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Abstract: Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly
implicated in cancer, with various critical roles in biological processes. Herein, we provide an
overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies.
Important pathophysiological processes of FOX transcription factors at multiple levels in a
context-dependent manner are discussed. We also specifically summarize some major aspects of
FOX transcription factors in association with cancer research such as drug resistance, tumor growth,
genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a
potential therapeutic strategy to combat cancer.

Keywords: FOX proteins; FOXA; FOXC; FOXP; FOXO-FOXM1; hallmarks of cancer; drug resistance;
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1. Introduction

The forkhead box (FOX) family comprises diverse tissue- and cell type-specific transcription
factors with a conserved winged-helix DNA-binding domain (DBD) or forkhead domain [1].
All members of the FOX family share this DBD but possess distinct transactivation and repression
domains [2]. Members of the FOX transcription factor family are generally regarded as important
regulators in physiological development during embryogenesis as well as cellular homeostasis,
and evolution is the driving force for the diversity of this family. FOX family members participate
in the development of the nervous system, kidney, lung, hair, and immune system, among other
roles [3]. Many congenital disorders associated with mutations of FOX transcription factors have been
reported [4]. In addition, FOX proteins, particularly FOXA1 and FOXA2, are able to recognize some
specific patterns in DNA sequences and ultimately bind to chromatin to decompress it and facilitate
the activities of other regulators. FOX transcription factors can act as co-activators and transcriptional
repressors, although the precise mechanisms remain largely undisclosed. Their roles in regulating
the epigenetic processes of cells via DNA methylation, histone acetylation, and non-coding RNA
expression have also been documented [1]. Collectively, this family is deeply involved in various
complex cellular processes with a high degree of plasticity.

Since the first FOX gene was discovered, 50 FOX-encoding genes in humans have been categorized
into 19 subfamilies based on protein sequence homology (FOXA to FOXS) [5]. FOX transcription
factors display unusual specificity in biological regulation and present various opposing roles under
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different oncogenic conditions. Several members of this family, such as FOXA1 and FOXP1, may be
either oncogenic or tumor-suppressive depending on how they interact with the distinct transcriptional
networks of tissue-specific cancers [6,7]. Generally, FOX proteins influence the cell cycle, proliferation
and differentiation, DNA damage repair, metabolism, angiogenesis, cell fate, and senescence [8].
The dysregulation of FOX proteins is associated with cancer initiation, invasion, progression, and drug
resistance. They are also capable of regulating other cancer-related pathways that assist cell survival
under harsh conditions. For instance, during cellular stress, the FOXO subfamily induces antioxidant
enzymes to protect the cell against oxidative stress [9]. Moreover, the regulation of FOXs, e.g., FOXO,
may not be limited to the gene expression level but may also include various post-translational
modifications, such as acetylation and ubiquitination [10,11]. Although every subfamily of FOX
transcription factors exhibits biologically significant roles, FOXA, FOXM1, FOXO, FOXC and FOXP
have received the most attention from the scientific community, especially in cancer research [12].
For example, FOXM1 is currently regarded as an essential regulator of various cancers. FOXM1 is
involved in at least 12 different cancer types, and its overexpression is important for the initiation,
progression, and drug resistance of tumors [13]. The FOXO-FOXM1 axis is considered important
in the development of prognostic markers and therapeutics [14]. More recently, the dominant roles
of FOXC1, especially in basal-like breast cancer, have been revealed and discussed thoroughly [15].
In addition, FOXC1 is overexpressed in non-small cell lung cancer (NSCLC) cells and is negatively
correlated with the survival of the patients. This may be because FOXC1 induces cancer stem cells
(CSC)-like properties of the cancer cells via β-catenin [16]. Somatic mutations of FOX transcription
factors, such as amplification, point mutation, translocation, deletion and gene fusion, are commonly
identified in human cancers [17]. However, the mutation landscape of FOX-binding sites within the
regulatory sites of FOX-target genes remains to be elucidated in meticulous detail.

The FOX family contributes to the initiation, maintenance, progression, and metastasis of cancer at
different levels of regulation, with highly convoluted and widespread networks. FOX proteins are also
associated with major aspects of the hallmarks of cancer, as described for FOXM1 and indicated by our
literature text-mining analysis using Cancer Hallmarks Analytics Tools (Figure 1) [18,19]. This article
aims to review and emphasize the functions of major FOX transcription factors in various aspects of
cancer biology in a context-dependent manner. In addition, we selectively focus on major aspects
of FOXs in cancer biology, such as drug resistance, genomic alterations and therapeutics, including
applications of microRNA (miRNA) and specific inhibitors for targeting FOX proteins.

2. An Overview of Recent Insights on FOXs in Cancer

2.1. Forkhead Box A (FOXA) in Cancer

FOXA1, FOXA2, and FOXA3 are pioneer factors and play important roles in the development of
endoderm and endoderm-derived organs [20,21]. As pioneer factors, they assist other transcription
factors in accessing chromatin to elicit their tissue-specific functions [20]. Indeed, FOXA1 and
FOXA2 play important roles in tumorigenesis based on their multifaceted activities, mainly in
terms of genome instability and mutation, activation of invasion and metastasis, and sustained
proliferative signaling. FOXA1 and FOXA2 are also associated with a variety of cancers, and their
behaviors are tumor type-specific, with a dependence on the particular transcriptome interactions [22].
The up-regulation of FOXA1 is highly correlated with the malignancy of lung cancer, prostate
cancer, and esophageal cancer [23,24]. FOXA1 and FOXA2 also participate in a phenomenon in
liver cancer called sexual dimorphism [25]. The two FOXA factors regulate the estrogen-dependent
resistance and androgen-mediated facilitation of this disease [26]. FOXA1 is positively associated with
estrogen receptor-positive breast cancer as well as androgen receptor-dependent prostate cancer [17].
Interestingly, due to its distinct roles in estrogen and androgen pathways, FOXA1 upregulation is
associated with either a good prognosis or poor prognosis in breast cancer patients and prostate
cancer patients, respectively [27]. In bladder cancer, however, the reduced expression of FOXA1 is
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associated with the histological subtypes of muscle-invasive bladder cancer, which later develops
into the metastatic stages of the disease [28]. Recently, FOXA transcription factors were found to
be involved in the enhancer elements at epithelial signature genes and are repressed by SNAIL1 in
colorectal cancer. This repression activity of SNAIL1 facilitates the epithelial-mesenchymal transition
(EMT) of the cancer cells, which suggests that FOXA factors are important in maintaining physiological
expression of the network of epithelial genes [21]. The mediator forms a complex with cohesin,
and together they act as the central cofactors that control the cellular development and differentiation
of normal cells [29]. Dysregulation of cohesin has been associated with cancer [30]. Moreover, a recent
study has demonstrated that FOXA1 and/or FOXA2, together with other master transcription factors,
are essential for the maintenance of cancer cell states through the recruitment of the mediator–cohesin
complex [31]. There is also evidence that FOXA2 is linked to lipid and carbohydrate metabolism.
In type 2 diabetes, preventing FOXA2 phosphorylation may help control the disorder [32]. These
observations support the hypothesis that FOXA factors have essential roles in the disruption of cancer
metabolism, and the modulation of FOXAs may provide new opportunities for cancer treatment.

Int. J. Mol. Sci. 2018, 19, x 3 of 24 

 

involved in the enhancer elements at epithelial signature genes and are repressed by SNAIL1 in 
colorectal cancer. This repression activity of SNAIL1 facilitates the epithelial-mesenchymal transition 
(EMT) of the cancer cells, which suggests that FOXA factors are important in maintaining 
physiological expression of the network of epithelial genes [21]. The mediator forms a complex with 
cohesin, and together they act as the central cofactors that control the cellular development and 
differentiation of normal cells [29]. Dysregulation of cohesin has been associated with cancer [30]. 
Moreover, a recent study has demonstrated that FOXA1 and/or FOXA2, together with other master 
transcription factors, are essential for the maintenance of cancer cell states through the recruitment 
of the mediator–cohesin complex [31]. There is also evidence that FOXA2 is linked to lipid and 
carbohydrate metabolism. In type 2 diabetes, preventing FOXA2 phosphorylation may help control 
the disorder [32]. These observations support the hypothesis that FOXA factors have essential roles 
in the disruption of cancer metabolism, and the modulation of FOXAs may provide new 
opportunities for cancer treatment. 

 
Figure 1. Direct and indirect associations of 14 individual FOX transcription factors and the hallmarks 
of cancer acquired from Cancer Hallmarks Analytics Tool. FOXO1 appears to be associated with every 
hallmark while FOXM1, FOXO3a, FOXA2, and FOXP3 are connected to at least eight hallmarks of 
cancer. FOXP2 is only related to genome instability when FOXP4 is involved in the genome instability 
and immune destruction process. 

2.2. FOXC in Cancer 

The FOXC subfamily is well-known for its functions during cardiovascular development [33]. 
Mice without FOXC1 or FOXC2 exhibit various abnormal cardiovascular phenotypes that are 
prenatally lethal, and embryos without FOXC1/FOXC2 die within several days postcoitum [34]. In 
cancer, FOXC1 and FOXC2 are involved mainly in inducing angiogenesis, invasion and metastasis, 
invading growth suppressors, genome instability and mutation, and sustaining proliferative 
signaling. FOXC1 is involved in many cancers such as breast cancer, liver cancer, Hodgkin’s and non-
Hodgkin’s lymphoma, pancreatic cancer, and endometrial cancer [15,35,36]. Of note, loss of 
expression of FOXC1 suppresses cancer cell growth and reverts fibroblast-like cells to epithelial-like 
cells in a mammary carcinoma model. Furthermore, FOXC1 is positively associated with cancer 
metastasis and poorer prognosis of basal-like breast cancer patients [37]. In hepatocellular carcinoma, 
FOXC1 triggers the EMT process, which increases the migration and invasion capacities of the cancer 
cells. Patients with higher expression levels of FOXC1 tend to have a worse prognosis [38]. FOXC2, 
similar to FOXC1, also has a vital role in the carcinogenesis of various cancers. FOXC2 is 

Figure 1. Direct and indirect associations of 14 individual FOX transcription factors and the hallmarks
of cancer acquired from Cancer Hallmarks Analytics Tool. FOXO1 appears to be associated with every
hallmark while FOXM1, FOXO3a, FOXA2, and FOXP3 are connected to at least eight hallmarks of
cancer. FOXP2 is only related to genome instability when FOXP4 is involved in the genome instability
and immune destruction process.

2.2. FOXC in Cancer

The FOXC subfamily is well-known for its functions during cardiovascular development [33].
Mice without FOXC1 or FOXC2 exhibit various abnormal cardiovascular phenotypes that are prenatally
lethal, and embryos without FOXC1/FOXC2 die within several days postcoitum [34]. In cancer, FOXC1
and FOXC2 are involved mainly in inducing angiogenesis, invasion and metastasis, invading growth
suppressors, genome instability and mutation, and sustaining proliferative signaling. FOXC1 is
involved in many cancers such as breast cancer, liver cancer, Hodgkin’s and non-Hodgkin’s lymphoma,
pancreatic cancer, and endometrial cancer [15,35,36]. Of note, loss of expression of FOXC1 suppresses
cancer cell growth and reverts fibroblast-like cells to epithelial-like cells in a mammary carcinoma
model. Furthermore, FOXC1 is positively associated with cancer metastasis and poorer prognosis of
basal-like breast cancer patients [37]. In hepatocellular carcinoma, FOXC1 triggers the EMT process,
which increases the migration and invasion capacities of the cancer cells. Patients with higher
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expression levels of FOXC1 tend to have a worse prognosis [38]. FOXC2, similar to FOXC1, also
has a vital role in the carcinogenesis of various cancers. FOXC2 is overexpressed in breast cancer,
stomach cancer, lung cancer, prostate cancer, cervical cancer, and ovarian cancer [39]. EMT, along with
angiogenesis and lymphangiogenesis, is the key phenotypic feature resulting from the interactions of
FOXC2 with the cadherin family, kinases, and other regulators. For instance, FOXC2-induced EMT is
triggered via activation of the Akt pathway and is related to the expression of Snail and p-(glycogen
synthase kinase 3β) GSK-3β [39]. The overexpression of FOXC2 also can induce MET expression and
stimulate the hepatocyte growth factor (HGF)-MET signaling pathway, hence inducing the metastasis
and invasion of colorectal cancer cells [40]. Both FOXC1 and FOXC2 have essential roles in the EMT
process, angiogenesis, and target cancer stem cells [41,42]. Cancer cells with EMT exhibit overlapping
features with cancer stem cells and likely develop drug resistance [43]. Taken together, a large body
of evidence now suggests that the modes of action of FOXC1 and FOXC2 share some phenotypic
features through various signaling pathways that promote tumor progression and metastasis. This
suggests an opportunity to explore their roles as cooperative prognostic biomarkers and in cancer
management. Finally, it is also important to mention that FOXC2 can modulate the metabolism of
cancer cells. The first observation was in nasopharyngeal carcinoma, in which FOXC2 increases
glycolysis in cancer cells via the FOXC2-YAP (Yes-Associated Protein) axis to up-regulate hexokinase 2
and ultimately facilitates tumor survival and progression [44]. FOXC2 may also be involved in the
lipid alterations of cancer via kinases in lipid metabolism, which represents an interesting research
direction [39]. However, the role of FOXC1 in cancer metabolism remains unknown.

2.3. FOXM1 in Cancer

FOXM1 is specifically expressed in proliferating cells and is a master regulator of cancer
tumorigenesis and metastasis (Figure 2) [45]. Indeed, overexpression of FOXM1 is common in cancer,
and higher expression of FOXM1 is associated with worse survival of patients [46]. The mode of action
of FOXM1 is to facilitate evasion of growth suppressors by cancer cells by activating regulators of
cell-cycle progression, anti-oxidant genes, and progression through the EMT phenotype, invasion,
and pre-metastatic niche formation [47–50]. FOXM1 and FOXOs are direct and indirect targets of
many conventional and novel therapeutics due to their important impact on PI3K-Akt signaling
(Figure 2A) [51]. Dysregulation of this axis, such as through inhibition of FOXO3a combined with
overexpression of FOXM1, results in drug resistance to some standard therapies [1,13]. Interestingly,
the inhibition of FOXM1 alone is supposed to be adequate in targeting multifaceted mechanisms of
tumorigenesis [52]. Interest in FOXM1 dysregulation and its impact on cancer management has been
maintained in recent years. The connection of FOXM1 with other oncogenic proteins will be discussed
in more detail in the later part of this review.

2.4. FOXO in Cancer

The FOXO subfamily (FOXO1, FOXO2/FOXO6, FOXO3a, and FOXO4) receives arguably the
most attention from scientists among FOX proteins. Each FOXO protein possesses various biological
functions. For instance, FOXO1 is important in vascular development, whereas FOXO3a plays an
essential role in ovarian follicle development [53]. FOXO1, FOXO3a, and FOXO4 are universally
expressed among tissues, but FOXO6 is physiologically expressed in brain tissue [54]. Combined,
the activities of FOXO proteins regulate almost every phase of the cell cycle [55]. In contrast to the FOXC
and FOXM subfamilies, which are genuine oncogenes, FOXO proteins negatively regulate various
biological processes at multiple levels, and dysregulation of FOXOs may lead to cancer [55]. Indeed,
FOXOs are part of a multitude of oncogenic pathways and cancer hallmarks, including resisting cell
death, sustaining proliferative signaling, tumor-promoting inflammation, immune destruction, cellular
energetics, replicative immortality, evading growth suppressors, genome instability and mutation, and
inducing angiogenesis [14,56–61]. Alternatively, even though FOXOs are widely regarded as tumor
suppressors, a significant growing number of evidences have been suggested that FOXO transcription
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factors are oncogenic regulators [62]. For instance, through regulating various processes that are
essential for tumorigenesis, FOXOs demonstrate its oncogenic roles in breast cancer [63]. Hence, it is
of importance to re-evaluate the context-dependent roles of FOXO transcription factors in cancer.
FOXOs are largely regulated via various post-translational modifications. For instance, members of
FOXOs are generally modulated by the PI3K/Akt/Insulin (phosphorylated by phosphatidylinositol
3-kinase/RAC-α serine/threonine-protein kinase) signaling pathway [64]. In osteosarcoma, FOXO1
can suppress osteosarcoma oncogenesis through suppression of Wnt/β-catenin pathway [65]. The roles
of FOXOs in cancer have been examined in breast cancer, prostate cancer, leukemia, glioblastoma,
and rhabdomyosarcoma. Indirect upregulation of FOXOs through inhibition of Akt, ERK, and
IKKβ is expected to be particularly effective in the treatment of cancer [66]. The network of FOXO
transcriptional target genes has been reviewed extensively [67]. Furthermore, FOXO3a seems to
be the representative protein of this subfamily, and its functions in cancer have been extensively
studied [68]. A comprehensive review with regard to the roles of FOXO3a in carcinogenesis, e.g.,
the inactivation and the initiation and progression of cancer, has been recently documented [69].
Interestingly, essential roles of the FOXO subfamily in metabolic reprogramming have recently been
uncovered. FOXOs are involved in various metabolic processes, including glucose metabolism, amino
acid metabolism, and lipid metabolism. Thus, FOXOs may initiate a broad therapeutic window for the
use of metabolic disruptors [70]. However, some atypical exceptions in which FOXO proteins exhibit
oncogenic properties have been recorded. For example, high expression of the PAX3-FOXO1 fusion
protein may promote tumorigenesis of human myoblasts [53,71].

2.5. FOXP in Cancer

The FOXP proteins (FOXP1, FOXP2, FOXP3, FOXP4) are a functionally diverse subfamily known
for their cooperative roles in embryonic development, including brain development [72]. Dysregulation
of FOXP1 and FOXP2 has been prominently studied in language and speech disorders [73]. In addition,
FOXP3 and regulatory T cell (Treg) dysregulation result in autoimmune diseases [74]. Interestingly,
the three FOXP proteins are associated with cancer initiation and progression [17,75,76]. FOXP4 has
been also found to be functional in cancer [77]. FOXP-dependent cancer initiation and progression
are generally associated with immune destruction, evading growth suppressors, genome instability
and mutation, inducing angiogenesis, resisting cell death, sustaining proliferative signaling, and
tumor-promoting inflammation. One of the unique properties of the FOXP subfamily is their capability
of homo- and heterotypic dimerization with paralogs, known as FOXP1/2/4 interactions [72]. This
dimerization may strongly influence their behavior and eventually lead to pathophysiological processes
or oncogenic phenomena [76]. FOXP2 mainly acts as a repressor and has a dual role in oncogenesis
and cancer progression. For instance, FOXP2 can interact with C-terminal binding protein 1 (CTBP1),
a transcriptional corepressor that modulates and targets tumor suppressors expression, such as BAX,
PTEN and p16 [64]. FOXP2 may also participate in modulating the expression of various genes involved
in tumor signaling pathways, including IGF-1 (insulin-like growth factor 1), NF-kB (nuclear factor
kappa-light-chain-enhancer of activated B cells), and Wnt [72,78,79]. It is diminished in some cancers
such as breast cancer, liver cancer, and gastric cancer but overexpressed in others [76,80–82]. ABCA6
and ABCG2, which are direct targets of FOXP2 in its regulatory network, exhibit aberrant expression
in various cancers. This suggests that FOXP2 is potentially associated with drug resistance [76]. FOXP1
is generally considered a transcriptional repressor and is a tumor suppressor in epithelial malignancies
such as lung cancer and breast cancer. However, FOXP1 is overexpressed in B-cell lymphomas,
and patients with higher FOXP1 expression tend to have a worse prognosis. FOXP1 is involved in
the development of lymphocytes, particularly B cell proliferation [83]. FOXP3 is a major component
of Tregs [84]. Mutations and dysregulation of FOXP3 are linked to immune response abnormalities
and carcinogenesis [75]. The functions of FOXP3 may be one of the central mechanisms that help
tumor cells escape from immune cells [85]. FOXP3 also acts through vascular endothelial growth
factor (VEGF) to inhibit angiogenesis, as observed in breast cancer [86]. The relationship between
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the expression of FOXP3 and the prognosis of cancer patients is not straightforward. For instance,
overexpression of FOXP3 is associated with worse prognosis in NSCLC, colorectal cancer, and cervical
cancer but good prognosis in breast cancer, prostate cancer, and gastric cancer [85]. The roles of FOXP4
in cancer have not been well-studied. However, dysregulation of FOXP4 has been associated with
breast cancer, kidney cancer, prostate cancer, and NSCLC [77,87–89].Int. J. Mol. Sci. 2018, 19, x 10 of 24 
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2.6. Other Important FOX Transcription Factors in Cancer

FOXD3 can be considered a tumor suppressor since it inhibits tumor growth and angiogenesis
of NSCLC and neuroblastoma, whereas its deficiency leads to the induction of EMT and increased
invasiveness of breast cancer [90–92]. Interestingly, a large body of research indicates a considerable
impact of FOXE1 in thyroid cancer [93,94]. In a meta-analysis, Zhu et al. suggested that common
genetic variants of FOXE1 are associated with an increased risk of thyroid cancer [95]. FOXF1 is the
target of the p53 family, and their interactions play an important role in the migration and invasion
of cancer cells [96]. FOXF1 has a positive correlation with lymph node metastasis of NSCLC and
promotes the progression of prostate cancer [97,98]. FOXF1 may also trigger the ataxia-telangiectasia
mutated (ATM)/ATM- and Rad3-Related (ATR)-medicated DNA damage response and stimulate
the p53-p21WAF1 checkpoint pathway in colon cancer cells [99]. However, FOXF1 may be also
considered a tumor suppressor since the loss of FOXF1 is associated with poor prognosis in liver
cancer patients [100]. FOXL1 is a novel tumor suppressor whose expression and co-expression with
other regulators inhibit the aggressiveness of pancreatic cancer, kidney cancer, gallbladder cancer,
and osteosarcoma [101–104] and could be initially implicated in the modulation of the Wnt/APC
(Adenomatous Polyposis Coli)/β-catenin pathway [64]. By contrast, FOXQ1 promotes the progression
and metastasis of esophageal cancer, breast cancer, pancreatic cancer, and colorectal cancer [105–108].
A recent review has demonstrated that FOXQ1 works through EMT, cell-cycle progression, cellular
proliferation, and other mechanisms to promote cancer initiation and progression [109]. Similarly,
the up-regulation of FOXJ1 is linked to higher histological grade and poor prognosis of liver cancer via
cell proliferation and cell-cycle progression of the tumor cells [110]. FOXJ1 also induces proliferation
and colony formation of bladder cancer cells, due in part to aberrant metabolism of the cancer cells [111].
However, FOXJ1 appears to play dual roles since lower expression of FOXJ1 is associated with worse
prognosis of patients with gastric carcinoma [112]. FOXL2 acts as a tumor suppressor in cervical
cancer since its overexpression reduces the proliferation of cervical cancer cells [113]. However, FOXL2
may be either an oncogene or tumor-suppressor gene depending on the genetic context in ovarian
granulosa cell tumors [114]. Significantly, FOXL2 is a target for the development of new diagnostic
approaches for adult-type granulosa cell tumors [115].

3. Major Areas of Focus on FOXs in Cancer

3.1. FOX Proteins in Cancer Drug Resistance

Clinically, the development of resistance to both conventional and newly emerging molecular
targeted therapies is a major challenge confronting current cancer treatment [116–122]. Intriguingly,
FOX proteins have also been associated with the mechanisms of resistance to molecular targeted
therapies and classical cytotoxic chemotherapies. The associations between FOX proteins and
the development of drug resistance generally involve alterations in drug targets, cancer stem cell
population, drug metabolism, cell survival and death signals, as summarized in Table 1. For example,
changes in the expression levels of FOXM1 or FOXOs are highly associated with chemoresistance and
poor prognosis in cancer patients.

Table 1. Contributions of forkhead box (FOX) proteins to drug resistance of cancer cells.

FOX
Members Model/Cell Type Corresponding

Drug Function Ref

FOXM1

Non-small cell
lung cancer

(NSCLC) patients

Tyrosine kinase
inhibitor (TKI)

Contributes to TKI-resistant NSCLC cells
Associated with unfavorable prognosis in

NSCLC patients
[123]

Ovarian cancer
patients Platinum

Overexpressed in ovarian cancer cell lines and
cancer cells in patients’ ascites

Targeting FOXM1 improves the cytotoxicity of
paclitaxel and cisplatinum in platinum-resistant

ovarian cancer

[124]
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Table 1. Cont.

FOX
Members Model/Cell Type Corresponding

Drug Function Ref

FOXM1

Lung
adenocarcinoma Gefitinib

FOXM1 stimulates acquired resistance to gefitinib in
lung adenocarcinoma cells through a

MET/Akt-dependent positive feedback loop
[125]

Leukemia patient
samples Chemoresistance

Nuclear FOXM1 contributes to chemoresistance in
acute myeloid leukemia (AML)

FOXM1 inactivation causes a favorable prognosis
and provides fertile ground for strategies to suppress

this oncogenic transcription factor in AML

[126]

Colorectal cancer 5-Fluorouracil
FOXM1 can evoke 5-fluorouracil resistance

depending on ATP binding cassette subfamily C
member 10 (ABCC10)

[127]

Glioma cells Temozolomide

FOXM1-mediated repair gene replication factor 5
promotes temozolomide resistance in glioma cells

independent of
methylguanine-DNA-methyltransferase activation

[128]

Nasopharyngeal
carcinoma cells Paclitaxel

FOXM1 can contribute to drug efflux and paclitaxel
resistance by regulating the gene transcription of

ABCC5, one of the ABC transporters
[129]

Ovarian cancer
patients Chemo-resistance

The expression of FOXM1 is highly associated with
chemotherapy resistance and adverse prognosis in

non-serous epithelial ovarian cancer patients
[130]

Bladder cancer Chemo-resistance
FOXM1 is proposed to directly active ABC G

member 2 to enhance drug resistance and drug
efflux activation

[131]

Breast cancer
patients Epirubicin

FOXM1 can target nijmegen breakage syndrome
gene to modulate DNA damage-stimulated

senescence and epirubicin resistance
[132]

Gastric cancer Docetaxel

FOXM1 might be a new therapeutic target in
docetaxel-resistant gastric cancer and can be used as

a marker for predicting patient prognosis and
monitoring the response to docetaxel

[133]

Cervical cancer Chemoresistance
The prolyl isomerase Pin1 can modulate

chemoresistance by up-regulating FOXM1 and
involvement in the Wnt/β-catenin pathway

[134]

Breast cancer
patients Chemoresistance

Targeting X-linked inhibitor of apoptosis gene
(XIAP) and Survivin by FOXM1 may contribute to

chemoresistance in breast cancer survivors
[135]

Leukemia Chemoresistance

FOXM1 is overexpressed in B-acute lymphoblastic
leukemia (B-ALL)

Inhibition of FOXM1 may sensitize B-ALL cells to
chemotherapeutic drugs

[136]

Breast cancer Epirubicin

The suppression of ubiquitination and degradation
of FOXM1 by ubiquitin thioesterase OTUB1 has been

suggested to play a key role in genotoxic agent
resistance

[137]

Breast cancer Paclitaxel
Paclitaxel resistance can be modulated by

deregulating FOXM1 expression to regulate kinesin
family member 20A in mitotic catastrophe

[138]

Ovarian cancer Chemoresistance

Overexpression of FOXM1 can enhance the
expression and activity of β-catenin in

chemoresistant cells, whereas downregulation of
FOXM1 may suppress these events

[139]

Gastric cancer Oxaliplatin FOXM1-stimulated resistance to oxaliplatin is
partially mediated through its target gene Mcl-1 [140]

Ovarian cancer Paclitaxel Upregulation of FOXM1 contributes to paclitaxel
resistance by suppressing mitotic catastrophe [141]

Ovarian cancer Cisplatin FOXM1 can contribute to cisplatin sensitivity by
modulating exonuclease 1 [142]
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Table 1. Cont.

FOX
Members Model/Cell Type Corresponding

Drug Function Ref

FOXC1 Breast cancer
patients Endocrine

FOXC1 expression is related to decreased or
undetectable estrogen receptor (ER) expression in

recurrent tumors
FOXC1 is involved in ERα silencing through

counteracting GATA binding protein 3 binding and
has been implicated in endocrine resistance

[143]

FOXQ1

Breast cancer Chemoresistance

Platelet-derived growth factor receptors have been
suggested as critical mediators of breast cancer

chemoresistance driven by FOXQ1 and have
potential implications for investigating novel

therapeutic combinations to treat breast cancer

[106]

NSCLC Chemoresistance

Overexpression of FOXQ1 elicits opposing effects on
these phenotypes in vivo by regulating

epithelial-mesenchymal transition (EMT) and
modulating chemosensitivity in NSCLC

[144]

FOXC2

Ovarian cancer Cisplatin
FOXC2 stimulates EMT and metastasis in

cisplatin-resistant human ovarian cancer cells [145]

FOXC2 promotes the resistance of human ovarian
cancer cells to cisplatin by activating the Amkt and

MAPK-signaling pathways
[146]

Nasopharyngeal
carcinomas Chemoresistance FOXC2 may stimulate chemoresistance through

activation of EMT [147]

FOXD1 Breast cancer Chemoresistance FOXD1 can stimulate breast cancer growth and
chemoresistance by modulating p27 [148]

FOXO3a

Lung cancer Gefitinib NF-kB-driven suppression of FOXO3a contributes to
EGFR mutation-independent gefitinib resistance [149]

Colorectal cancer Cetuximab FOXO3a contributes to cetuximab resistance in RAS
wild-type metastasis through c-Myc [150]

Multi drug
resistance cells

Docetaxel and
Paclitaxel

Paclitaxel-resistant cancer cell-derived secretomes
escape from apoptosis through FOXO3a-driven

glycolytic modulation in association with ABCB1
[151]

HeLa cells Cisplatin
Butein may sensitize HeLa cells to cisplatin through

the ERK/p38 MAPK and Akt pathways by
targeting FOXO3a

[152]

Ovarian cancer Cisplatin
-8-Bromo-7-methoxychrysin-induced apoptosis in

cisplatin-sensitive and -resistant cells can occur
through modulation of Akt/FOXO3a

[153]

FOXO1

Hepatocellular
carcinoma Doxorubicin

Expression of Bim is mediated by FOXO1 and
indirectly downregulated by thyroid

hormone/hormone receptor, causing chemotherapy
resistance and doxorubicin-stimulated metastasis of

hepatoma cells

[154]

Esophageal
squamous cell

carcinoma
Chemoresistance

Cancer-associated fibroblasts mediate
chemoresistance through a FOXO1/TGFβ

signaling loop
[155]

Gastric cancer Lapatinib
Inactivation of FOXO1 is suggested as a determinant

of acquired lapatinib-resistance in HER2-positive
breast cancer through upregulation of MET

[156]

Gastric cancer Cisplatin
FOXO1 may contribute to cisplatin resistance by

stimulating the phosphoinositide
3-kinase/Akt pathway

[157]

Leukemia TKI
Overexpressed FOXO1 can contribute to BCR-ABL1
kinase-independent resistance in chronic myeloid

leukemia patients
[158]

NSCLC TKI

FOXO1 acetylation suppresses cell growth and
stimulates apoptosis of NSCLC

Posttranslational modifications of FOXO1 modulate
EGFR-TKI resistance in NSCLC cells

[159]
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Table 1. Cont.

FOX
Members Model/Cell Type Corresponding

Drug Function Ref

FOXJ2 Prostate cancer Castration
The phosphorylation of FOXJ2 is associated with
increased expression of NEK6 that can mediate

castration resistance in prostate cancer
[160]

FOXL2 Gastric cancer Chemoresistance The HMGA2-FOXL2 axis can modulate EMT and
metastasis of chemoresistant gastric cancer [161]

FOXP3∆3 Bladder cancer Cisplatin
Biased expression of the FOXP3∆3 isoform in

aggressive bladder cancer contributes to
differentiation and cisplatin chemotherapy resistance

[162]

FOXP3 Lung
adenocarcinoma Cisplatin

Downregulation of FOXP3 can enhance
chemosensitivity to cisplatin and suppress cell
proliferation in human lung adenocarcinoma

[163]

FOXP1

Gastric cancer Chemoresistance

FOXP1 may interact with nuclear aurora kinase A,
which regulates survivin stability by modulating
F-box and leucine rich repeat protein 7 in gastric

cancer drug resistance and affects prognosis

[164]

Ovarian cancer Chemoresistance
The expression of nuclear FOXP1 is an independent
risk factor related to chemotherapy resistance and

the prognosis of patients with ovarian cancer
[165]

FOXA1
Breast cancer Tamoxifen

Down-regulation of FOXA1 causes cancer stem
cell-like properties in tamoxifen-resistant breast
cancer cells through stimulation of interleukin-6

[166]

Prostate cancer Castrate FOXA1 modulates androgen receptor variant activity
in models of castrate-resistant prostate cancer [167]

FOXF2 Breast cancer
patients

Multidrug
resistance

FOXF2 may contribute to multidrug resistance of
basal-like breast cancer by suppressing

FOXC2-mediated EMT
[168]

Alternatively, aberrant activation of DNA damage repair may be associated not only with cancer
initiation but also with cancer progression and genotoxic drug resistance. Convincing evidence
suggests an impact of the FOXOs–FOXM1 forkhead transcription factor axis on the DNA damage
response, indicating the therapeutic potential of targeting FOXM1 and FOXOs to overcome genotoxic
drug resistance (Table 1 and Figure 2B [127,129]). The expression of FOXM1 may confer genotoxic
agent resistance, and its overexpression in DNA-damaging cancer drug-resistant cells has been
commonly observed (Table 1) [169]. However, this observation also supports potential exploration for
cancer therapy based on FOXM1 overexpression in cancer and in genotoxic resistance. Consistently,
various studies have shown that the inhibition of the overexpression of FOXM1 can suppress tumor
development and active cell death via various pathways (Table 1). Therefore, approaches based on
small peptides have also been developed to directly target FOXM1 [169].

Alternatively, a well-established principle of cancer therapy for overcoming drug resistance and
treating cancer is appropriate drug combinations. Recent studies have shown that FOXO3a can be
activated by agents targeting its upstream regulatory PI3K-Akt pathway, such as OSU-03012, an Akt
inhibitor that has been shown to enhance the dephosphorylation of FOXO3a and nuclear relocation
in breast cancer cells [170]. MK-2206, another Akt inhibitor, can also lead to FOXO3a activation and
dephosphorylation and potentially synergize with conventional genotoxic drugs such as doxorubicin
in liver cancer treatment [169].

In summary, FOX proteins are crucial modulators of chemoresistance in cellular progression,
at least under some circumstances, but may also improve resistance to chemotherapeutics. Hence,
it is critical to fully understand the FOX protein-mediated transcriptional programs in specific cancer
disease states or the upstream regulators, downstream targets and cellular functions of FOX proteins
to investigate the most suitable targets for modulating FOX proteins [171].
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3.2. FOX Proteins and Genomic Alterations

Human cancers occur in a multi-step manner as a result of the accumulation of genetic alterations
and epigenetic changes [17]. Numerous studies have indicated the roles of somatic mutations of FOX
family genes in various types of human cancers in relation to transcriptional modulation as well as
DNA repair or histone modification [17,172,173]. Additionally, the advancement and spread of exome
or whole-genome analyses have provided novel data on somatic mutations as well as point mutations,
gene amplifications and translocations of FOX family members.

3.3. FOXM1

The FOXM1 gene on human chromosome 12p13.33 is suggested to be amplified in 5.6% of breast
cancer [174] and 58% of malignant peripheral nerve sheath tumors [175] and is frequently upregulated
in human cancer [176]. Although FOXM1 may stimulate cell-cycle regulation in the DNA replication S
phase (G1/S), it also plays a significant role in the G2/M transition by transactivation of modulators of
mitosis and cytokinesis such as polo-like kinase or Aurora B (Figure 2B) [177]. FOXM1 and the promoter
regions of cell cycle-contributed genes acquire higher levels of H3K4me3, indicating that epigenetic
modulations of these critical regulatory genes can define quiescence of liver cells [178]. The oncogenic
transcription factor FOXM1 is activated in various human malignancies and is required for execution
of the mitotic program and chromosomal instability (CIN) [177,179]. For example, YAP stimulates and
interacts with FOXM1, a master modulator of cell-cycle control, and this YAP/FOXM1 complex drives
CIN gene expression and stimulates aneuploidy [180,181]. Additionally, FOXM1, in combination with
precancerous cell growth deregulation, allows human keratinocytes to proliferate despite accumulating
DNA damage and subsequently stimulates genomic instability (Figure 2B) [132,182]. This may also
explain why mutated p53 and deregulated FOXM1 are both frequently selected in cancer.

3.4. FOXO Subfamily Genes

FOXO subfamily members include the FOXO1, FOXO2 (FOXO6), FOXO3 and FOXO4 genes [183],
and in the nucleus, FOXOs can bind to their consensus DNA-binding motif to activate the transcription
of their target genes, such as BIM (BCL2-like 11), FASLG (Fas ligand) or CDKN1A and CDKN1B [17].
The FOXO1 gene on human chromosome 13q14.11 is fused to either the PAX7 or PAX3 gene as a result
of chromosomal translocation in alveolar rhabdomyosarcoma, whereas the FOXO3 gene at 6q21 and
FOXO4 gene at Xq13.1 are fused to the MLL gene as a result of chromosomal translocation in secondary
leukemia and acute lymphoblastic leukemia (ALL), respectively [17,184]. Translocation of FOXO1
to the nuclear periphery may promote histone modifications that contribute to the transcriptional
repression of phosphoenolpyruvate carboxykinase 1 in hepatocytes [185], whereas the formation of
the (CREB)-binding protein-FOXO1 complex leads to histone acetylation in cancer and aging [186].
Recently, Jeffery et al. indicated that the depletion of FBXO31 leads to increased expression of FOXM1
transcriptional targets and mimics FOXM1 overexpression. By contrast, co-depletion of FBXO31
and FOXM1 can restore the genomic instability phenotype but not the delay in mitosis, indicating
that FBXO31 probably has additional mitotic substrates [187]. FBXO31 has also been implicated in
DNA damage repair through its degradation of MDM2, an E3 ligase and negative modulator of p53,
and MKK6, an activator of the p38 MAPK [188,189]. Alternatively, DNA damage accrued as a result of
elevated reactive oxygen species in FOXO3−/− mutant hematopoietic stem and progenitor cells is at
least partially reversible [190]. Recent studies have indicated numerous modulators of FOXO, and a
clear and evolutionarily conserved role has emerged for phosphoinositide-3 kinase/protein kinase B
(also known as c-Akt) signaling and c-jun N-terminal kinase signaling [191,192]. The tumor suppressor
functions of FOXO transcription factors are lost in cancer cells as a result of chromosomal translocations
or deletions of FOXO genes or Akt-mediated cytoplasmic sequestration of FOXO proteins [17,192].
Overall, FOXOs appear to contribute to longevity by modulating processes involved in both DNA
repair and apoptosis according to cancer progression [191].
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3.5. Other FOX Genes

The FOXF1 locus at human chromosome 16q24.1 is deleted in prostate cancer, whereas the
FOXA1 gene at human chromosome 14q21.1 is amplified in various different cancers such as
anaplastic thyroid cancer, estrogen receptor-positive breast cancer, esophageal cancer, lung cancer
or metastatic prostate cancer [17]. Genome doubling and ongoing dynamic CIN are related to
intratumor heterogeneity and lead the parallel evolution of driver somatic copy-number alterations,
including amplifications of FOXA1, CDK4 and BCL11A [193]. Alternatively, FOXE1 can bind to the
thyroperoxidase promoter during thyroid cell differentiation and modify the compacted chromatin
structure [194]. In neuroblastoma, intrachromosomal deletions may create FOXR1 fusion genes that
contribute to Myc-driven proliferation in mouse neuroblasts and suppress forkhead-box family target
genes [195]. Alternatively, the FOXP1 gene is also amplified in diffuse large B-cell lymphoma and
MALT lymphoma either with or without translocation [17,196].

4. Negative Modulation of FOX Proteins by miRNAs

miRNAs are a new class of small, non-protein-encoding RNAs with a length of 18–25 nucleotides.
Studies in the past decade have revealed that miRNAs are involved in various biological processes
such as cell differentiation, stress resistance or tumorigenesis [117,119]. Many studies have indicated
the regulation of FOX proteins by miRNAs in cancer patients under various pathological conditions.
Recently, several studies have indicated the specific modulation of FOX genes by miRNAs in various
different cancers such as colorectal cancer [197], esophageal cancer [198], triple-negative breast
cancer [199] and hepatocellular carcinoma [200]. For example, miR-342 may suppress the expression
levels of FOXM1 and FOXQ1 through direct binding within the putative 3’-UTR binding sites of
these genes, thereby inhibiting the proliferation, migration, and invasion of colorectal cancer cells in a
xenograft animal model [197]. FOXM1 is also one of the direct targets of miR-204, and the functional
effect of miR-204 on esophageal cancer cells lines is also dependent on FOXM1 [198]. In hepatocellular
carcinoma (HCC) cells, suppression of FOXO1 by miR-1269 was related to dysregulation of cyclin
D1 and Ki67 expression, suggesting a critical role in the growth of HCC cells [200]. By contrast,
the restoration of miR-422a expression significantly suppressed tumor growth and liver metastasis in
xenograft tumor models by modulating its direct targets, such as FOXG1, FOXQ1 and FOXE1 [201].
Kumar et al. recently also analyzed the crosstalk between miR-122 and FOX family genes in HepG2
cells and suggested that miR-122 may induce apoptosis by regulating FOX family target genes at
various levels to exert its antitumor effects in HCC [202]. Importantly, the combination of miR-6883-5p
and miR-149* suppresses CDK4/6-FOXM1 signaling in colorectal cancer cell lines [203]. Together, these
studies indicate the existence of an additional level of complexity in the regulation of the FOX protein
pathway. Investigating the comprehensive network of miRNAs and FOX proteins in further research
will provide better strategies for improving cancer treatment.

5. Targeting FOX Proteins as Potential Therapeutics in Cancers

FOX proteins are involved in various cellular processes, such as the DNA damage response,
differentiation, proliferation and drug resistance, and consequently, targeting FOX proteins can
significantly contribute to tumorigenesis and tumor progression. Generally, FOX proteins are
transcription factors, which are traditionally considered undruggable molecules, and thus these
proteins are not easily targeted in traditional drug development approaches [204]. However, on the
therapeutic point, several recent studies elicited the selective pharmacological targeting of FOX
proteins, indicating the promising strategies in clinical setting and disease treatment [205,206].
Although potential therapeutics targeting FOX proteins have yet to be fully explored, efforts to
develop inhibitors of FOX proteins are underway. There are several approaches for modulating FOX
protein activity in human cancer cells, as outlined in the following.
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5.1. FOX Proteins-Targeting RNAi

RNA interference (RNAi), a process of sequence-specific posttranscriptional gene silencing
initiated by double-stranded RNA, has been widely employed in the past decade as an experimental
tool to investigate the roles of genes. Recently, the first therapy based on RNAi received approval
from the US Food and Drug Administration. Several reports employing experimental human tumor
models have displayed the feasibility of RNAi in suppressing the expression of cancer-associated
genes, including FOX proteins, due to their advantages of exquisite precision and high efficacy
in downregulating gene expression [204]. For example, depletion of FOXM1 expression by small
interfering RNA transfection of lung adenocarcinoma cells can significantly decrease DNA replication
and mitosis and reduce anchorage-independent growth of cell colonies on soft agar [207]. Silencing
of FOXM1 by RNAi also abolished estrogen-stimulated breast cancer cell proliferation and overcame
acquired tamoxifen resistance [208]. Alternatively, FOXM1 downregulation by stable or transient
knockdown using RNAi or by treatment with proteasome inhibitors that target FOXM1 significantly
sensitized human cancer cells of different origin to DNA damage-stimulated apoptosis [209]. Taken
together, these findings indicate that targeting FOX proteins, especially FOXM1 with RNAi, a technique
capable of specificity, may be a potential strategy for cancer therapy.

5.2. Proteasome Inhibitors

Although there are several drugs that can target the transcriptional activity or gene expression
of FOX proteins, proteasome inhibitors appear to work well, but much more basic research is
needed to unlock the complex interplay of interactions with FOX family members [5]. Recently,
proteasome inhibitors have been widely employed in many clinical trials for cancer treatment as
these proteasome inhibitors can selectively suppress cancer cell growth without affecting normal cells.
However, their precise mechanism in anticancer activity has not been fully investigated [204,210].
These inhibitors can inhibit cancer cell progression through modulating FOX proteins. For example,
several well-known proteasome inhibitors, such as MG132, MG115 and bortezomib, can suppress
the transcriptional activity and expression of FOXM1. However, the overexpression of FOXM1 may
also specifically protect against bortezomib-stimulated apoptosis but not doxorubicin-stimulated
apoptosis [211]. Consequently, FOXM1 has been suggested as a general target for proteasome
inhibitors [211,212]. Alternatively, the suppression of the proteasome causes regression of leukemia
and abrogates BCR-ABL-stimulated evasion of apoptosis in part through modulation of forkhead
tumor suppressors [213]. Other potential therapeutics include bioactive natural products (genistein),
peptide inhibitors or thiazole antibiotics [204].

6. Conclusions and Future Perspectives

The use of public databases can facilitate prospective studies of the biological functions of
FOX proteins at different omics levels in cancer as well as other disorders [214]. The regulatory
networks of the FOX family are tremendously complex since they are involved cooperatively in
extensive physiological and pathophysiological processes at multiple levels in a context-dependent
manner. Studies designed to elucidate the correlations of FOX proteins and cancer progression are
essential. Nevertheless, causative study designs are further required to extend our understanding of the
fundamental roles of FOX proteins in cancer. Suitable research platforms that combine genomics and
transcriptomics with proteomics and metabolomics are expected to provide fundamental information
regarding the genetic structure, functional regions, expression patterns, and functional networks of
FOXs in cancer. In parallel, re-analyzing available data with better statistical approaches, such as
meta-analysis and cross-platform normalization, will be beneficial for providing more robust results
and new opportunities for future investigations [215]. This information is crucial because it will
provide clues into the mode of action of these transcription factors in the progression of cancers.
Moreover, the diagnostic and prognostic impact of FOX proteins should be considered since their
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activities are closely related to the initiation, progression and metastasis of cancer. The utility of a
single biomarker is limited in terms of the actual potential of biomarker candidates in clinical settings.
Multiplex biomarker panels combined with state-of-the-art statistical learning are expected to help
improve the clinical usability of FOXs in early detection, diagnosis, prognosis, and treatment of cancer
patients [216].

The FOXO subfamily is highly correlated with the cell cycle and is exceptionally regulated by
epigenetic effectors. Thus, these proteins are attractive targets for epigenetics-associated therapeutic
development. Moreover, translational and clinical studies of FOXM1, particularly the FOXO-FOXM1
axis, should be further extended because of their impacts on a multitude of cellular processes, including
tumorigenesis, progression, and drug resistance [169]. In addition, better drug-delivery strategies
for not only small-molecule drugs but also RNAi may help improve the effectiveness of cancer
treatment [217]. Combinational therapy targeting other therapeutic targets and the FOX family holds
profound potential for providing synergistic effects and reduced treatment side effects, eventually
improving clinical efficacy [218]. Furthermore, there is an urgent need to explore the roles of FOX
proteins in the aberrant metabolism of cancer. Targeting the altered metabolism of cancer using
metabolic disruptors is currently a dominant topic in cancer research [219]. Finally, similarities in the
gene or protein structures of FOX family members, such as atypical FOXPs, may cause unpredictable
complications due to off-target effects of treatment and thus should be taken into account when
advancing new drug-development strategies.
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