling
hundreds of studies from a broadly representative population,
we find a positive and statistically significant average main effect.
The evidence may not be conclusive yet on what kinds of
behavioral nudges work, but this is evidence that these digital
advertising campaigns can help move the needle on COVID-
related attitudes.

Second, consider results about the specific outcomes. We find
that Importance, Knowledge, Safety, and Social Norms showed
highly statistically significant effects. In contrast, we do not detect
an effect for Effectiveness, Trustworthy Source, or Willingness.
(Though Effectiveness is close to marginally significant in our
main specification.)

We note that these last three metrics, particularly Effectiveness
and Willingness, are arguably lower in the vaccine conversion
funnel (that is, they are better proxies for a final desired action)
than the first four metrics. A stylized fact from advertising is
that such “lower-funnel” behaviors often see smaller effect sizes
than more upper-level outcomes and are generally challenging
to study as they may be influenced by a variety of unmeasured
factors. While our finding thus accords with this intuition, a
limitation of our study is that even with a very large sample size,
we are not powered to generate more precise estimates of these
averages (see the final rows of Table 3).

Third, we note that there is evidence that the estimated lift
for Knowledge (1.23pp) is significantly higher than our other
metrics. Our estimate for Knowledge is significantly greater than
that for Effectiveness (P = 0.038), Importance (P = 0.003), Safety
(P = 0.034), Trustworthy Source (P = 0.002), Willingness (P =
0.020), and our overall estimate (P = 0.008), including when
dropping the Knowledge experiments (P = 0.006). It is nearly
significantly greater than Social Norms in a one-sided t-test
(P = 0.109). We note that Knowledge is a distinct outcome here
in that the other outcomes relate more to persuasion, whereas
Knowledge focuses simply on conveying information. These
results suggest that social media campaigns may be particularly
attractive for public health organizations interested in the latter.##

(See also our additional analysis in SI Appendix with manually
labeled ads).

##In thinking about the effects for Knowledge as well as the other metrics, a relevant data
point is the baseline positive response rate for Trustworthy Source is 36.5%. While this
question was asked only in a subset of campaigns, it is still revealing that the effects we are
seeing are despite a relatively low user trust level with some advertisers. This suggests that
health organizations with strong brand values may be well positioned to see particularly
large effects, a topic we leave to future research.
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Table 3. Meta-analysis of experiments by outcome
Social Trustworthy

Category Effectiveness Importance Knowledge Safety norms source Willingness Overall

Treatment coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0012 0.0010 0.0055***

(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0027) (0.0042) (0.0008)
P-value 0.114 0.0004 5e-7 8e-5 0.0006 0.639 0.807 2e-13
Cost per influenced person $2.43 $2.41 $0.77 $3.20 $1.00 $11.69 $17.14 $3.41
Baseline positive response rate 0.505 0.672 0.575 0.501 0.556 0.365 0.517 0.557
Treatment effect as % of baseline 0.89% 0.64% 2.14% 1.24% 1.46% 0.33% 0.19% 0.99%

Power calculations (approximate)
Minimum detectable effect 0.0071 0.0030 0.0061 0.0039 0.0059 0.0066 0.0104 0.0019
Power to detect given effect size 0.474 0.973 1.000 0.989 0.962 0.120 0.081 1.00
# experiments needed for 80% power 159 115 23 87 57 1,660 4,133 94
# survey resp. per exp for 80% power 4,349 1,036 426 770 801 49,567 147,635 214

Note: Standard errors in parentheses. For each column, we consider the set of associated experiments and calculate the inverse-variance weighted average treatment effect (row 1).
The baseline % positive response is an unweighted mean across all the relevant experiments; calculating it using fixed or random effects models changes the numbers only slightly. The
cost per influenced person for each subset is calculated using the spend and number of unique people reached across all campaigns in the relevant subset. Finally, we include power
calculations based on the standard error of the treatment effects (abstracting away from heterogeneity across experiments). Power to detect a given effect size is calculated at the � = .1
level; for the last two rows, we want to convey how power could be improved by either increasing the number of experiments or the number of surveys per experiment. For those
calculations, we ask how much of either we would need holding the other fixed to have 80% power to detect the given estimated treatment effect. SI Appendix for details.

Finally, we note that in SI Appendix, we explore different
specifications and find broadly similar results. In addition, the
standard output provided to advertisers on Meta comes from a
hierarchical Bayesian model; we chose a frequentist approach due
to its simplicity, but in SI Appendix, we show robustness to using
a similar Bayesian approach.

Number of Influenced People, Cost per Influenced Person.
Conditional on our results, how many people were influenced
by these campaigns, and how cost-effective were they? As
aforementioned, the survey data comes from only a subset of
the overall users who saw the ads; to calculate the number of
influenced people, we follow the common industry practice
and scale the point estimate of the treatment effect from each
experiment by the size of the overall population that saw the
campaign. In our case, since we have data across many advertisers
and some users were shown ads from multiple campaigns, to
generate a (conservative) estimate of the number of influenced
people per campaign, we can treat these collective campaigns as
effectively one large one. Specifically, we combine the total spend,
total unique reach, and our estimate of the average treatment
effect to generate a back-of-the-envelope estimate of the number
of people who were influenced by this combined effort.

Doing this calculation, we estimate that about 11.6 million
people were influenced by these campaigns. To be clear, by
“influenced” we mean shifted self-reported beliefs to a positive
outcome; this does not capture people who, for example, moved
along the intensive margin of these categories (in SI Appendix,
we explore a less conservative way of estimating the number of
influenced people and thus the cost per influenced person).

Conditional on estimates of how many people were influenced,
how much does it cost to influence someone? For this, we divide
the number of influenced people by the ad spend, again as is
typical in the industry. From Table 3, we can see that the average
cost per influenced person was $3.41.

To understand how cost-effectiveness translates to real-
world public health outcomes, in SI Appendix, we explore the
relationship between survey positivity rate and vaccine series
completion rate at the county level in the United States. Across
survey outcomes, we find that for each additional positive

survey response, we would expect to see about a 0.6 increase
in vaccination takeup in the CDC data. Applying this to our
average cost per influenced person from Table 3, this implies an
estimated cost per additional vaccine of about $5.68.

While we are hesitant to extrapolate substantially outside our
sample, these magnitudes suggest that running even a few million
dollars’ worth of additional campaigns could achieve relatively
large shifts in the baseline fraction of outcome variables.

Conclusion

Over the course of the pandemic, public health agencies
increasingly leveraged social media advertising to pursue public
health goals. Our results show that public health interventions
via digital advertising are an effective medium for changing
important self-reported beliefs and attitudes around COVID-
19. Combining with nonexperimental data on vaccination rates,
our results suggest that these campaigns were a cost-effective
approach to increasing rates as well. The cost-effectiveness and
scale of these campaigns can make them appealing to a broad
range of organizations around the world. The use of social media
advertising more broadly has the potential to aid in the pursuit
of other health policy goals, ranging from childhood vaccination
to hand washing.

Data, Materials, and Software Availability. We are not sharing individual
level data as part of this work. However, on https://www.github.com/gsbDBI/
CovidAdMeta/, we provide a simulated dataset and code to reproduce all our
main results.
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