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Purpose: We investigated whether pulmonary metastases from historically considered radioresistant primaries would have inferior
local control after radiation therapy than those from nonradioresistant nonlung primaries, and whether higher biologically effective
dose assuming alpha/beta=10 (BED10) would be associated with superior local control.
Methods and Materials: We identified patients treated with radiation therapy for oligometastatic or oligoprogressive pulmonary
disease to 1 to 5 lung metastases from nonlung primaries in 2013 to 2020 at a single health care system. Radioresistant primary cancers
included colorectal carcinoma, endometrial carcinoma, renal cell carcinoma, melanoma, and sarcoma. Nonradioresistant primary
cancers included breast, bladder, esophageal, pancreas, and head and neck carcinomas. The Kaplan-Meier estimator, log-rank test, and
multivariable Cox proportional hazards regression were used to compare local recurrence-free survival (LRFS), new metastasis-free
survival, progression-free survival, and overall survival.
Results: Among 114 patients, 73 had radioresistant primary cancers. The median total dose was 50 Gy (IQR, 50-54 Gy) and
the median number of fractions was 5 (IQR, 3-5). Median follow-up time was 59.6 months. One of 41 (2.4%) patients with
a nonradioresistant metastasis experienced local failure compared with 18 of 73 (24.7%) patients with radioresistant
metastasis (log-rank P = .004). Among radioresistant metastases, 12 of 41 (29.2%) patients with colorectal carcinoma
experienced local failure compared with 6 of 32 (18.8%) with other primaries (log-rank P = .018). BED10 ≥100 Gy was
associated with decreased risk of local recurrence. On univariable analysis, BED10 ≥100 Gy (hazard ratio [HR], 0.263; 95%
CI, 0.105-0.656; P = .004) was associated with higher LRFS, and colorectal primary (HR, 3.060; 95% CI, 1.204-7.777;
P = .019) was associated with lower LRFS, though these were not statistically significant on multivariable analysis. Among
colorectal primary patients, BED10 ≥100 Gy was associated with higher LRFS (HR, 0.266; 95% CI, 0.072-0.985; P = .047) on
multivariable analysis.
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Conclusions: Local control after radiation therapy was encouraging for pulmonary metastases from most nonlung primaries, even for
many of those classically considered to be radioresistant. Those from colorectal primaries may benefit from testing additional
strategies, such as resection or systemic treatment concurrent with radiation.
© 2024 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
The lung is a frequent site of cancer metastases, with
approximately 20% to 54% of cancer patients developing
lung metastases, dependent on the primary site.1 Tradi-
tionally lung metastases were treated with systemic ther-
apy alone; however, the increasing use and availability of
imaging combined with advancements in radiation plan-
ning and delivery have led to the emergence of metasta-
sis-directed therapy using ablative doses of radiation.2

There is a wide spectrum of disease states between
locoregionally confined tumors and widespread meta-
static disease, with a subset of patients having oligometa-
static and oligoprogressive disease. Although there is no
universally agreed upon definition of oligometastasis,
most prior studies of oligometastatic patients use a cut-off
of 3 to 5 metastatic lesions. In contrast to oligometastatic
patients, patients with oligoprogressive disease may have
polymetastatic disease, but with only a few metastatic
lesions progressing while on systemic treatment.3,4

For the subset of metastatic patients with oligometastatic
and oligoprogressive disease, the efficacy of aggressive metas-
tasis-directed ablative radiation has been demonstrated by
several seminal trials that have shown an overall survival
(OS) and progression-free survival (PFS) benefit.5-7 However,
the optimal radiation dose-fractionation schedule for the
ablative treatment of pulmonary metastases, especially from
nonlung primaries, has not been standardized. Radiation
schedules used for the treatment of pulmonary metastases
have often mimicked the treatment of stage I non-small cell
lung cancer. Some prior studies have reported local control
rates reaching up to 96%8 while others, particularly those
which focus on colorectal cancer (CRC), have shown poorer
local control.9 However, especially as the number of treated
metastases increases, there has been an emphasis on mini-
mizing the risks of toxicity of treatment with dose de-escala-
tion. Several trials are testing the efficacy of stereotactic body
radiation therapy (SBRT) biologically effective dose assuming
alpha/beta=10 (BED10) well below those used for primary
lung tumors for patients with 4 or greater metastases.10,11

In this study we investigated whether histologies classi-
cally considered radioresistant and/or dose-fractionation
were predictors of local recurrence after radiation therapy
for pulmonary metastases from nonlung primaries. In
addition, we sought to uncover whether there was a subset
of radioresistant primary cancers at particularly high risk
for local recurrence and could benefit from further treat-
ment escalation.
Methods and Materials

Patient selection and classification

This study was approved by the Yale University
Institutional Review Board. We reviewed an institu-
tional database of patients who received lung radiation
treatment from February 2013 to June 2020 in the Yale
New Haven Hospital System. Of 2571 patients in total,
we identified 125 patients with oligometastatic or oligo-
progressive pulmonary metastases from nonlung pri-
maries who received lung radiation therapy. Of these
patients, 8 were excluded due to incomplete records
and 3 were excluded due to low BED for their lung
radiation therapy, defined as BED10 <48 Gy, leading to
a final cohort of 114 patients.

Metastatic disease state was defined according the
European Organization for the Research and Treatment
of Cancer and European Society for Radiotherapy and
Oncology consensus recommendations. To simplify dis-
ease state categories, patients were classified as having oli-
gometastatic disease (those with synchronous
oligometastatic disease, metachronous oligorecurrence
and repeat oligorecurrence), or having oligoprogressive
disease (those with repeat oligoprogression, induced oli-
goprogression, repeat oligopersistence, and induced oligo-
persistence). All oligometastatic patients had 1 to 5
lesions within the lung at the time of diagnosis of oligo-
metastatic pulmonary disease. Four of the 74 oligometa-
static patients also had additional metastatic disease
outside of the lung which was confined to 1 to 2 other
organs and with 3 or fewer lesions in each organ. Seventy
patients were identified as oligoprogressive. Oligoprogres-
sive patients received systemic treatment after diagnosis
of metastatic pulmonary disease and were found to have
growth or persistence of 1 to 5 lung lesions after systemic
treatment. Patients who initially responded to systemic
treatment but then had growth of 1 to 3 lung lesions while
off systemic treatment were defined as oligometastatic.

Radioresistant primary cancers included CRC, endo-
metrial carcinoma, renal cell carcinoma, melanoma, and
sarcoma. Nonradioresistant primary cancers included
breast, bladder, esophageal, pancreas, and head and neck
carcinomas. Renal cell carcinoma, melanoma, and sar-
coma were classified as radioresistant based on prior stud-
ies of SRS for brain metastases.12-21 The classification of
CRC metastases as radioresistant was based on prior stud-
ies of SBRT for lung metastases.22-25 Finally, the
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classification of endometrial as radioresistant was based
on the fact that 2 of the 4 patients had a histology (serous
or leiomyosarcoma) for which adjuvant radiation has
shown limited benefit.26-30
High-dose radiation therapy technique

SBRT techniques used at our institution have been pre-
viously described in detail.31 In brief, a 4-dimensional CT
simulation is done in a full-body vacuum cushion. Next, an
internal gross tumor volume (IGTV) is constructed on the
average intensity projection scan and includes the full
extent of tumor movement during the respiratory cycle.
Finally, a 0.5 to 0.7 cm expansion on the IGTV volume is
done to generate the planning target volume (PTV).
Normal tissues including the heart, lungs, esophagus, prox-
imal tracheobronchial tree, spinal cord, chest wall, and bra-
chial plexus were also contoured as needed. Patients were
treated with 7 to 13 nonopposed, noncoplanar 6 MV pho-
ton beams that conformed to the PTV using multileaf colli-
mator leaves, dynamic conformal arcs, or volumetric-
modulated arc therapy. Cone beam CT was used for image
guidance and verification before each treatment delivery.

For hypofractionated and standard fractionation,
intensity modulated RT was used. The clinical target vol-
ume was defined to be the IGTV plus a 0.5 to 0.7 cm mar-
gin as appropriate to account for microscopic tumor
extension. The PTV was the clinical target volume plus a
margin (0.3-0.5 cm).
Follow-up

Patients were typically scheduled for their first follow-
up 1 month after RT. After this, follow-ups and chest CT
scans were scheduled subsequently every 3 to 6 months
for 1 year and every 4 to 6 months thereafter until 5 years
had elapsed. Five years after radiation treatment the
patient would typically only follow-up with their primary
medical oncologist, who would arrange their annual sur-
veillance imaging. PET-CT was performed if follow-up
CT imaging findings were suspicious for recurrence.
Definition of local recurrence

Local recurrence was defined as recurrence within or
immediately adjacent to the radiation field or progressive
growth of the treated lesion after RT as seen on 2 consecu-
tive follow-up imaging scans and/or documented in an
oncology follow-up note. In addition to using the CT
report, the images from each CT chest scan were also
individually reviewed. Progressive growth on 2 consecu-
tive scans allowed us to differentiate recurrence from
posttreatment pneumonitis or fibrosis.
Statistical analyses

The Pearson x2 test was used to assess for associations
between patient, tumor, and treatment characteristics and
radioresistant and nonradioresistant histology. Time to
develop pulmonary metastases was defined as time from
initial diagnosis to identification of pulmonary metastasis
on imaging. Time to local failure was defined as time
from RT treatment to development of local progression
or recurrence. Overall survival time was defined from
time from RT treatment to last follow-up or death.
Kaplan-Meier method was used for analysis of local recur-
rence-free survival (LRFS), OS, new metastasis-free
survival (NMFS), and PFS. Median follow-up was deter-
mined by the reverse Kaplan-Meier method. These out-
comes were calculated based on time from the date of last
fraction of RT treatment.

Univariable Cox proportional hazard analysis was used
to evaluate patient, tumor, and treatment characteristics as
prognostic factors for LRFS and OS. The following charac-
teristics were included in univariable analysis: age at diag-
nosis (<70 or ≥70 years), sex (male or female), Eastern
Cooperative Oncology Group (ECOG) (<2 or ≥2), smok-
ing history (<10 or ≥10 pack-years), initial M stage (M0 or
M1), time to development of pulmonary metastases (<12
or ≥12 months), biologically effective dose assuming a/b
of 10 (BED10 <100 or ≥100 Gy), number of lung lesions
treated (1 or >1 lesion), radioresistance of primary tumor
(nonradioresistant or radioresistant), and disease state (oli-
gometastatic or oligoprogressive). For CRC primaries, uni-
variable Cox proportional hazard analysis was used to
evaluate whether the following variables were prognostic
for LRFS: age at diagnosis (<70 or ≥70 years), sex (male or
female), ECOG (<2 or ≥2), smoking history (<10 or ≥10
pack-years), disease state (oligometastasis or oligoprogres-
sion), time to lung metastasis (≤12 or >12 months), num-
ber of lung lesions treated (1 or >1 lesion), grade (low-
grade or high-grade), KRAS status (no mutation or muta-
tion present), IGTV volume (≤30 or >30 cm3), BED10 to
lung metastasis (<100 or ≥100), and systemic treatment
after SBRT (systemic treatment or no systemic treatment).
Multivariable analysis was then performed by including all
variables with P < .05 on univariate regression, BED10 was
included on multivariable analysis a priori. We used IBM
SPSS Statistics for Mac Version 25.0 (IBM Corp) for all sta-
tistical analyses. Hypothesis testing was 2-sided with a 5%
level of significance.
Results
Patient, tumor, and treatment characteristics

In the study, 114 patients with 146 treated lesions were
included in our cohort; 74 patients (64.9%) had



Figure 1 Kaplan-Meier curves for the nonradioresistant and radioresistant subgroups. (a) local recurrence-free survival,
(b) new metastasis-free survival, (c) progression-free survival, and (d) overall survival curves for nonradioresistant (blue)
and radioresistant (red) subgroups. P values (log-rank) and numbers at risk are shown. Abbreviations: DMFS = distant
metastasis-free survivial; LFRS = local recurrence-free survival; RT = radiation therapy.
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oligometastatic pulmonary disease and 40 patients
(35.1%) had oligoprogressive lung metastases (Table E1).
Based on the histology of their primary cancer, patients
were designated as either radioresistant (n = 73) or nonra-
dioresistant (n = 41; Fig. E1). A comparison of baseline
demographic, tumor, and treatment characteristics
between radioresistant and nonradioresistant patients is
shown in Table 1. Notably there was an imbalance
between radioresistant and nonradioresistant patients
with regards to disease state (radioresistant patients had
more oligoprogressive disease rather than oligometastatic)
and number of lung lesions treated by SBRT (more radio-
resistant patients had >1 lung lesion treated than nonra-
dioresistant patients). Two out of the 114 patients (1
radioresistant and 1 nonradioresistant) received systemic
treatment during lung radiation treatment, one patient
received cetuximab (nonradioresistant patient) and the
other patient received nivolumab (radioresistant patient).

Out of 114 patients, 104 (91.2%) received stereotactic
body radiation therapy (SBRT), defined as ≤5 fractions
with at least 6 Gy per fraction; 8 of 114 patients (7.0%)
received hypofractionated radiation therapy to 60 Gy in 15
fractions or 72 Gy in 18 fractions; and 2 of 114 patients
(1.8%) received conventionally fractionated radiation ther-
apy to 60 Gy in 30 fractions. The median total dose per
lesion was 50 Gy (IQR, 50-54 Gy), and the median number
of fractions was 5 (IQR, 3-5). The most common fraction-
ation schedules were 54 Gy in 3 fractions (31.6%, BED10 of
151.2) and 50 Gy in 5 fractions (37.7%, BED10 of 100.0).
Ninety-two out of 114 patients (80.7%) were treated with a
BED10 ≥100 Gy. A median of 1 lesion was treated (range,
1-5 lesions). Median follow-up time was 36.4 months.

Median LRFS was not reached for radioresistant or
nonradioresistant groups. LRFS was poorer among
patients with radioresistant histologies than those with
nonradioresistant histologies (1-year 85.7% vs 100%, 2-
year 70.5% vs 95.8%, log-rank P = .004; Fig. 1). Median
OS for all patients was 41.5 months. The median OS was
37.2 and 45.4 months for patients with nonradioresistant
and radioresistant primaries, respectively (P = .21). One-,
2-, and 5-year OS for all patients was 90.0%, 68.9%, and
31.7%, respectively. NMFS and PFS were also not signifi-
cantly different between the radioresistant and nonradior-
esistant groups (Fig. 1).
Tumor and treatment factors associated with
local failure

One of 41 patients (2.4%) with a nonradioresistant
metastasis experienced local failure compared with 18 of
73 (24.7%) patients with radioresistant metastasis (log-
rank P = .004; Table 2). The only nonradioresistant
patient with a local failure received only 30 Gy in 5 frac-
tions (BED10 of 48). Among radioresistant patients, local



Table 1 Patient, tumor, and treatment characteristics based on nonradioresistant and radioresistant primary (N = 73)

Characteristic Total (N = 114) Nonradioresistant (N = 41) Radioresistant (N = 73) Pearson x2

N (%) N (%) N (%) P value

Age, y

<70 55 (48.2) 18 (43.9) 37 (50.7) .560

≥70 59 (51.8) 23 (56.1) 36 (49.3)

Sex .168

Male 66 (57.8) 20 (48.8) 46 (63.0)

Female 48 (42.2) 21 (51.2) 27 (37.0)

ECOG .491

0-1 93 (81.6) 32 (78.0) 61 (83.6)

≥2 21 (18.4) 9 (22.0) 12 (16.4)

Smoking history .378

Never 43 (47.3) 15 (46.9) 28 (47.5)

<10 pack-years 13 (14.3) 6 (18.8) 7 (11.9)

≥10 pack-years 35 (38.4) 11 (34.4) 24 (40.7)

Initial primary M stage .376

M0 86 (75.4) 33 (80.5) 53 (72.6)

M1 28 (24.6) 8 (19.5) 20 (27.4)

Metastatic type .004

Oligometastatic 74 (64.9) 34 (82.9) 40 (54.7)

Oligoprogressive 40 (35.1) 7 (17.1) 33 (45.3)

Time to develop lung metastases, mo .826

<12 29 (25.4) 10 (24.4) 19 (26.0)

≥12 85 (74.6) 31 (75.6) 54 (74.0)

Number of lung lesions treated .039

1 lesion 87 (76.3) 36 (87.8) 51 (69.8)

>1 lesion 27 (23.7) 5 (12.2) 22 (30.1)

Size of PTV .530

<50 cc 67 (64.4) 24 (58.5) 43 (58.9)

>50 cc 37 (35.6) 17 (41.5) 30 (41.1)

BED10 to lung metastasis .306

<100 23 (20.2) 6 (14.6) 17 (23.3)

≥100 91 (79.8) 35 (85.4) 56 (76.7)

Dose-fractionation .626

SBRT 104 (91.2) 36 (87.8) 68 (93.2)

*Hypofractionationy 8 (7.0) 4 (9.8) 4 (5.5)

Conventional fractionationz 2 (1.8) 1 (2.4) 1 (1.4)

Abbreviations: BED = biologically effective dose; ECOG = eastern cooperative oncology group; PTV = planning target volume; SBRT = stereotactic
body radiation therapy.
*SBRT regimens: 54/3 (n = 37); 48/4 (n = 1); 30/3 (n = 1); 60/5 (n = 1); 55/5 (n = 7); 50/5 (n = 43); 40/5 (n = 4); 35/5 (n = 1); 30/5 (n = 9).
yHypofractionation regimens: 72/18 (n = 2); 60/8 (n = 2); 60/15 (n = 4).
zConventional fractionation regimen: 60/30 (n = 2).
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failure occurred among patients with CRC (12 of 41
patients, 29.2%), endometrial cancer (3 of 4 patients,
75.0%), renal cell carcinoma (2 of 10 patients, 20.0%), and
melanoma (1 of 12 patients, 8.3%; Table 3). None of the
patients with sarcoma experienced local failure (0 of 6,
0%). Of note, among the 4 patients with endometrial



Table 2 Primary site of patients who experienced LF after lung RT

Total no. of patients No. of patients with LF Percentage of patients with LF Percentage of total LF

Total 114 19

Nonradioresistant 41 1 2.4% 5.3%

Bladder 5 0 0 0

Breast 9 0 0 0

Cervix 1 0 0 0

Duodenal 1 0 0 0

Esophagus 4 0 0 0

HCC 2 0 0 0

Head and neck 12 1 8.3% 5.3%

Pancreas 6 0 0 0

Prostate 1 0 0 0

Radioresistant 73 18 24.7% 94.7%

Colorectal 41 12 29.3% 63.2%

Endometrial 4 3 75.0% 15.8%

Melanoma 12 1 8.3% 5.3%

Sarcoma 6 0 0 0

RCC 10 2 20.0% 10.5%

Abbreviations: HCC = hepatocellular carcinoma; LF = local failure; RCC = renal cell carcinoma; RT = radiation therapy.
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cancer, 2 had endometrioid histology, 1 had serous histol-
ogy, and 1 patient had a leiomyosarcoma. Both serous
and leiomyosarcoma patients experienced a local failure.

Prior studies of SBRT regimens for stage I non-
small cell lung cancer, have recommended biologically
effective doses (BED) ≥100 Gy.32-34 Based on this we
divided radiation regimens into BED10 <100 Gy and
BED10 ≥100 Gy. For patients with radioresistant pri-
maries, BED10 ≥100 was associated with higher LRFS
than BED10 <100 (1-year 90.8% vs 66.7%, 2-year
77.4% vs 38.1%, log-rank P = .01; Fig. 2). When
treated with BED10 ≥100, 2-year LRFS for radioresist-
ant and nonradioresistant patients were 77.4% and
100.0%, respectively (log-rank P = .01; Fig. 2, Fig. E2).
Escalating BED10 above 100 Gy or 120 Gy did not
lead to improved LRFS among radioresistant patients
(Fig. E3).

On univariable Cox analysis, BED10 ≥100 was
associated with improved LRFS compared with BED10
<100 (HR, 0.263; 95% CI, 0.105-0.656; P = .004). CRC
primary site was associated with poorer LRFS com-
pared with all other primary sites (HR, 3.060; 95% CI,
1.204-7.777; P = .019; Table 4). Radioresistant histol-
ogy was not associated with OS (Table E2), NMFS
(data available upon request), or PFS (data available
upon request). Notably, systemic treatment after lung
SBRT was associated with a statistically significant sur-
vival benefit (Table E2).
Local control rates and prognostic factors for
local failure among CRC versus non-CRC
radioresistant patients

There were 41 radioresistant patients with CRC pri-
mary cancers, who had a local failure risk of 29.2%. Non-
CRC radioresistant patients had a local failure risk of
18.8%, with 3 of the 6 patients with local failures having
received 30 to 35 Gy in 5 fractions or 60 Gy in 30 frac-
tions. Compared with non-CRC radioresistant patients,
CRC patients were likely to have primaries with metasta-
sis at diagnosis (Table E3). LRFS was poorer among CRC
group than the non-CRC radioresistant and nonradiore-
sistant subgroups (1-year 88.0% vs 86.8% and 100%, 2-
year 67.6% vs 78.9.% and 95.8%, log-rank P = .018).
When treated with BED10 ≥100, 2-year LRFS for CRC
and non-CRC radioresistant patients were 75.2% and
85.1%, respectively (P = .041; Fig. E4).

For patients with CRC primaries, BED10 ≥100 was
associated with improved LRFS (1-year 94.3% vs 50.0%,
2-year 75.2% vs 33.3%, log-rank P = .016). Analysis with a
higher BED10 threshold of 120 Gy did not show an
improvement in LRFS among CRC patients (Fig. E5).

Multivariable Cox regression analysis of CRC patients
showed that BED10 ≥100 was associated with improved
LRFS compared with BED10 <100 (HR, 0.199; 95% CI,
0.060-0.656; P = .008). Greater total IGTV planning volume
(>30 cm3 vs ≤30 cm3; HR, 3.759; 95% CI, 1.010-14.00;



Table 3 Patient, tumor, and treatment characteristics for patients who experienced local failure after lung RT

No. Age Sex ECOG Primary site
Radiation
Sensitivity

Time to lung
metastasis (mo)*

Lung RT dose and
fractionation BED10

No. of
sites
treated Lobes treated

Time to local
failure (mo)y

Follow-up
time (mo)z

Overall
survival
(mo)z

1 88 M 0 Head and neck Not resistant 42.1 30 Gy in 5 Fx 48 1 RLL 20.3 23.6 23.6

2 83 M 2 Colon Resistant 142.1 30 Gy in 5 Fx 48 1 RLL 23.0 47.9 47.9

3 52 M 0 Colon Resistant 1.7 54 Gy in 3 Fx 151.2 2 LUL, LLL 14.0 29.9 29.9

4 87 F 1 Colon Resistant 29.5 50 Gy in 5 Fx 100 1 RLL 16.9 16.9

5 61 F 1 Colon Resistant 18.7 54 Gy in 3 Fx 151.2 1 LUL 17.0 30.4

6 79 M 0 Colon Resistant 39.3 54 Gy in 3 Fx 151.2 2 RML, RLL 7.3 25.9 25.9

7 66 M 0 Colon Resistant 110.1 40 Gy in 5 Fx 72 1 LLL 3.6 23.7 23.7

8 72 M 1 Colon Resistant 32.8 54 Gy in 3 Fx 151.2 1 LLL 20.2 28.6

9 83 F 0 Endometrial
(endometrioid)

Resistant 35.9 50 Gy in 5 Fx 100 2 RUL, RLL 12.5 24.4

10 55 F 0 Endometrial
(leiomyosarcoma)

Resistant 27.6 50 Gy in 5 Fx 100 1 RLL 2.1 24.3

11 66 F 1 Endometrial
(serous)

Resistant 51.0 60 Gy in 30 Fx 72 2 RML, RUL 2.2 2.5 2.5

12 56 M 0 Melanoma Resistant 214.1 30 Gy in 5 Fx 48 1 LLL 11.0 45.4 45.4

13 73 M 0 Renal cell Resistant 48.0 35 Gy in 5 Fx 59.5 1 Left pleura 12.7 70.6

14 60 M 1 Renal cell Resistant synchronous 50 Gy in 5 Fx 100 2 LLL, LUL 6.3 17.8

15 55 M 1 Rectal Resistant 31.9 72 Gy in 18 Fx 100.8 2 LUL, RLL 12.5 36.7

16 66 M 0 Rectal Resistant 50.8 40 Gy in 5 Fx 72 1 RLL 4.7 5.0

17 67 M 2 Rectal Resistant 0.7 50 Gy in 5 Fx 100 2 RLL 2.2 24.0 24.0

18 67 F 2 Rectal Resistant 19.8 50 Gy in 5 Fx 100 1 LUL 9.9 14.2 14.2

19 72 M 1 Rectal Resistant 21.8 60 Gy in 15 Fx 84 1 Right hilum 5.0 34.9

Abbreviations: BED = biologically equivalent dose; ECOG = eastern cooperative oncology group; RT = radiation therapy; LLL = left lower lobe; LUL = left upper lobe; RLL = right lower lobe; RML = right mid-
dle lobe; RUL = right upper lobe.
*Time from initial diagnosis to identification of pulmonary metastasis on imaging.
yTime from RT to development of local progression or recurrence.
zTime from RT to last follow-up or death.
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Figure 2 (a) Local recurrence-free survival (LRFS) for radioresistant subgroup comparing treatment with biologically effec-
tive dose (BED) <100 Gy (red) and BED >100 Gy (blue). (b) LRFS for patients treated with BED >100 Gy comparing non-
radioresistant (blue) and radioresistant (red) subgroups. P values (log-rank) and 1- and 2-year LRFS are shown on the right.
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P = .048) was associated with poorer LRFS (Table E4).
Two-year LRFS for IGTV ≤30 cm3 and IGTV>30 cm3

were 83.3% and 44.7%, respectively (P = .034; Fig. E6).
Discussion
The lung is a common site of metastasis for many
solid tumors. RT is a frequently used, noninvasive
treatment option that typically provides good local con-
trol and acceptable toxicity. It is unclear, however,
whether pulmonary metastases from radioresistant pri-
maries have poorer local control after radiation treat-
ment, and whether dose escalation will decrease local
failure among higher-risk patients. Within our cohort,
we found that radioresistant tumors had poorer LRFS
compared with nonradioresistant tumors at all RT doses
given. For RT regimens with BED10 <100 Gy, both



Table 4 Associations between baseline characteristics and LF after lung RT

LF univariable analysis LF multivariable analysis

Characteristic HR 95% CI P value HR 95% CI P value

Age, y
≥70 (vs <70)

0.614 0.246-1.527 .294

Sex
Female (vs male)

0.597 0.227-1.571 .296

ECOG
≥2 (vs <2)

3.804 1.368-10.579 .010 2.917 1.030-8.260 .044

Smoking history (pack-years)
≥ 10 (vs <10)

1.179 0.438-3.173 .745

Initial primary M stage
M1 (vs M0)

0.830 0.275-2.502 .740

Time to develop lung metastases
≥12 mo (vs <12 mo)

1.934 0.563-6.638 .294

RT BED dose to lung metastasis
≥100 (vs <100)

0.263 0.105-0.656 .004 0.335 0.105-1.073 .066

No. of lung lesions treated
>1 lesion (vs 1 lesion)

1.445 0.549-3.803 .456

Radioresistance
Radioresistance (vs nonradioresistant)

10.830 1.445-81.162 .020

Primary site
Colorectal (vs noncolorectal)

3.060 1.204-7.777 .019 1.952 0.740-5.147 0.176

Disease state
Oligoprogression (vs oligometastasis)

3.032 1.217-7.553 .017

Systemic treatment after SBRT
Systemic treatment (vs no systemic treatment)

1.520 0.547-4.220 .422

Note: Radioresistance and disease state were not included in multivariable analysis given collinearity with primary site.
Abbreviations: BED = biologically equivalent dose; HR = hazard ratio; LF = local failure; ECOG = XXX; SBRT = stereotactic body radiation therapy.
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radioresistant and nonradioresistant tumors had poorer
local control than when treated with a regimen of
BED10 ≥100 Gy. Within our radioresistant group, we
identified that patients with CRC primaries experienced
high rates of local failure even when using high doses (2-
year LRFS 67.6% overall and 75.2% when using BED10
≥100 Gy). Nonradioresistant tumors (2-year LRFS 95.8%
overall and 100% when using BED10 ≥100 Gy, with the
only local failure having received 30 Gy in 5 fractions
[BED10 of 48 Gy]) and non-CRC radioresistant primar-
ies (2-year LRFS 78.9% overall and 85.1% when using
BED10 ≥100 Gy, with 3 of 6 local failures having
received only 30 to 35 Gy in 5 fractions or 60 Gy in 30
fractions) fared significantly better. Our results are sup-
ported by recently published data of sarcoma-associated
pulmonary metastases which found 2-year LRFS of 83%
with the use of SBRT regimens with BED10 >100 Gy.66

Our study demonstrates that not all classically radiore-
sistant primaries are necessarily radioresistant to ablative
RT doses to the lung.

Previous studies have explored the use of RT for pul-
monary metastatic lesions and are shown in Table E5.
Overall, these studies have found that higher BED, smaller
tumor size, non-CRC primary, and shorter interval
between diagnosis and treatment of metastases are favor-
able prognostic factors influencing local control of lung
metastases after RT. In general, a BED10 of 100 Gy was
found to serve as a threshold for adequate local control,
which is concordant with our results. Kalinauskaite et al
suggests that BED10 <100 Gy using single fraction radio-
surgery (SFRS; 25-26 Gy median Dmax of 53Gy and a
median BEDmax of 81Gy) might be sufficient for local
control in small lung metastases (median PTV ≤ 9.9 cm3,
median diameter 12mm)35; however, this conflicts with
the findings of Sharma et al, which noted that SFRS was
associated with lower local control than multifraction
treatment.36 SFRS was not investigated in our study, and
it is unclear whether comparable local control can be
achieved with BED10 <100 as BED10>100 if SFRS is
used.

When focusing only on tumors treated with BED10
≥100 Gy, radioresistant tumors still showed poorer
LRFS than nonradioresistant tumors. This prompted
us to investigate prognostic factors for local failure
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among radioresistant tumors. In addition to BED10
<100 Gy, CRC primary was associated with a greater
risk of local failure on univariable Cox regression anal-
ysis. A BED10 dose of at least 100 Gy is especially
critical for these patients with CRC; when using a
dose below 100 Gy their 2-year LRFS drops to 33.3%.
Previously, Sulaiman et al37 and Berkovic et al38 found
that BED10 >110 Gy and >120 Gy, respectively, were
associated with improved local control. In a recent
meta-analysis Jingu et al showed that LC was signifi-
cantly inferior for pulmonary metastases derived from
a CRC primary, and dose escalation (BED10 >130Gy)
was associated with decreased local recurrence from
CRC metastases.39 However, we did not find that a
higher threshold of BED10 (>120 Gy) led to better
local control among the CRC subgroup, albeit with a
small number of patients.

On univariable Cox regression analysis of prognostic
factors for local recurrence among the CRC subgroup,
a greater total IGTV planning volume >30 cm3 was
associated with a higher risk of local failure. Our find-
ings bring up the possibility that other forms of treat-
ment escalation may benefit patients with large higher
risk radioresistant tumors. Given that the first relapse
in the entire cohort was more likely to occur outside
the irradiated field than within it, systemic treatment
may provide benefit for both local and distant control.
Only one of the 73 radioresistant patients in our cohort
received concurrent systemic treatment during their
radiation treatment. Recent findings also suggest that in
addition to local ablation, high-dose RT has the addi-
tional benefit of stimulating the immune system
through the release of neo-antigens and the activation
of host immunity, which may in turn improve local
and distant control.40 Future studies should explore
whether patients treated concurrently or sequentially
with RT and systemic treatments (chemotherapy,
immunotherapy, or targeted therapies) could sustain
improved long-term outcomes.

Overall, the major limitation of this study is its ret-
rospective design with heterogeneous primary tumor
types and a limited number of patients from a single
center. Tumor size and location also varied among
patients. Although we excluded patients with RT regi-
mens with BED10 <48 Gy, the included patients did
have heterogenous dose-fractionation schedules and
other dose metrics besides prescription dose were not
considered. Toxicity data was not collected to deter-
mine whether these higher-BED treatments for pulmo-
nary metastases were associated with worsened toxicity
compared with lower-BED treatments. It will be criti-
cal for future studies to include toxicity data as lung
SBRT prescription doses are typically limited due to
OAR constraints and tumor location. Finally, systemic
treatment patterns in relation to RT were not explored
within this study.
Conclusion
BED10 ≥100 Gy may be preferred for pulmonary
metastases whenever safe and feasible to do so to optimize
local control, especially for CRC. When using these high-
dose RT regimens, local control is high for metastases
from all other nonlung primaries, including classically
radioresistant tumors like melanoma, renal cell carci-
noma, and sarcoma. In the future, high-quality prospec-
tive trials are needed to validate our results and determine
the benefit of treatment escalation for radioresistant CRC
metastases.
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