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Abstract

In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenu-

ated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen

demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia.

However, evidence to support this is scarce. We thus investigated the influence of light versus

deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment

we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed

[18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent

of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/

deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n =

9–11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls.

Four days later a Novel Object Recognition (NOR) test was performed to assess mood and

cognition. After another 4 days, the animals were sacrificed for later immunohistochemical

analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic

Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1;

Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia

during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but

higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no signifi-

cant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed,

associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deep-

ening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light

anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was

observed. Although reduced hippocampal neurogenesis may be considered unfavourable,

higher BDNF expression, associated with microglia hyper-ramification may suggest activation

of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this,

and might reflect a prolonged state of alertness rather than damage.
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Introduction

The aim of anaesthesia is to render the patient unconscious, and thus insensible to the pain

and suffering of surgery, and thereafter ensure a safe and complication free recovery.

Different anaesthetists apply different strategies in an attempt to optimize safety and to

optimize the quality of recovery from anaesthesia and surgery. Some aim for lighter anaes-

thesia, by administering lower doses of the anaesthetic drugs, since lighter doses are asso-

ciated with fewer hemodynamic adverse effects, such as hypotension, and a more rapid

recovery of consciousness once drug administration is stopped. Furthermore, some anaes-

thetists might opt for lighter anaesthesia because of recent evidence that the anaesthetic

agents have neurotoxic effects (particularly in the brains of the very young and the elderly)

and because of controversial evidence suggesting that deeper anaesthesia is associated

with a worse 1 year mortality rate [1–3]. Light anaesthesia however is associated with a

risk of inadvertent return of consciousness during supposed anaesthesia, which is a feared

complication of anaesthesia [4]. To avoid this problem of ‘awareness’ anaesthetists com-

monly administer deeper anaesthesia. Many anaesthetists consider that anaesthetic expo-

sure has no long-term consequences for the brain, and indeed there is evidence that

anaesthesia might be neuroprotective [3]. Systemic hypotension is common during sur-

gery, and may cause cerebral ischemia and/or hypoxia, which in turn may be associated

with neuronal damage and impaired postoperative cognitive outcome [5,6]. Most of the

currently used anaesthetic agents, such as propofol and isoflurane are Type A γ-Aminobu-

tyric acid (GABAA) agonists, which potentiate γ-Aminobutyric acid(GABA)-mediated

inhibition of synaptic transmission and thereby cause dose-dependent suppression of

cerebral metabolism [5–11]. By inhibiting cerebral metabolism, these agents reduce cere-

bral oxygen and glucose demand, and hence may prolong the time the brain can withstand

ischemia or hypoxia, without major neuronal damage. Accordingly, when cerebral ische-

mia or hypoxia are anticipated, anaesthetists will administer deep anaesthesia to protect

the brain [12,13]. However, evidence to support this practice is scarce. In the present

study, we thus investigated the influence of light versus deep anaesthesia on the responses

of rat brains to a period of hypoxia. We hypothesized that exposure to hypoxia during

light anaesthesia would cause changes in the brain, and that deep anaesthesia would atten-

uate these changes.

Materials and methods

Animals and ethical approval

Male Wistar rats (weight range 380 – 500g) were purchased from Harlan (Horst, The Nether-

lands) and housed for 2 weeks before the start of the experiments in the local animal facility

(Centrale Dienst Proefdieren, Groningen, the Netherlands) under controlled conditions with a

12/12-hour dark/light cycle with ad libitum access to food and water. The study was approved

by the local animal experiment and welfare committee (Dier Experimenten Commissie, Gro-

ningen, the Netherlands, DEC6281), and performed in accordance with the submitted proto-

col and local procedural regulations.

Using the Knibbe pharmacokinetic model for propofol we performed mathematical simula-

tions, to design two propofol infusion schemes, aiming to achieve light or deep propofol anaes-

thesia [14]. Two separate studies were then performed: study 1 to verify the extent of

metabolic suppression when deep or light propofol anaesthesia was administered using these

schemes (n = 20) and study 2 to investigate effects of hypoxia or normoxia in the presence of

deep or light anaesthesia (n = 46).
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Experimental protocol

Study 1. After induction of anaesthesia by isoflurane, rats (n = 20) were randomized to

receive either high or low dose propofol via a catheter inserted in the tail or penile vein, to

achieve deep or light anaesthesia respectively. Once target concentrations were reached and

the animals appeared to be in a stable plane of anaesthesia for at least two minutes, they under-

went Positron Emission Tomography (PET) scanning to obtain measurements of brain

metabolism.

Study 2. After induction of anaesthesia with isoflurane, rats (n = 41) were randomized to

receive either light or deep propofol anaesthesia. After 15 minutes of propofol anaesthesia, rats

were subjected to either 10 minutes of hypoxia or remained normoxic, resulting in 4 experi-

mental groups; light anaesthesia-normoxia (n = 11); light anaesthesia-hypoxia (n = 11); deep

anaesthesia-normoxia(n = 9); deep anaesthesia-hypoxia (n = 10). Subsequently, all rats were

ventilated at normoxia for another 30 minutes, allowed to awaken and then transferred back

to their cage. Naïve rats, not exposed to anaesthesia (and without hypoxia) served as controls

(n = 5). Four days later, a Novel Object Recognition (NOR) test was performed to assess mood

and cognitive function. It is known that surgery can have long lasting effects on the rats’ ability

of recognizing objects, as such this decision was made in order to assess the rats after 4 days in

order to demonstrate the long-term effects of hypoxia during anaesthesia on cognitive decline

[15]. On day 8, rats were sacrificed, brains were collected and processed for immunohisto-

chemical analysis of neurogenesis, neuronal functioning and neuroinflammation.

Experimental procedures

Induction and maintenance of anaesthesia. Anaesthesia was induced by placing the rat

into a clear plastic box containing 2–3% isoflurane in a 50–50% mixture of O2 and air. In rats

that underwent PET scanning (study 1), after induction, the trachea was intubated and the

lungs mechanically ventilated (Amsterdam Infant Ventilator; HoekLoos) at a rate of 50/min

using the same mixture as during induction. Tidal volume was set to achieve normocapnia ver-

ified by capnography and arterial blood gas analysis. The remaining rats (study 2) undergoing

anaesthesia, received a 50–50% mixture of O2 and air administered via a face mask, with spon-

taneous ventilation.

The tail or penile vein was cannulated and a bolus dose of propofol (40mg/kg or 160mg/kg

in the light and deep anaesthesia group, respectively) was administered. After exactly 2 min-

utes, propofol infusion was administered using a target controlled infusion scheme, designed

based on the Knibbe model to reach 2 μg/ml (light anaesthesia) and 8 μg/ml (deep anaesthesia)

effect site concentration, respectively [14]. Heart rate and oxygenation were monitored with a

pulse oximeter. The tail artery was cannulated (26G catheter) for blood pressure monitoring

and arterial blood gas analysis. If hypotension was noticed, dopamine was administered to

maintain Mean Arterial Pressure (MAP) between 60–80 mmHg. The physiological parameters

measured can be found in Supporting Information as Appendix (S1 Appendix). The body tem-

perature of the rats was kept at 37.5±0.5˚C using an electrical heating pad.

After at least two minutes of anaesthesia, the animals underwent the PET scanning proce-

dure or the hypoxia/normoxia intervention.

[18F] Fludeoxyglucose (FDG) Positron emission tomography scanning. [18F]–FDG

PET scans were performed to verify extent of cerebral metabolic suppression during deep ver-

sus light anaesthesia (n = 10 per group). The rats were positioned into the small animal PET

scanner (Focus 220, Siemens Medical Solutions, USA, Inc.) in a transaxial position with their

heads in the field of view. A transmission scan of 515 seconds with a 57Co point source was

obtained for the correction of attenuation and scatter by tissue. After the transmission scan
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was completed, [18F] FDG was injected intravenously (injected dose 19±3 MBq). Simulta-

neously with the injection of [18F] FDG, an emission scan of 60 min was started. The list-mode

data of the emission scans was separated into 21-frame sinograms (8x30, 2x60, 2x120, 2x150,

3x300 and 3x600 seconds), which were iteratively reconstructed (OSEM2D, 4 iterations, 16

subsets) after being normalized and corrected for attenuation, scatter, randoms and decay.

PET image analysis was performed using VINCI 4.12 (Max Planck Institute for Neurological

Research Cologne, Germany) More detail on the approach can be found in the protocol in S1

Appendix.

Hypoxia and normoxia. The rats breathed spontaneously via a breathing mask, through

which a hypoxic or a normoxic mixture was administered for 10 minutes. In the normoxic

group, room air (21% O2) was administered. In the hypoxic group, a 5–95% mixture of O2 and

N2 was initially administered via a standard rotameter bank. The administered oxygen fraction

was then adjusted until the peripheral capillary oxygen saturation (SpO2) was between 50–

55%.

After 10 minutes of hypoxia/normoxia all rats were ventilated with 21% O2 for another 30

minutes, allowed to spontaneously awaken and then transferred back to their cage in the ani-

mal facility.

Novel Object Recognition (NOR) test. On day 4 after anaesthesia and hypoxia induction

the NOR test was performed to assess working memory function that relies primarily on the

rats’ innate exploratory behaviour [16]. The NOR procedure was performed as follows: each

rat received a training phase of ten minutes, and one hour later, a testing phase of three min-

utes. During the training phase, rats were placed in a box with dimensions 65 x 45 x 45cm

(height) with two identical objects (two light bulbs) and allowed to explore the area. After ten

minutes, the rats were placed back into their cage. All objects were cleaned with 70% ethanol

before they were used in order to remove smell cues. One hour later, the rats were placed back

in the box, with one object exchanged for a novel one (a jar). After three minutes, each rat was

put back in the cage. The training phase and testing phase were both recorded with a camera

and analysed at a later time point (DOSBox 0.74 programme for behavioural data acquisition,

Eline Version 0.91 (Groningen)). The percentage of time the rats spent exploring each object

during the training and testing phase was measured and scored objectively in a blinded man-

ner and in a random order rats. The time spent exploring the 2 identical objects was taken as a

measure of “interest in environment”, as reduced interest in the environment can be associated

with negative affective states such as depression or anxiety. The ratio of time the animal spent

exploring the novel object expressed as percentage of the total object exploration was taken as

a measure of novel object recognition.

Sacrifice and harvesting of organs. On day 8, the animals were sacrificed by transcardial

perfusion with saline containing 0.1% EDTA, under brief deep isoflurane anaesthesia. The

brains were removed, rinsed, and immersion fixed in 4% paraformaldehyde for 4 days fol-

lowed by cryoprotection with 30% sucrose in Phosphate-Buffered Saline (PBS) and then frozen

at -80ºC for immunohistochemical analysis.

Immunohistochemical analysis

The brains were sectioned with a cryostat Leica CM 3050 into 25 μm thick sections, and free

floating sections were further pretreated with 3% H2O2 for 20 min. After staining, the sections

were mounted for image analysis. Images of the Doublecortin (DCX) and the ionized calcium-

binding adaptor protein-1 (Iba-1) stained sections were acquired with an Olympus BH2 micro-

scope with a Leica DFC320 CCD camera using an appropriate software (Leica Microsystems,

The Netherlands). The image analysis for the stainings was performed using Image-Pro Plus
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6.0.0.26 (Media Cybernetics, Inc.) The Brain Derived Neurotrophic Factor (BDNF) stainings

were analysed directly using the Leica software. The analyses were done by observers blinded

to the experimental groups in three sections per animal.

Doublecortin (DCX). Brain slices were stained for DCX to visualize adult neurogenesis

in the Dentate Gyrus (DG). DCX is a protein that is expressed in a precise manner in migrat-

ing neuroblasts during early embryonic development, as well as in neurogenic areas in the

adult brain. In addition, DCX positive cells in the piriform cortex, a sensory area adjacent to

the PET-scan indicated affected area, were analysed as they may reflect neuroplasticity [17]. As

control, DCX positivity was obtained in the basolateral amygdala by measuring optical density.

The detailed protocol for the staining can be found in S1 Appendix. A quantitative dimension

of DCX positive cells was obtained by dividing the area of DCX positive cells by the length of

chosen DG region [17].

Ionized calcium-binding adaptor protein-1 (Iba-1). To visualize microglia, we used

the ionized calcium-binding adaptor protein-1 (Iba-1), which is an actin-binding protein

that is specifically expressed in microglia and is used as an immunohistochemical marker

for both ramified and activated microglia [18]. The detailed protocol for the staining can

be found in S1 Appendix. Microglia morphology was used as parameter for neuroinflam-

mation and was analysed as described in detail by Hovens et al [19]. For that, the number

of microglia per region, the average total cell size, and average total cell body size

(expressed as pixels per high power field) were determined at 200x magnification. Subse-

quently, average dendrite area was calculated. Microglia activation is expressed as cell body

per cell size ratio, and is indicated as a relevant marker for neuroinflammation [19]. Micro-

glia analysis was obtained in the radial layer of the Dentate Gyrus-inner blade (DGib),

Cornu Ammonis 1 (CA1) and Cornu Ammonis 3 (CA3) region of the hippocampus. To

check for area specificity, microglia were also analysed in the piriform cortex (layer con-

taining DCX positive cells).

Brain derived neurotrophic factor (BDNF). Based on our findings regarding neuroin-

flammation and neurogenesis, we also aimed to investigate step in between to further elucidate

the underlying mechanism of the brain changes. Therefore, in the most relevant experimental

groups; controls (n = 5), hypoxia-light anaesthesia (n = 8), and hypoxia-deep anaesthesia

(n = 9), we performed an additional staining on BDNF in the hippocampus. Detailed descrip-

tion of the protocol can be found in the S1 Appendix.

The optical density of each of three reference areas were measured for each hippocampal

section. The reference areas were: CA1 region, CA3, and DGib. Each reference area was com-

pared to the background optical density in real-time, high-resolution imaging using the Leica

Application Suite (LAS) Macro. However, since the staining was not uniform throughout the

sections, to maintain consistency the optical density of the reference area was measured against

a local background area in the same region.

Statistical analysis

For the Iba-1, DCX, BDNF and NOR analysis, SPSS (IBM SPSS Statistics for Windows,

20.0.0.2) was used to calculate the mean and the Standard Error of Mean (SEM), and to per-

form statistical analysis. We analysed the multiple experimental group means by two-way anal-

ysis of variance (ANOVA) with the factors "anaesthetic depth (An)" and "oxygenation (Ox)",

followed by a Bonferroni post-hoc analysis. P-values <0.05 were considered significant. Fur-

thermore, correlations were assessed using Pearson’s correlation. Correlations with P-values

<0.05 were considered significant.
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Regarding the PET-scans, all data are expressed as mean ± standard deviation and further

analysed by one-way ANOVA, with significance when the p-value <0.05. Statistical analysis

was performed using SPSS (IBM SPSS Statistics for Windows, version 18.0).

Results

General

In study 1, a reliable PET scan could be obtained from only 17 of the 20 rats (n = 9 for light

anaesthesia, n = 8 for deep anaesthesia). In study 2, 41 rats were subjected to anaesthesia, 6 of

which could not complete the study due to death during anaesthesia or technical problems,

resulting in the following group sizes: normoxia-light anaesthesia n = 9; hypoxia-light anaes-

thesia n = 8; normoxia-deep anaesthesia n = 8; and hypoxia-deep anaesthesia n = 10. The con-

trol group not exposed to anaesthesia or hypoxia consisted of 5 rats.

[18F] FDG small animal positron emission tomography scan

In Fig 1, representative examples of [18F]-FDG PET scan images from a rat that underwent

light propofol anaesthesia (Fig 1A), and a rat that underwent deep anaesthesia (Fig 1B), are

depicted. These show lower [18F]-FDG uptake across the whole brain during deep than during

light anaesthesia. This observation is substantiated by the region-of-interest (ROI) based anal-

ysis (Fig 1C) showing that [18F]-FDG uptake was significantly lower for all brain regions in the

rats undergoing deep anaesthesia than those undergoing light anaesthesia (39–53% lower,

p<0.005 for all regions).

Novel object recognition (NOR) test

Cognitive performance was measured with the novel object recognition test. In the NOR test

analysis, data of 35 rats were available for analysis. During the training phase with two identical

objects, the rats did not show preference for the left or right object (5.6±0.5 and 5.6±0.8%,

respectively). There was reduced exploration of both objects in the hypoxia-light anaesthesia

group compared with the other groups, including a significant difference with the hypoxia-

deep anaesthesia group (Fig 2A). Moreover, the rats of the hypoxia-light anaesthesia group

spent significantly more time immobile. In the testing phase, all groups showed preference for

the novel object (significantly different from change level), without differences between the

groups (Fig 2B).

Immunohistochemical brain analysis

Doublecortin (DCX) staining. DCX staining was analyzed in three different regions of

the brain: the dentate gyrus, the piriform cortex and the lateral amygdala area. In the dentate

gyrus of the hippocampus there was a 45% reduction in the number of DCX-positive cells in

hypoxia-light anaesthesia group compared to the control group; the reduction in the hypoxia-

deep anaesthesia group was minimal (Fig 3A). Likewise, in the piriform cortex, hypoxia-light

anaesthesia rats displayed a minimal increase in DCX positivity compared to the control, an

effect that was reduced to control levels by deep anaesthesia (Fig 3B). No difference in DCX

expression between the experimental groups was observed in the lateral amygdala.

Ionized calcium-binding adaptor protein-1 (Iba-1) staining. In Fig 4, examples of Iba-1

stained microglia images in the CA1 region of the hippocampus are depicted for a control rat

(Fig 4A) and a light anaesthesia-hypoxia rat (Fig 4B). The photographs display microglia

hyper-ramification while the cell body size is unchanged after administering hypoxia during
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Fig 1. [18F] FDG Positron Emission Tomography (PET) scan results. [18F] FDG PET scan co-registered with an MRI template of a rat under light propofol

anaesthesia (A), and deep propofol anaesthesia (B). Fig 1C shows the results of the ROI-based analysis depicting the mean [18F] FDG uptake across all animals subjected

to light (superficial) and deep propofol anaesthesia. Data were analysed by one-way ANOVA. �: significant difference between regions.

https://doi.org/10.1371/journal.pone.0193062.g001
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light anaesthesia. This observation is substantiated with actual measurements as presented in

Fig 4C.

The number of microglia cells did not differ significantly among any of the groups for all

hippocampal areas (CA1: 14.47±0.44; DG: 15.54±0.61; CA3: 15.45±0.63 per high power field).

Microglia activation is characterized by an increased cell body size and shortening of the den-

dritic processes. In the CA1 area, total microglia cell size is increased in the hypoxia-light

anaesthesia group compared to control, which is not present anymore when anaesthesia is

deepened. This can be attributed to a significant increase in dendrite area, as cell body area is

not changed. Similar effects, though not statistically significant, can be observed in the DG

area, but not in the CA3 area. In the latter, all anaesthesia groups, independent of concomitant

oxygen levels, displayed an increased cell size, attributable to increased dendrite area. This

reached statistical significance only in the hypoxia-deep anaesthesia group. (Fig 4C).

In the piriform cortex, the number of microglia per high power field was significantly lower

in the hypoxia-light anaesthesia group compared to all other groups (control: 20±1; normoxia-

light anaeshtesia:19±1; hypoxia light anaesthesia: 15±1; normoxia-deep anaesthesia: 20±1; hyp-

oxia-deep anaesthesia: 21±1). This is accompanied by a significantly increased cell size that

could be attributed to increased dendrite size (Fig 4C).

Fig 2. Novel Object Recognition (NOR) test 4 days after anaesthesia. Mean time spent exploring the objects vs. performing other activities (A) and preference over

the novel object vs. the old object (B) during the testing phase of the NOR test. The multiple experimental group means were analysed by two-way ANOVA with the

factors "anaesthetic depth" (An) and "oxygenation" (Ox) followed by a Bonferroni post-hoc analysis. �: significant difference between groups.

https://doi.org/10.1371/journal.pone.0193062.g002
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Brain derived neurotrophic factor (BDNF) staining. Fig 5 presents the BDNF staining

in the hippocampus. The corrected optical density for the CA1, CA3 and DG are shown for

the control, hypoxia-light anaesthesia and hypoxia-deep anaesthesia rats. ANOVA depicted

significant differences between groups for CA1 and DG, but post-hoc analysis only showed

significant differences between control and hypoxia-light anaesthesia in the DG.

Correlations

Correlations between relevant parameters were analysed. Firstly, cognitive performance, mea-

sured by the preference for the new object in the NOR test, was not different between groups

and was not correlated to any obtained parameter. However, time spent on exploration of the

objects is significantly positively correlated with DCX staining in the amygdala (Fig 6A), and

negatively to microglia cell body size and BDNF staining (Fig 6B) in the CA1 and DG region.

Moreover, it appeared negatively correlated with microglia dendrites in the piriform cortex.

Neurogenesis, measured as DCX staining in the DG, is not found to be correlated to microglia

parameters in the DG, but it is significantly correlated to microglia activity (Fig 6C), cell size

and dendrite area in the CA1 area. Furthermore, a significant positive correlation was found

for BDNF and total measured positive Iba-1 area for CA1 (Fig 6D) and DG. Similarly, a

Fig 3. Doublecortin (DCX) immunohistochemical brain analyses. Mean ± Standard Error of Mean DCX expression found in the Dentate Gyrus (A) and Piriform

cortex (B). The multiple experimental group means were analysed by two-way ANOVA with the factors "anaesthetic depth" (An) and "oxygenation" (Ox) followed by a

Bonferroni post-hoc analysis. �: significant difference between groups.

https://doi.org/10.1371/journal.pone.0193062.g003
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correlation was found between BDNF and Iba-1 positive cell size and dendrite area for CA1,

but not for CA3 or DG. Finally, a significant correlation was observed between piriform cortex

DCX and microglia dendrites in this area (p = 0.002). Tables for each correlation can be found

in the S1 Appendix.

Discussion

In this study, we aimed to investigate whether the depth of anaesthesia at the time of a hypoxic

episode would affect the brain, which could be associated with changes in cognitive function.

We hypothesized that exposure to hypoxia during light anaesthesia would cause changes in the

brain, and that deep anaesthesia would attenuate these changes. We had anticipated that hyp-

oxia during light anaesthesia would cause alterations in the brain because of the mismatch

between cerebral oxygen demand and supply. Deeper anaesthesia, which reduces metabolism

and hence oxygen demand might thus attenuate these changes. Indeed, hypoxia during light

anaesthesia caused significant changes in the brain and behaviour. The observed hippocampal

reduction in neurogenesis (DCX) was associated with decreased exploration rather than cogni-

tive dysfunction. However, neurogenesis was positively correlated with microglia activity in

the hippocampus, suggesting activation of compensation (neuroinflammatory) mechanisms

rather than deterioration. Hippocampal microglia hyper-ramification, concomitant with

increased BDNF, as well as higher neuroplasticity (DCX) observed, correlated with microglia

hyper-ramification in the piriform cortex would support this. The above effects are lower or

absent in the hypoxia-deep anaesthesia group, indicating that indeed deep anaesthesia may

prevent changes in the brain afflicted by a mismatch between oxygen demand and oxygen sup-

ply during hypoxia-light anaesthesia.

The target organ of the anaesthetic agents is the brain, so anaesthetic depth is best quanti-

fied on the basis of the effects on the brain. With increasing depth of anaesthesia within clinical

ranges, most anaesthetic agents increasingly suppress cerebral electrical activity as detected by

the Electroencephalogram (EEG) [20] and cause a dose-dependent depression of the cerebral

metabolic rate [3,5–7,9,10,21] up to a nadir of about 40% of baseline (awake) metabolic rate

[20]. Accordingly, the PET scans confirmed that the magnitude of the glucose uptake (i.e. met-

abolic rate) during deep anaesthesia was almost half of that under light anaesthesia–suggesting

that the selected doses were indeed appropriate for light and deep anaesthesia. Glucose and

oxygen consumption are likely to change roughly in parallel, indicating a reduced oxygen

demand at the higher dose of propofol administered in the present study.

Anaesthetic effects on behaviour and cognition

In clinical studies, Postoperative Cognitive Dysfunction (POCD), comprising impairment of

memory, attention and executive functions, has been strongly linked to anaesthesia and sur-

gery and particularly to intraoperative ischemia (with resultant cerebral hypoxia) [1,22,23]. In

our experiments, rats who were exposed to hypoxia and received light anaesthesia spent signif-

icantly less time (compensated for by immobility) exploring the objects, but did not display

lower interest in the novel object. Rats showing less interest in their environment could be

Fig 4. Ionized calcium-binding adaptor protein-1 (Iba-1) immunohistochemical analysis of the hippocampus. An example of

Iba-1 stained microglia images obtained from the CA1 region of the hippocampus with a 200x magnification showing control group

stains (A) and hypoxia-light anaesthesia stains (B) and overview per region of hippocampus (CA1, Dentate Gyrus, CA3) and

Piriform Cortex of the mean ± Standard Error of Mean total cell size of microglia (first column), cell body size (second column) and

cell dendrite size (third column) (C). The multiple experimental group means were analysed by two-way ANOVA with the factors

"anaesthetic depth" (An) and "oxygenation" (Ox) followed by a Bonferroni post-hoc analysis. �: significant difference between

groups.

https://doi.org/10.1371/journal.pone.0193062.g004
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interpreted as signs of anxiety and depression, and/or a response to sickness or illness

[22,24,25], which would be supported by the correlation we found with changes in the

Fig 5. Immunohistochemical analysis of Brain Derived Neurotrophic Factor (BDNF) in the hippocampus. Optical density

measurements of BDNF staining in the hippocampus for control, light anaesthesia–hypoxia and deep anaesthesia -hypoxia animals. CA1:

Cornu Ammonis 1; CA3: Cornu Ammonis 3; DG: Dentate Gyrus inner blade. The multiple experimental group means were analysed by

two-way ANOVA with the factors "anaesthetic depth" (An) and "oxygenation" (Ox) followed by a Bonferroni post-hoc analysis. �:

significant difference between groups.

https://doi.org/10.1371/journal.pone.0193062.g005
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amygdala, an area involved in affective behaviour. This finding supports the hypothesis that

hypoxia during low dose anaesthesia is associated with changes in the brain, and that deep

anaesthesia attenuates this. However, preference for the novel object, as a measure of cognition

(working memory) is preserved in all experimental groups, indicating no cognitive decline in

this respect due to the anaesthesia regimes used. Additionally, our findings show that rats

under deep anaesthesia show no changes in behaviour regardless of hypoxia exposure, suggest-

ing that deep anaesthesia preserves this aspect of cognitive function and has no negative effects

by itself.

Anaesthetic effects on neurogenesis/neuroplasticity

Doublecortin (DCX) is a cytoskeleton-associated protein that is transiently expressed during

adult neurogenesis and neuroplasticity [17]. It is associated with neuronal migration, axonal

Fig 6. Illustrations of various correlations between immunohistochemical and cognitive tests. Time spent exploring was positively correlated with the expression of

DCX in the lateral amygdala (A). The presence of BDNF in the Cornu Ammonis 1 (CA1) was negatively correlated the time spent exploring (B). There was a positive

correlation between DCX in the dentate gyrus and Iba-1 microglial activation as calculated for the CA1 (C). BDNF expression in CA1 was also positively correlated with

the total Iba-1 positive area for CA1 (D).

https://doi.org/10.1371/journal.pone.0193062.g006
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guidance and dendrite sprouting. The specific function of DCX in adult hippocampal neuro-

genesis is unknown, but in most instances, it can be used as a reliable measure for neurogen-

esis. DCX positive cells are present in adult rodent brains, including but not limited to the

dentate gyrus of the hippocampus, piriform cortex, corpus callosum, and the lateral ventricle

or amygdala [17]. Interestingly, in our study, we found different changes for different brain

regions. In the hypoxia-light anaesthesia rats the DCX positivity was reduced by 45% in the

DG of the hippocampus, whereas in the piriform cortex DCX expression was almost doubled.

Deeper anaesthesia in both regions reversed this effect towards control values. Hippocampal

DCX expression may represent neurogenesis, while piriform cortex DCX expression may

relate to neuroplasticity [17]. As we were able to show a significant positive correlation

between hippocampal microglial activity and hippocampal neurogenesis, increased microglia

activity here may be regarded as an attempt to compensate for the reduced neurogenesis.

Alternatively, microglia activation and neurogenesis may follow different time courses after

anaesthesia [22]. Studies have found that the olfactory bulb, functionally related to the piriform

cortex, is vulnerable to anaesthetics, showing neuro-apoptosis throughout the lifetime of a

mouse [26]. In the piriform cortex the increased DCX expression may rather reflect neuroplas-

ticity [17] and is concomitant with strong microglia hyper-ramification, indicating a cytopro-

tective action [17]. If anything, for all groups of anaesthetised rats the mean DCX expression

in the lateral amygdala was equally reduced in comparison to controls. The lateral amygdala is

thought to be responsible for fear learning and aversive behaviour including aggression and

anxiety, which is suggesting that the lateral amygdala may be sensitive to the anaesthetic

agents, rather than to hypoxia [22,27]. However, a highly significant correlation between

amygdala DCX and object exploration would support its contribution to the observed effects

in hypoxic-light anaesthesia conditions.

Anaesthetic effects on neuroinflammation

Iba-1 allows visualization of brain microglia [19]. This protein, which is constitutively

expressed in all microglia, is used to identify the functional state of microglia [19]. Compared

to quiescent ramified microglia, microglia in the activated amoeboid state exhibit increased

Iba-1 expression. In response to injury, morphological changes in classically activated micro-

glia include shortened dendrites with simultaneously increased cell body size [28,29]. How-

ever, alternatively activated microglia show opposite morphological changes and are

associated with a regulatory role in synaptic activity [30,31]. These hyper-ramified microglia

are associated with non-pathological stimuli, such as stress, and may relate to depressive

behaviour [30]. In our study, we observed a significant increase in total microglial cell size.

This increase could be attributed to increased dendrite area of microglia cells, as cell body area

remained unchanged. This finding shows that the microglia do not convert into the classically

pro-inflammatory activated phenotype associated with short dendrite length and larger cell

body size. Rather than distinct phenotypes, recently a wide spectrum of changes has been pro-

posed for these supporting cells with a strong overlap in gene expression and functional port-

folios [28,32,33].

Although additional staining for inflammatory markers would need to be performed to

confirm the inflammatory state of the microglia, the Iba-1 morphological changes in rats from

the hypoxia-light anaesthesia group may reflect a form of microglia priming It is well known

that microglia can be “sensitized” or primed for prolonged periods of time [28]. This is often

the result of prolonged or previous inflammatory stimulation [28,32,33]. These microglia are

preconditioned to become hyperactive once activated. Priming of microglia has been found to

be caused by chronic mild inflammation, prion disease, complement signalling and aging [28].
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As exposure to anaesthesia, particularly to inhalational anaesthesia, has been purported to

cause an acceleration of neurodegenerative processes, it is likely that the combination of light

anaesthesia and hypoxia induced oxidative stress can result in microglial changes in the rats

[3,28,34–36]. A property of primed microglia is that they fail to resolve from their hypersensi-

tive state, and will not respond to anti-inflammatory cytokines. It has been speculated that

microglial hyperactivation gives rise to depression-like behaviour and cognitive deficits [30].

This suggestion would be supported by the negative correlation between microglia dendrites

in the piriform cortex and exploration behaviour (depressive-like) in the present study.

Brain derived neurotrophic factor (BDNF) staining

Inflammation can directly and indirectly influence key regulatory functions of neurons

through factors such as neurotrophins. One such neurotrophin is BDNF [37,38]. Traditionally,

BDNF has been used as a marker for activation of intracellular cascades that regulate neuro-

plasticity, synaptogenesis and neurogenesis [22,39–43]. Furthermore, BDNF is linked with

essential executive cognitive functions such as memory [44,45]. Alternatively, precursors to

BDNF have been associated with growth factor induced neuro-apoptosis under some condi-

tions. Previous studies have shown that neuro-inflammation decreases BDNF expression

[37,40,46–48]. Interestingly, our findings showed that BDNF expression was markedly

increased in animals from the hypoxia-light anaesthesia group. Furthermore, there was a posi-

tive correlation between Iba-1 expression (and dendrite area) and BDNF expression in the

CA1 of the hippocampus, indicating that neuro-inflammation and microglia hyper-ramifica-

tion was associated with an increased BDNF expression. This finding may be explained by the

antibodies used for BDNF staining, which do not differentiate between BDNF and its precur-

sors. Mature-BDNF (mBDNF) supports survival of neurons through Tropomyosin Receptor

Kinase B (TrkB receptors), whereas pro-BDNF, the precursor to mBDNF, is involved in synap-

togenesis, but can also induce neuronal apoptosis through p75-Neurotrophic Receptors

(p75NTR) [46,47]. Anaesthetics have been shown to enhance p75NTR signalling, and thus to

promote BDNF dependent neuroapoptosis in the brain[37,46–48]. This phenomenon may

have occurred in all our anaesthetized rats, but the combination of light anaesthesia and hyp-

oxia would then significantly have increased BDNF-dependent apoptosis. An alternative expla-

nation for the increased BDNF in the hypoxia-light anaesthesia group is that the BDNF

expression occurred because of a compensatory release of neurotrophic factors by hyper-rami-

fied microglia, in response to reduced neurogenesis (as measured by DCX). It has been pro-

posed that reduced neurogenesis can stimulate mechanisms that increase the expression of

BDNF, and BDNF pathways for neuroplasticity and neurogenesis, for instance upregulation of

TrkB receptors[22].

Limitations

Some limitations of our study should be mentioned. Firstly, the effects were studied in rats,

who only underwent anaesthesia. In clinical settings, anaesthesia is almost always administered

to facilitate a surgical procedure. The surgical insult generates an inflammatory event and can

activate or exacerbate systemic inflammation [22,49]. However, this study did provide an

opportunity to study effects of different anaesthesia regimes, without the interference of effects

of surgery. Secondly, we chose one time point to measure the effects of a process that likely will

encompass a time course lasting weeks. Additionally, cognitive function as the ultimate out-

come of expected neuronal damage was investigated in only one test, merely testing working

memory. As all rats performed well, this test may not be sensitive enough to distinguish

between the different interventions. It is unknown if the changes identified in the rat brain
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tissue after 8 days are longer-lasting or reversible. Future studies should include measurements

to determine the long-term effects of (light and deep) anaesthesia and hypoxia. Thirdly our

findings are based on a relatively limited sample size, selected pragmatically as there were no

available satisfactory data to conduct an a-priori sample size calculation. A fourth limitation is

that with the current methodology isoflurane was administered prior to propofol administra-

tion and again prior to sacrifice. So-called anaesthetic pre-conditioning, which can be stimu-

lated by isoflurane might therefore have pre-activated defence and repair systems and thus

may have influenced the outcome [50].

Conclusion

Our data indicate that hypoxia during light anaesthesia is associated with significant immuno-

histological evidence of neuronal changes in comparison with other combined conditions.

Although reduced hippocampal neurogenesis may indicate unfavourable effects, higher BDNF

correlated to microglia hyper-ramification may suggest compensation for this effect. This is

further supported by increased neuroplasticity in the piriform cortex. As deep anaesthesia dur-

ing hypoxia at least partly attenuated all effects, we conclude that the effects of hypoxia during

light anaesthesia may indeed be prevented by deep anaesthesia. Further research is required to

confirm whether these effects occur in other pre-clinical settings, with larger sample sizes, and

can be extended to the surgical arena and translated into clinical settings.
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