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Abstract

Retinoic acid (RA) has been shown to improve epithelial and endothelial barrier function and

development and even suppress damage inflicted by inflammation on these barriers through

regulating immune cell activity. This paper thus sought to determine whether RA could

improve baseline barrier function and attenuate TNF-α-induced barrier leak in the human

bronchial epithelial cell culture model, 16HBE14o- (16HBE). We show for the first time that RA

increases baseline barrier function of these cell layers indicated by an 89% increase in transe-

pithelial electrical resistance (TER) and 22% decrease in 14C-mannitol flux. A simultaneous,

RA-induced 70% increase in claudin-4 attests to RA affecting the tight junctional (TJ) complex

itself. RA was also effective in alleviating TNF-α-induced 16HBE barrier leak, attenuating 60%

of the TNF-α-induced leak to 14C-mannitol and 80% of the leak to 14C-inulin. Interleukin-6-

induced barrier leak was also reduced by RA. Treatment of 16HBE cell layers with TNF-α
resulted in dramatic decrease in immunostaining for occludin and claudin-4, as well as a

downward “band-shift” in occludin Western immunoblots. The presence of RA partially

reversed TNF-α’s effects on these select TJ proteins. Lastly, RA completely abrogated the

TNF-α-induced increase in ERK-1,2 phosphorylation without significantly decreasing the

TNF-driven increase in total ERK-1,2. This study suggests RA could be effective as a prophy-

lactic agent in minimizing airway barrier leak and as a therapeutic in preventing leak triggered

by inflammatory cascades. Given the growing literature suggesting a “cytokine storm” may be

related to COVID-19 morbidity, RA may be a useful adjuvant for use with anti-viral therapies.

Introduction

Epithelial tissues are physical barriers between the outside environment and our systemic circu-

lation and interstitial tissue. Examples are the epidermis of the skin and the linings of organs

defining luminal spaces in our body such as our gastrointestinal tract, renal tubes, and alveoli in

the lungs [1]. Cells constituting these protective sheets are unique in that they polarize (form a
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distinct apical side directed toward the lumen and a basolateral side connected to an underlying

basement membrane) and form specialized junctional seals termed tight junctions (TJ) around

and between adjacent cells [2]. A family of proteins including tricellulin, occludin, and 27 dis-

tinct claudins comprise the barrier element of TJs in a variety of different combinations through-

out different epithelia [1–3]. These proteins extend from the cell into the intercellular space,

forming oligomeric complexes with TJ proteins of adjacent epithelial cells to create a circumfer-

ential seal around the subapical perimeter [1–5]. Establishment of apico-basal polarity and regu-

lation of paracellular permeability to fluid and solutes (barrier function) is dependent on these

TJ proteins and their intracellular complexes [1–5]. TJs are pivotal in the development and

maintenance of epithelial barriers throughout the body, and epithelial barriers are vital to any

organism’s homeostasis. Conversely, epithelial barrier leak is associated with disease in many

different organ systems such as inflammatory bowel disease in the gastrointestinal tract, acute

renal failure in the kidneys, and acute respiratory distress syndrome (ARDS) in the lungs [2, 6].

The airway epithelium limits infiltration of inhaled noxious stimuli into underlying tissue

and vasculature, and in the process prevents damaging immune reactions [1, 7]. In addition to

inhibiting pathogens, allergens, carcinogens, and other detrimental compounds from entering

the body, this barrier also prevents interstitial and vascular fluid from leaking into the lungs

and interfering with gas exchange [4, 5]. Altered structure/function of this barrier and its asso-

ciated TJs is observed in a variety of lung disorders such as rhinitis, chronic obstructive pulmo-

nary disease (COPD), allergic asthma, ARDS, and lung cancer [4, 7, 8–10]. The life-

threatening nature of these diseases highlights why it is crucial to maintain an intact epithe-

lium that lines the airways and alveoli and restore any compromised barrier function.

16HBE14o- (16HBE) is an immortalized human bronchial epithelial cell line obtained from

a 1-year old male and has served as a longstanding model for the study of various lung disor-

ders, a number of which relate to epithelial barrier function [11–16].

Retinoic acid (RA), a biologically active form of vitamin A, has been shown to promote the

development and/or elevate the strength of a variety of epithelial and endothelial barriers [17–

20]. While RA has been shown to be effective in reducing inflammation in the airway, these

studies have mostly focused on it modulating immune cell differentiation/activity rather than

on epithelial cells and barrier function per se [21–23]. This study sought to test whether this

micronutrient could be useful in elevating basal barrier strength of this bronchial cell culture

model as well as determine whether RA can alleviate 16HBE barrier leak triggered by proin-

flammatory cytokines such as TNF-α and Interleukin-6 (IL-6).

Methods and materials

Cell culture

The 16HBE cell culture was obtained from Millipore Sigma (St. Louis, MO). Cells were pas-

saged weekly for no more than 17 weeks before returning to frozen cell stocks. This correlates

to actual serial passages 47–64 from the establishment of the original immortalized cell line.

No discernible changes in morphology or physiology were observed within this window of

passages. After reaching confluence, cells were trypsinized (0.25% trypsin and 2.2mM EDTA)

(Corning Cellgro, Manassas, VA) and then passaged on a weekly basis by seeding 3.0 x 106

cells per Falcon 150 cm2 culture flask with 50ml of Dulbecco’s Modified Minimum Essential

Medium (Corning Cellgro, Manassas, VA), supplemented with 2mM L-Glutamine (Corning

Cellgro, Manassas, VA), 10% fetal bovine serum (Seradigm, VMR, Inc., Radnor, PA), 1% non-

essential amino acids (Corning Cellgro, Manassas, VA), and 1mM sodium pyruvate (Corning

Cellgro, Manassas, VA). Cultures were incubated at 37˚C in 95% air/5% CO2 atmosphere.

Confluent cell density was approximately 3.3x105 cells/cm2.
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Transepithelial permeability measurements

Cells were seeded for transepithelial electrical resistance (TER) and radiolabeled flux measure-

ments into sterile Millicell polycarbonate (PCF) cell culture inserts (30mm diameter with

0.4 μm pore size) [EMD Millipore, Burlington, MA] on day 0 at a seeding density of 2.0 x 106

cells/insert. Four Millicell PCF inserts were placed in a 100mm petri dish. On day 1, all cell lay-

ers were refed with medium containing 50U/ml penicillin and 50μg/ml streptomycin (2ml api-

cal, 15ml basolateral). The same refeed procedure was performed on day 4. All treatments with

TNF-α or RA were begun on day 5 or 6 (when the cell layers were post-confluent).

Cell layers were refed with control medium on the morning of experiments and allowed to

incubate at 37˚C for 90-minutes prior to electrophysiological readings. Transepithelial poten-

tial difference was measured at 37˚C using 1M NaCl salt bridges in series with calomel elec-

trodes. TER was measured at room temperature (RT) using 1 second, 40 μamp, direct current

pulses (through 1M NaCl salt bridges in series with Ag/AgCl electrodes) in a custom-made

polycarbonate chamber designed to hold the Millicell PCF inserts. With current-passing and

voltage-measuring salt bridges positioned above and below the center point of the cell layers,

voltage deflections and Ohm’s law were used to calculate TER (V = iR).

Following TER measurements, the basal-lateral medium was removed and replaced with

15ml of medium containing 0.1mM, 0.1μCi/ml 14C-D-mannitol (Perkin-Elmer, Boston, MA),

0.1mM, 0.1μCi/ml 3H-lactulose (D-galactose) (American Radiolabeled Chemicals, Inc.,

St. Louis, MO), or 0.1mM, 0.1 uCi/ml 14C-inulin (Perkin-Elmer, Boston, MA) and incubated

at 37˚C. Triplicate 50μl samples were taken from the basolateral medium to determine the spe-

cific activity via liquid scintillation counting (LSC). Duplicate 250μl samples were taken from

the apical medium at either 90 or 180 minutes for liquid scintillation counting (LSC) to deter-

mine transepithelial flux rates (Jm). The flux rate (in picomoles/min/cm2) was calculated for

the aforementioned probes diffusing across the cell layer.

Treatment with TNF-α
Medium containing the cytokines, TNF-α and IL-6 (Peprotech, Inc., Rocky Hill, NJ), at a con-

centration of 125ng/ml and 200 ng/ml, respectively, were applied to the apical and basolateral

cell surfaces day 6 post-seeding. Physiological measurements were taken at 24-, and 48- hours

after the initial exposure. For experiments observing pERK expression, cell layers exposed to

TNF-α were harvested at 30 minutes, 60 minutes, and 4 hours after initial exposure. Both

TNF-α and IL-6 were dissolved directly in culture medium.

Treatment with retinoic acid

All-trans RA (EMD Millipore, Burlington, MA) was dissolved in 100% EtOH to make a

33.3mM stock and then diluted to concentrations of 5-, 15-, or 50uM in culture medium. The

appropriate concentration was then added to the apical and basolateral compartments. Physio-

logical measurements were taken at 24- and 48-hours after initial exposure. In all experiments

using RA, the controls reported are actually solvent (ethanol-containing) controls. The ethanol

concentrations were made equal in all conditions, and never exceeded 0.5% (v/v).

TNF-α enzyme linked immunosorbent assay

Basal-lateral culture medium samples from control or RA-treated cell layers were assessed for

TNF-α concentration by ELISA (Invitrogen, part of Thermo Fisher). 50uL of biotinylated anti-

body reagent were added to each well of the kit, then 50uL of supernatant or TNF-α standard

were added to each well. After incubating at room temperature for 2-hours, each well was
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rinsed with wash buffer. After three washes, 100uL of 0.25% strepdavin-HRP was added to

each well for 30-minutes. After rinsing with wash buffer three times, 100uL of TMB substrate

was added to each well and the plate was placed in the dark for 30-minutes. Finally, 100uL of

stop solution was added to each well and the plate was read at 450nm using a plate reader.

Immunofluorescent staining of occludin and claudin-4

Cells were seeded at 2.0e5 cells per 2.55 cm2 glass cover slip (Fisher Scientific, Waltham, MA).

Cell layers were washed 3X in PBS. 2mL of 4% formalin were added to cover each cell layer for

3-minutes. The cell layer was once again washed three times with PBS and then blocked with

1% goat serum (Jackson ImmunoResearch, West Grove, PA). After blocking, preparations

were exposed to rabbit anti-human occludin (1:300 dilution in 1% goat serum) and mouse

anti-human claudin-4 (1:300 dilution in 1% goat serum) for 40-minutes (Fisher Scientific,

Waltham, MA), washed and exposed to Alexa-flour 488 (green) goat anti-rabbit (1:400 dilu-

tion in 1% goat serum) and Cyanine3 (red) goat anti-mouse (1:400 dilution in 1% goat serum)

for 40-minutes (Fisher Scientific, Waltham, MA). Finally, cell layers were exposed to DAPI

(Fisher Scientific, Waltham, MA) for 1-minute, washed three times in PBS, and stored over-

night at 4˚C.

The following day, green and red fluorescence were observed via confocal laser scanning

microscopy (Nikon A1 HD25 confocal microscope Melville, NY) and images were obtained

using Nikon NIS Elements Viewer.

Immunoblot analysis of claudin-4, occludin, ERK-1,2 and phosphorylated

ERK-1,2

For occludin and claudin-4 analyses, cells were harvested from Millicell PCF inserts by wash-

ing 5X in cold PBS. Then 500μL of Buffer A with protease and phosphatase inhibitors were

added to each PCF [24]. The cell layer was physically scraped away from the filter and the sus-

pension was collected, sonicated, and ultracentrifuged. The supernatant was transferred to a

separate tube and prepared for analysis by PAGE (cytosolic fraction). 300μl of lysis buffer was

then added to the pellet, which was then placed on a rotator for 90 minutes and ultracentri-

fuged. The supernatant (detergent-soluble fraction) was removed to a separate tube and pre-

pared for analysis by PAGE.

For ERK-1,2 and p-ERK1,2 analyses, cells were harvested from Millicell PCF inserts by

washing 5X in cold PBS. Then 500μL of lysis buffer with protease and phosphatase inhibitors

were added to each PCF. The cell layer was physically scraped away from the filter, and the sus-

pension was collected, flash-frozen, and stored at −80˚C. Whole-cell lysates were prepared by

sonication and ultracentrifugation.

Samples of all of these lysates were analyzed by PAGE using a 4−20% gradient Tris-glycine

gel (Invitrogen, a division of Thermo Fisher Scientific) at 120 V for 1 h 20 min. Precision Plus

Kaleidoscope Protein Standards (Bio-Rad, Inc., Hercules, CA) were also included on each gel.

Proteins were transferred at 30 V for 1 h from the gel to a nitrocellulose membrane. The mem-

branes were then washed three times with PBS-T (0.3% Tween 20) for 10 min each and blocked

with 5% milk/PBS-T at RT for 1 hr. Membranes were incubated with the specific primary anti-

body (occludin, claudin-4 and phospho-ERK1,2, from Fisher Scientific) at 0.5 μg/mL in 5%

milk/PBS-T for overnight incubation at 4˚C. (Anti-ERK-1,2 in 5% bovine serum albumin/PBST

was a product of Cell Signaling, Inc.). The membranes were again washed 3X, for 10 minutes

each with PBS-T, and then incubated with the secondary antibody (rabbit anti-mouse- or goat

anti-rabbit-IgG antibody labeled with horseradish peroxidase, from Southern Biotech, Birming-

ham, AL) for 1 h at RT. The membranes were washed four times, 10 min each with PBS-T, and
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then treated for 1 min with Western Lightning Plus-ECL chemiluminescence reagents (Perki-

nElmer). The membranes and band densities were quantified on the BioRad ChemiDoc Imag-

ing System. Band densities of the normalized experimentally-treated cell samples were

compared to normalized averages of the corresponding control cell sample densities.

In place of a traditional loading control such as GAPDH or actin, we routinely use densitom-

etry of MemCode (Thermo Fisher, Inc.) staining of total protein on our immunoblots as

described by [25]. Optical density of protein bands such as occludin or pERK are normalized

based upon total protein staining (bands) of the immunoblot in question, quantitating the opti-

cal density of (total) protein bands in molecular weight ranges close to the proteins of interest.

Statistics

All reported statistics utilized paired Student’s t-tests (experimental condition vs appropriate

control), with all data expressed as the mean ± standard error of the mean. N/S (not signifi-

cant): P> 0.05.

Results

Retinoic acid enhances 16HBE barrier strength and suppresses endogenous

TNF-α production

Retinoic acid improved barrier strength of 16HBE in a dose-dependent manner 48-hours after

exposure. At a concentration of 50μM, RA increased TER by 89% (Fig 1A) and reduced mannitol

flux by 22% (Fig 1B), indicating a true increase in barrier function. Simultaneously, RA signifi-

cantly increased levels of claudin-4 (CL-4), though without any effect on occludin (Fig 1C). While

no concentration of RA significantly influenced barrier function at 24 hours (S1 File), RA was

found to significantly reduce endogenous TNF-α production by 13% at this timepoint (Fig 2).

Retinoic acid alleviates TNF-α-induced 16HBE barrier leak

TNF-α consistently produced leak in 16HBE at both 24 and 48 hours after exposure. Like its

time course of action on baseline barrier strength, RA did not significantly alter TNF-α’s effect

Fig 1. Effect of retinoic acid on 16HBE barrier function. Transepithelial electrical resistance (A) and flux of 14C-

mannitol (B) were measured as described in Materials and Methods 48 hours after treatment. n = 4 cell layers per

condition. Western immunoblots (C) were performed for the tight junctional proteins, occludin and claudin-4, on

total cell lysates from cell layers treated for 48 hrs with 50 μM RA, n = 4 cell layers per condition. Bars indicate the

mean ± standard error of the mean. N/S indicates no significant difference between experimental and control

condition, �� indicates P<0.01, ��� indicates P<0.001 (Student’s t test, two-tailed). RA: retinoic acid.

https://doi.org/10.1371/journal.pone.0242536.g001

PLOS ONE Retinoic acid and inflammation-induced epithelial barrier leak

PLOS ONE | https://doi.org/10.1371/journal.pone.0242536 December 10, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0242536.g001
https://doi.org/10.1371/journal.pone.0242536


on barrier function until 48 hours. At 48 hours, RA alleviated both the decline in TER and the

increase in mannitol flux induced by TNF-α in a dose-dependent manner, with 50μM RA

attenuating the reduction in TER and the increase in mannitol by 74% and 60% respectively

(Fig 3).

In addition to having increased permeability to mannitol (mw 182), 16HBE cell layers

treated with TNF-α were leakier to larger molecular weight probes such as lactulose (mw 342)

and inulin (mw 5,500) (Fig 4). At 48 hours, lactulose flux was increased by approximately 35%

after TNF exposure while inulin flux was increased over 50%. As was true for D-mannitol, reti-

noic acid almost completely inhibited the TNF-induced increases in both lactulose and inulin

flux (Fig 4A and 4B).

Retinoic acid inhibits the TNF-α-induced decreased immunostaining of

occludin and claudin-4

In Calu-3 (immortalized bronchial cell culture model), primary bronchial epithelial cells, and

intestinal HT-29/B6 cells, changes in transepithelial permeability caused by TNF-α have been

Fig 2. Effect of retinoic acid on endogenous 16HBE TNF-α production. TNF-α levels were measured as described in

Materials and Methods 24 hours after treatment. Data are expressed as percent of mean control value. � indicates

P<0.05 (Student’s t test, two-tailed). RA: retinoic acid.

https://doi.org/10.1371/journal.pone.0242536.g002

Fig 3. Effect of retinoic acid on TNF-α-induced 16HBE barrier leak. TER (A) and transepithelial flux of 14C-

mannitol (B) were measured as described in Materials and Methods 48 hours after treatment. n = 4 cell layers per

condition, N/S indicates no significant difference between experimental and control condition, � indicates P<0.05, ��

indicates P<0.01, ��� indicates P<0.001 (Student’s t test, two-tailed). RA: retinoic acid.

https://doi.org/10.1371/journal.pone.0242536.g003
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shown to correlate with changes in TJ structure [26–28]. Here, it was tested whether similar

changes would be observed in 16HBE and whether RA could exert any influence on TJ struc-

ture in the presence of TNF-α. Immunofluorescence methods applied to control cell layers

revealed well-formed perijunctional staining of occludin, while staining for claudin-4 showed

higher immunoreactivity within the cell (Fig 5). Cell layers treated with TNF-α for 24 hours

were observed to have severely diminished intensity for both occludin and claudin-4. The

addition of RA appeared to blunt both these effects of TNF-α, preserving immunostaining of

both of these TJ proteins as well as occludin’s perijunctional ring localization specifically.

Retinoic acid reverses the downward band-shift of occludin triggered by

TNF-α
TNF-α has been shown to produce a “band-shift” for occludin in Western immunoblots,

namely a change in the band densities of two occludin phosphoproteins. This suggests TNF-α
may play a role in altering the phosphorylation state for this TJ protein [29]. Occludin band

Fig 4. Effect of TNF-α and retinoic acid on flux of 3H-lactulose and 14C-inulin across 16HBE cell layers.

Transepithelial flux of 3H-lactulose (A) and 14C-inulin (B) were measured as described in Materials and Methods, 48

hours after TNF exposure. Simultaneous incubation with 50 μM RA inhibited the TNF-induced permeability increase

to both probe molecules. n = 4 cell layers per condition, ��� indicates P<0.001 (Student’s t test, two-tailed). RA:

retinoic acid.

https://doi.org/10.1371/journal.pone.0242536.g004

Fig 5. Effect of retinoic acid on TNF-α-induced 16HBE TJ disruption. Cell layers were treated with TNF-α or TNF-

α and RA as described in Materials and Methods after reaching confluence. After 24 hours, staining for occludin

(green), claudin-4 (red), and DAPI (blue) were performed and images observed as described in Materials and

Methods. RA: 50μM retinoic acid.

https://doi.org/10.1371/journal.pone.0242536.g005
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densities were analyzed in detergent soluble fractions of 16HBE cell layers to determine

whether any changes in intensity would be observed in occludin protein bands present in TJs.

As shown in Fig 6A, two prominent bands were observed in Western immunoblots of occlu-

din in detergent soluble fractions. Prior work by our group and others suggests that these

bands represent phosphoproteins of occludin [30]. After 48 hours of exposure, TNF-α induced

an obvious decrease in the upper band intensity while slightly increasing the lower band den-

sity (downward band-shift) (Fig 6). The proportion of upper to lower band densities were

quantified, which revealed that TNF-α produced a 33% decrease in the ratio while the addition

of RA produced a 55% increase, indicating that TNF-α and the combination of TNF-α and RA

are modulating occludin phosphorylation in opposite directions (Fig 6C).

Retinoic acid blocks the TNF-α-induced increase in phosphorylated ERK-

1,2 expression

Activation of extracellular-signal-regulated kinase (ERK-1,2) has been implicated in cytokine-

induced TJ disassembly in Calu-3 and other epithelial cell culture models [28]. Here in

16HBE, TNF-α increased the amount of phosphorylated ERK-1,2 by approximately 40% at

30-minutes (Fig 7).This effect was completely abrogated by 24 hour pre-treatment with RA

(Fig 7).This effect by TNF-α was constant through one hour, but then completely dissipated by

four hours (S1 and S2 Figs).

Examining levels of total ERK-1,2 shows that TNF is likewise inducing an increase in total

ERK-1,2 levels by 60 mins of TNF exposure (Fig 7, Panel C) as well as increasing pERK levels.

However, 50 μM RA did not significantly reduce the total ERK-1,2 levels increased by TNF

exposure, unlike the case with pERK (Panels A & B), suggesting that RA is in fact blocking the

increased ERK-1,2 phosphorylation seen with TNF.

Effect of interleukin-6 on 16HBE barrier function

The strong association of elevated systemic IL-6 levels with COVID-19 infection [31, 32]

prompted an examination of IL-6 effects on 16HBE barrier function as well as possible antago-

nism of that induced leakiness by RA. As shown in Fig 8, 200 ng/ml IL-6 induced a statistically

significant, 40% increase in transepithelial leak of 14C-D-mannitol, 48 hrs after IL-6 exposure.

Fig 6. Effect of TNF-α or TNF-α and retinoic acid on occludin band-shift in detergent soluble 16HBE cell

fractions. Confluent cell layers were treated for 48 hours with TNF-α or TNF-α + RA as described in Materials and

Methods. Western immunoblots for occludin in detergent soluble fractions of cell layers were produced as described in

Materials and Methods. (A. Control cell samples [lanes D1-D3] TNF-α-treated cell samples [lanes E1-E3], and TNF-α
+ RA-treated cell samples [lanes F1-F3]; B. band densities of upper and lower bands were obtained; C. the ratios of

upper to lower band densities). n = 3 cell layers per condition; N/S indicates no significant difference between

experimental and control conditions; ��� indicates P< 0.001 (Student’s t test, two-tailed); �’ indicates P< 0.05

(Student’s t test, one-tailed).

https://doi.org/10.1371/journal.pone.0242536.g006
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A simultaneous incubation of 5, 10 or 50 μM RA with IL-6 completely blocked the IL-

6-induced leak to 14C-D-mannitol. However, unlike the effect of TNF, a corresponding

decrease of TER was not observed as a result of IL-6 exposure.

Fig 7. Effect of TNF-α or TNF-α + retinoic acid on phosphorylated ERK-1,2 expression in 16HBE cell layers.

Confluent cell layers were treated with control or 50μM RA-supplemented medium for 24-hours prior to treatment

with TNF-α or TNF-α + RA for 30 minutes. Phosphorylated ERK-1,2 immunoblots were prepared (A) and band

densities were quantified (B) as described in Materials and Methods. (Lanes A1-A3 represents control, lanes B1-B3

represents TNF-α, and lanes C1-C3 represents pre-treatment with RA prior to TNF-α). Panel C shows the effects of

the TNF ± RA exposure on total ERK-1,2 levels, evidencing a relatively rapid, TNF-induced, 50% increase in total ERK

at 60 minutes without a significant reduction of total ERK-1,2 by RA. � indicates P< 0.05, ��indicates P< 0.01

(Student’s t test, two-tailed).

https://doi.org/10.1371/journal.pone.0242536.g007

Fig 8. Effect of retinoic acid on IL-6-induced 16HBE barrier leak. Transepithelial flux of 14C-mannitol was

measured as described in Materials and Methods, 48-hours after treatment. n = 4 cell layers per condition, ���indicates

P<0.001 (Student’s test, two-tailed) for IL-6 vs. IL-6 + RA (all concentrations).

https://doi.org/10.1371/journal.pone.0242536.g008
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Discussion

Retinoic acid produced the following effects on 16HBE cell layers: 1) increase of basal barrier

strength evidenced by an 89% increase in TER and 22% decrease in mannitol flux (Fig 1); 2)

moderate but significant suppression of endogenous TNF-α production (Fig 2); 3) attenuation

of TNF-α-induced barrier leak to mannitol, lactulose and inulin (small and moderately high

molecular weight probes)(Figs 3 and 4); 4) attenuation of the IL-6-induced increase in barrier

leak to mannitol; 5) preservation of occludin and claudin-4 immunostaining in the presence of

TNF-α (Fig 5); 6) reversal of the downward “band-shift” of occludin triggered by TNF-α (Fig

6); and 7) inhibition of the increase in ERK-1,2 phosphorylation induced by TNF-α (Fig 7).

As mentioned above, RA has been shown to be beneficial to barrier function in several

other epithelial models both in vitro and in vivo including oral, blood-retinal, blood-brain, and

intestinal barriers [17–20]. To our knowledge, this is the first study showing improvement in

airway basal barrier function using RA. Suppression of endogenous TNF-α production may be

partially responsible for RA’s induced elevation in basal barrier strength given TNF-α’s detri-

mental effect on the 16HBE barrier (Figs 1 and 2). While only TNF-α production was assessed

here, RA could also be dampening production of other cytokines as is the case in mouse hepa-

tocytes, in human and mouse adipocytes, in rats with collagen-induced arthritis, and in the

kidneys of diabetic rats [33–37]. More experimentation would be needed to reveal the distinct

mechanisms involved in RA enhancing barrier function of 16HBE cell layers, but the physio-

logical results presented here do suggest that RA could be useful prophylactically in preventing

lung barrier dysfunction in vivo.

TNF-α has been shown to produce barrier leak in a variety of other different epithelial cell

models [6, 26, 38–43]. The purpose of this study—with respect to TNF-α-induced barrier leak

—was not to delve into the molecular mechanisms of how TNF-α produces leak in 16HBE cell

layers, but rather initially characterize the type of leak that occurs. Transepithelial leak can be

produced by either perturbation of TJs or through the creation of actual holes in the epithelial

sheet arising from cell death and detachment [3, 38, 39]. Here, we note that barrier compro-

mise triggered by TNF-α correlated with changes in TJ proteins.

While it is unclear whether TNF-α is producing actual holes in 16HBE cell layers, the physi-

ological data collected here may suggest such holes are present. In LLC-PK1, renal cell layers,

both TNF-α and the phorbol ester, TPA, induced leak [40]. However, the leak produced by

these two inducers exhibited very different characteristics [40]. A size limit existed as to which

probe molecules manifested increased leak triggered by TNF-α, while no such size limit existed

for TPA-induced leak. The presence of holes (or complete loss of TJs) created by TPA would

be consistent with the absence of any size limitation, while the lack of holes in TNF-α treated

cell layers would result in only low MW probes crossing cell layers [40]. Since no size limit was

observed for TNF-α-induced leak in 16HBE (increased leak for mannitol, lactulose and inu-

lin), holes may be present in addition to alterations in TJs. In any event, what is most impor-

tant is that RA almost completely restores barrier strength of this airway model in the presence

of TNF-α to all three probes (Figs 3 and 4). The implications of this could be very important

for patients with high systemic levels of cytokines, placing them at an increased risk of lung

water accumulation and subsequent respiratory distress. This data suggests that RA could be

helpful either therapeutically or prophylactically.

Occludin expression and localization have been shown to be causal to changes in transe-

pithelial permeability, with higher expression of occludin at TJs correlating with decreased per-

meability/leak [44]. Further, the degree of phosphorylation of occludin correlates with its

localization, with increased phosphorylation of occludin associating with TJ localization and

less phosphorylation associating with non-TJ localization [45]. Here, immunostaining of

PLOS ONE Retinoic acid and inflammation-induced epithelial barrier leak

PLOS ONE | https://doi.org/10.1371/journal.pone.0242536 December 10, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0242536


occludin was greatly diminished in TNF-α-treated cell layers (Fig 5). Additionally, TNF-α
caused a downward “band-shift” of occludin, suggesting a decrease in occludin phosphorylation

(Fig 6), though this contrasts with what was observed in hCMEC/D3 cells where an upward-

shift of occludin was rapidly initiated by TNF-α [28]. These results could suggest TNF-α-

induced leak in 16HBE cell layers is partially carried out through induced change in occludin

phosphorylation with subsequent or concurrent loss of occludin from TJs. In addition to alter-

ing occludin–and potentially other TJ proteins’—phosphorylation states, TNF-α could also

induce paracellular leak by triggering MLCK-dependent endocytosis of TJ proteins [46].

While in this study, occludin is being highlighted and the changes in occludin band densi-

ties and junctional staining correlate nicely with physiological results, we by no means suggest

that changes in occludin or claudin-4 account for the changes in 16HBE barrier function that

we observed here. As we have shown (Figs 1 and 5), TNF- and RA-induced changes in clau-

din-4 are also pronounced. Investigations into many other TJ proteins are clearly required and

will be the subject of future studies by our group. In this regard, it is worth noting that RA is

not only reducing the changes in occludin and claudin-4 abundance caused by TNF (Fig 5)

but is itself capable of causing increased levels of claudin-4 in control cell layers (Fig 1C). It

should be noted however that whereas in immunofluorescence the sharply decreased claudin-

4 signal caused by TNF is partially reversed by RA, this was not observed in Western immuno-

blotting. Therefore, a focal effect regarding RA reversal of TNF action on claudin-4 cannot be

ruled out here.

ERK signaling has been shown to influence TJ integrity differently in different epithelia [28,

47]. For example, reducing ERK-1,2 activity in MDCK (canine kidney) and LLC-PK1 (porcine

kidney) epithelial cell layers promotes TJ assembly, while increased ERK-1,2 activity appears

to be protective concerning barrier function in differentiated CACO-2 (human intestinal) epi-

thelial cell layers [48, 49]. Our data indicates that TNF-α increases ERK-1,2 phosphorylation

and that RA can inhibit this phosphorylation increase. Future work is needed to show whether

these observed changes in ERK-1,2 phosphorylation are in fact causal to the barrier function

changes observed here.

In all data reported here, we are showing time points at which observed effects were most

obvious. These can be 24 or 48 hrs. or as short as 30 mins in the case of ERK phosphorylation.

It is worth noting that we are not always reporting on the same induced phenomena. The

mechanisms by which RA improves basal barrier function may not be the same by which RA

opposes TNF-induced barrier compromise. They may quite likely have differing time courses.

Similarly, the effects of RA on TJ proteins’ expression or phosphorylation may have a different

time course than effects on actual barrier function.

In the midst of the current SARS-CoV-2 pandemic, it is worth noting that an increasing

published literature suggests a significant source of COVID-19 morbidity may be traceable to

a “cytokine storm” that occurs in a meaningful percentage of infected patients [50–53]. Fur-

thermore, evidence for an association between the cytokine storm and resulting lung water

may be building [32, 54]. It is therefore very noteworthy that our work indicates that RA may

not only be capable of improving basal lung barrier function but also protecting lung barrier

function during assault by cytokines such as TNF-α and IL-6. This therefore suggests the

potential for RA as a prophylactic and therapeutic adjuvant therapy in COVID-19 treatment,

alongside direct anti-viral therapies.

Conclusion

More work is required to identify molecular mechanisms that are responsible for RA’s action

on 16HBE barrier function. Work on additional airway epithelial barrier models is needed to
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determine if the results reported here might accurately reflect in vivo actions. However, the

results contained here do suggest that RA may be effective prophylactically in strengthening

airway barriers as well as therapeutically in preventing barrier leak triggered by inflammatory

cascades and disease pathogens.
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