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Abstract

Passive sensor-transponders have raised interest for the last few decades, due to their capability 

of low-cost remote monitoring without the need for energy storage. Their operating principle 

includes receiving a signal from a source and then reflecting the signal. While well-established 

transponders operate through electromagnetic antennas, those with a fully acoustic design have 

advantages such as lower cost and simplicity. Therefore, detection of pressures using the 

ultrasound signal that is backscattered from an acoustic resonator has been of interest recently. In 

order to infer the pressure from the backscattered signal, the established approach has been based 

upon the principle of detection of the shift to the frequency of resonance. Nevertheless, regression 

of the pressure from the signal with a small error is challenging and has been subject to research. 

Here in this paper, we explore an approach that employs deep learning for inferring pressure from 

the ultrasound reflections of polymeric resonators. We assess if neural network regressors can 

efficiently infer pressure reflected from a fully acoustic transponder. For this purpose, we compare 

the performance of several regressors such as a convolutional neural network, a network inspired 

by the ResNet, and a fully connected neural network. We observe that deep neural networks are 

advantageous in inferring pressure information with a minimal need for analyzing the signal. Our 

work suggests that a deep learning approach has the potential to be integrated with or replace 

other traditional approaches for inferring pressure from an ultrasound signal reflected from fully 

acoustic transponders or passive sensors.
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1. Introduction

Applications of deep neural networks (NN) in the area of computerized interpretation of 

images and ultrasound signals are rapidly growing. Utility of deep learning in processing 

ultrasound signals for nondestructive testing (Haile, Zhu, Hsu, & Bradley, 2020; Zhang 

& Harvey, 2012), have been applied in characterization of cracks (Pyle et al., 2020), 

defects (Medak, Posilović, Subašić, Budimir, & Lončarić, 2022; Ye, Ito, & Toyama, 2018), 

weld geometries (Provencal & Laperrière, 2021), and the classification of direct/indirect 

reflections (Haile et al., 2020). These reports are a few examples to highlight the utility of 

deep learning for interpretation of ultrasound signals/images (Ye et al., 2018). Use of deep 

learning in ultrasound imaging (Lafci, Merčep, Morscher, Deán-Ben, & Razansky, 2020) 

and beam forming (Luijten et al., 2019) are other examples of the growing interest in this 

field. Accordingly, deep learning offers a great tool for enhancement of the current state of 

art approaches for interpretation of ultrasound signals.

Another area, in which deep learning has been utilized in, is interpreting backscattered 

electromagnetic signals from transponders (Amendola, Bianchi, & Marrocco, 2015; Shi, 

He, Gu, & Jiao, 2021; Zhao, Sunny, Li, & Wang, 2022). The conventional chipless passive 

sensors (Hennig & vom Bögel, 2010; Lin & Kao, 2008) have been demonstrated to be 

beneficial in situations where the use of electronics has been shown to be disadvantageous 

such as radiation sensors (Debourg et al., 2014), humidity (Raju & Bridges, 2021), 

temperature (Martínez-Martínez, Galindo-Romera, & Herraiz-Martínez, 2017), or chemical 

detections (Raju & Bridges, 2022). They have also been demonstrated in applications such 

as tagging (Lin & Kao, 2008) and pressure measurement (Nguyen, Fernandes, & Häfliger, 

2014; Schimetta, Dollinger, Scholl, & Weigel, 2001). The interest in these electromagnetic 

transponder/sensors has led to the application of NNs and other machine learning algorithms 

for interpreting signals from these classes of sensors (Villa-Gonzalez, Bhattacharyya, & 

Sarma, 2021). While the application of NNs in interpreting signals from transponder/

sensors, that operate with electromagnetic waves, has been studied; their utility for chipless 

acoustic transponders/sensors (Ishihara et al., 1988; Jiang et al., 2020; Tremblay-Darveau, 

Williams, & Burns, 2014) has been unexplored. Recent studies on the use of fully acoustic 

transponders/sensors that operate with shift of resonance (Li, Li, & Yan, 2018; Tremblay-

Darveau et al., 2014), raise the question of how/if NN can be leveraged for inferring data 

from these transponder/sensors as they did with transponders operating with electromagnetic 

waves (Amendola et al., 2015; Shi et al., 2021; Zhao et al., 2022).

The aforementioned wide range of applications of deep learning raises the question of the 

utility of deep learning for inferring data from the ultrasound signals backscattered from 

sensors/transponders. Here to test this hypothesis we employ polymeric acoustic resonators 

that can deform at various pressures. This experiment is aligned with the previous reports 

on detecting pressure from the ultrasound reflected from various forms of microbubbles, 

(Forsberg et al., 2005; Ishihara et al., 1988; Li et al., 2018; Tremblay-Darveau et al., 2014), 

in which pressure was extracted from the resonant frequency shift due to contraction of 

the microbubbles at higher pressures. To test our hypothesis, we interpret the signal with 

conventional measurement of a resonant frequency shift (Fairbank & Scully, 1977; Ishihara 

et al., 1988; Sojahrood, Falou, Earl, Karshafian, & Kolios, 2015), and compare it with that of 
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deep neural networks. To collect the training/test datasets we fabricate and utilize a benchtop 

test setup that is capable of measurement of echo signal from the pressure chamber in an 

aqueous environment. This setup stores the fast Fourier transform (FFT) of the reflection 

signals at 3200 randomly selected pressures ranging from 0 to 158 mmHg. Subsequently, the 

dataset is used for determining the effectiveness of a NN-based approach for interpreting the 

pressure from the echo signals.

The interest in the estimation of pressures using deep learning raises the question about the 

suitable neural network architecture for regressing pressure. Inferring the information from 

an echo signal, especially from a polymeric sample, is challenging due to several factors. 

Topology of the transponder (such as buckled bubbles, Tremblay-Darveau et al., 2014), any 

motion of the transponder induced by the pressure, change in the dimensions induced by 

the pressure (Tremblay-Darveau et al., 2014), pulser’s settings, and ultrasound transducer 

itself all can introduce multiple dips and peaks in the echo signal. It is possible to observe 

multiple dips/peaks, associated with a transponder/sensor, for different harmonics (e.g. in 

the case of microbubbles Li et al., 2018, fundamental, subharmonic and ultraharmonic). 

In addition, both amplitude (Li et al., 2018) and frequencies (Tremblay-Darveau et al., 

2014) associated peaks/dips, have been shown to be correlated to pressure. Therefore, given 

the aforementioned complexities, we hypothesize that deep learning can infer pressure 

from multiple features (peaks’ shape amplitude and overall shape) and be advantageous in 

processing echo signals.

In selection of a regressor architecture we considered several factors including dataset size, 

features expected to be influential in the datapoints, as well as the prior reports. Various 

architectures for regression have been presented in the literature (Ahn, Byun, Oh, & Kim, 

2012; Pandey, Zakwan, Sharma, & Ahmad, 2020; Zhou, Pierre, & Trudnowski, 2011), such 

as those inspired by convolutional neural networks (CNNs) (Zhu, Li, Mo, & Wu, 2017) 

and residual neural network (ResNet) (Chen, Hu, Nian, & Yang, 2020), or fully connected 

(dense) network (Kohler & Langer, 2021). In this work, the dataset and the dimension 

of the feature vectors are relatively small therefore low-capacity models with dropout 

regulation are preferred. The shift in the frequency for certain dips/peaks, in an echo signal 

is expected to be an influential feature (Forsberg et al., 2005), which could be extracted 

by the convolutional layers. Accordingly, we chose a low-capacity CNN regressor, similar 

to prior efforts (Pyle et al., 2020) in the area of ultrasound imaging. We also expect other 

features such as the shape and quality factor of the peaks/dips to be influential. Moreover, 

the relationship between the shift to the center frequency is possible to be nonlinear. This 

is why we choose the ResNet Style regressor that was reported to be advantageous for 

nonlinear functions (Chen et al., 2020). Choosing a CNN, Baseline, and ResNet Style 

regressor enables extraction of the main influential features in the learning algorithm.

The primary contribution of this work is investigating if NNs could be advantageous in the 

application of inferring pressure from an acoustic transducer/sensor that lacks electronics. 

Many attempts have been made to improve the sensitivity of measurement of pressure 

in such systems with passive sensors being microbubbles (Forsberg et al., 2005), coated 

microbubbles (Li et al., 2018), microbubbles encapsulated in polymers (Ishihara et al., 

1988), or imaging the dimensions of a deformable sensor (Jiang et al., 2020). Majority 
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of these efforts have been directed toward engineering of the uniformity/shape of acoustic 

resonators (Tremblay-Darveau et al., 2014), use of resonant frequency for inferring pressure 

(Ishihara et al., 1988), engineering of acoustic pressure (Sojahrood et al., 2015), and use of 

the amplitude of the peaks/dips in inferring pressure (Li et al., 2018). However, advantages 

of a deep learning approach, in a passive pressure measurement system that is entirely 

acoustic by processing the echo signal, have been unexplored to our best knowledge. Here, 

we study if deep learning can effectively predict pressure from an ultrasound signal that is 

reflected from a deformable polymeric structure/sensor. To assess its success, we compare 

this performance with prediction of pressure that employs resonant frequency that has been 

common (Forsberg et al., 2005; Gong, Cabodi, & Porter, 2010; Ishihara et al., 1988; Li et al., 

2018; Tremblay-Darveau et al., 2014). While our measurement setup and transponder/sensor 

differ from these reports in terms of its material or shape; our comparison, in principle, can 

elucidate the path toward in improving the read-out sensitivity of fully passive transponders/

sensors that operate with ultrasound.

In this paper, we compare the utility of a deep ResNet-style network with four identity 

blocks (Chen et al., 2020) and a CNN regression model (LeNet Style LeCun et al., 1989) 

with two convolutional layers, two pooling layers, and two fully connected layers (Zhu et 

al., 2017). We compare the performance of these networks with a baseline network (fully 

connected network) that has been widely used by various investigators (Feng et al., 2020; 

Huang et al., 2019; Kossaifi et al., 2020; Paul & Munkvold, 2005). Furthermore, we assess 

the shift of resonant frequency in the echo signal reflected from a transponder made from 

Polydimethylsiloxane (PDMS), and estimate the corresponding accuracy, if this shift is used 

as the sole metric for prediction of the pressure.

2. Setup for acquisition of the dataset

Measurement of the acoustic response of acoustic resonators at various pressures is achieved 

using a specifically designed and fabricated pressure chamber (Fig. 1) and measurement test 

setup (Fig. 2). The setup includes a 3D printed pressure chamber (Fig. 1), an ultrasound 

pulser (Imaginant DSR 300; Fig. 2), an ultrasound transducer 10 MHz (Figs. 1, 2), an 

oscilloscope (Tektronix, Fig. 2) for data acquisition, a pressure sensor (Omega Engineering; 

Fig. 2), a digital pressure regulator (Equilibar; Fig. 2), a digital multimeter for reading 

pressure (Agilent 34450A; Fig. 2), and a digital power supply (E3641A, Fig. 2) to drive the 

regulator. The pressure chamber is fully enclosed while it is pressured using the regulator. 

The chamber itself is immersed in a tank of water (Fig. 2 bottom) with a water level 

controller to keep the height of water. Since the chamber is immersed in a large water tank, 

to account for the pressure added due to a column of water, a precision pressure transducer 

is attached to the chamber (See Fig. 1 bottom). The pressure transducer is attached to 

the pressure chamber (Fig. 1) for logging the data. The components are synchronized and 

controlled by a LabVIEW program running on a laptop. Approximately every 15 s the 

pressure is randomly set from 0 to 155 mmHg, and the Fast Fourier Transform (FFT) of 

the ultrasound’s reflection are stored in a csv file. The oscilloscope averages the signal 

with 60 measurements before passing data to the laptop. The range of pressure is close to 

0–180 mmHg, which is physiologically relevant to the intracardiac pressures that have been 

studied in other reports (Li et al., 2018). Here, the transponder compresses air encapsulated 
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in Polydimethylsiloxane (PDMS) microstructures. This structure is inspired by a variation of 

acoustic resonators that mimics the use of air bubbles in blood and has been widely studied 

(Ishihara et al., 1988; Li et al., 2018; Tremblay-Darveau et al., 2014), which enables us to 

have a well-controlled and repeatable design of acoustic transponders.

3. Datapoints and their storage

The reflection signal’s FFT (a common feature for signal processing) is stored in ranges 

from 0 to 10 MHz with a resolution of 34.72 kHz. Each datapoint comprises a table of 

frequency (Hz) and signal’s FFT (dB) that is stored in an excel file. For each datapoint, 

the time, date, setting pressure, and reading pressure are stored in the file name. To ensure 

that the signal is originated from the acoustic transponders, in the time domain, the signal 

reflected from the PDMS transponder is determined by its distance from the transducer. 

Subsequently the time window in the oscilloscope is manually set to the particular peak. 

This setting does not change during the data acquisition afterwards. Additionally, we 

amplified the signal using the setting (gain, damping, amplitude, and etc.) in the pulser such 

that we observe a resonant peak that is clearly shifting by the pressure. Next, a total of 3200 

datapoints, at randomly chosen pressures, were collected and store using the aforementioned 

setup and protocol. Although, the data collection is attained using a single transducer and 

with the same geometrical constraints, the datapoints’ feature vectors are not identical even 

at the same pressures as discussed later.

To visualize the effect of pressure on the signal’s FFT, datapoints at pressures of 3, 60, 120, 

145 mmHg are depicted in black, red, green, and yellow, respectively in Fig. 3(a). Here 

we observe a complex response of multiple dips are shifted due to the change of pressure. 

Furthermore, both the quality factor and the center frequencies are affected for all the dips. 

Here, in Fig. 3b, a certain range of frequencies (~7 MHz to 10 MHz) shows a significant 

shift of the resonant dips (shown by arrows). We note that multiple harmonics/dips make 

resolving the resonant frequencies challenging. This behavior could be attributed to multiple 

factors, such as: (1) hyperplastic materials (i.e., PDMS) can have an effective Young’s 

modulus that nonlinearly changes with strain and therefore with pressure, (2) in elastomers 

a higher loss factor reduces the mechanical quality factor, and (3) large deformation in 

the elastomer enables a highly nonuniform structure and therefore results in many resonant 

peaks. The combination of these phenomena makes the reflected signal complex, as does the 

process of understanding the physical origin of the response complex. This complexity leads 

us to hypothesize that deep learning could be a suitable tool for determining pressure from a 

complex echo signal.

We utilized the setup for collecting 3200 datapoints from one sample over the course of 

one day. From an investigative perspective, it is essential to determine the diversity of the 

collected datapoints. It is advantageous to ensure that the data is diverse prior to using a 

learning algorithm. One metric to study the diversity of the datapoints is determining the 

minimum Euclidian distance between the feature vectors (FFT signals) for each pair of 

datapoints (Gong, Zhong, & Hu, 2019). To assess this metric, we calculated the Euclidian 

distance between every possible pair of datapoints and normalized it with the length of 

feature vectors (i.e., the total number of stored FFT for each data point; 288).
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The calculation of the distances between feature vectors revealed (Fig. 4a) that the minimum 

normalized distance between all datapoint is nonzero 0.007 dB/n and its maximum is 0.046 

dB/n. Moreover, there are 9 pairs of datapoints with pressure labels as close as 0.001 mmHg. 

Accordingly, the nonzero minimum distance confirms the presence of nonidentical feature 

vectors (FFT datapoints) as well as random noise in the datapoints. The histogram for the 

distance between all possible pairs of datapoints further illustrates a diverse set of training 

datapoints where all possible pairs of feature vectors are nonidentical (Fig. 4a). Observing 

the histogram for the pressure label distribution confirms a uniform distribution of pressures 

(Fig. 4b). Accordingly, the dataset can be spilt into training, validation, and test dataset 

without the repetition of identical datapoints in each set.

4. Neural network regressors and conventional method for calculation of 

pressure

A conventional method for estimation of pressure is measurement of the resonant 

frequencies. The relationship between the pressure and the resonant frequency at ~8.3 MHz 

(shown in Fig. 3b) for all datapoints is depicted in Fig. 5. Here we choose this peak because 

it shows a larger shift in frequency at varying pressure (in comparison with peak at ~7 

MHz), and has a large quality factor (in comparison with the peak at 9.5 MHz). Since the 

frequency resolution is constant, increasing these two factors, in the absence of random 

error, can improve the accuracy of the pressure readout. We note that ideally one needs to 

study the underlying physics to find the ideal resonant peak, which is beyond the focus of 

this work.

To calculate the error bar, the pressures are divided into intervals of 2 mmHg, and all the 

pressures falling in each interval range are averaged. Subsequently the average and the 

related error bar are plotted. The plot here shows an almost linear relationship between 

pressure and frequency in the range of 0 to 100 mmHg. Assuming a linear relationship we 

have:

F resonance = c1 + c2P (1)

where c1, c2 are constants, P  is the pressure and F  is the frequency. This equation results in 

the variation of measurement of pressure as follow:

ΔP resonance = ΔF resonance

∣ c2 ∣ (2)

Here ΔP resonance denote uncertainty corresponding to calculation of pressure solely using the 

resonant frequency. Here, we note that the resolution for reading frequency imposed by 

the oscilloscope is ΔFresolution = 34.727 kHz and the error suggested by the empirical data in 

Fig. 1 is greater than ±100 kHz. Therefor the empirical data here suggests ΔFaccuracy > 100
kHz and possible improvement may improve it to ΔFresolution > 34. Estimating c2 ∼ 2.5 kHz/

mmHg results in an empirical error in measurement of ΔP resonance greater than ±40 mmHg. 
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Subsequently, given the resolution of reading frequencies, a reasonable resolution for the 

pressure will become ΔP resonance > 14 mmHg.

The error in inferring the pressure, raises the question if the measurement test setup is 

providing sufficiently accurate results. Verification of the setup’s measurement accuracy in 

reading pressure is done by comparing the transducers’ accuracy and comparing the pressure 

readings from two different source. The transducers are attached to the chamber and the 

pressure regulator and have accuracy of 0.7 and ±0.25 mmHg respectively. These accuracies 

result in an expectation of random error better than 0.7 mmHg. To assess the possibility 

of systematic errors we compare the setting pressure in the pressure regulator (P set) and 

the measured pressure (Pmeasured) that is carried out by the sensor attached to the pressure 

chamber. Fig. 6 compares the difference between these two pressures as a function of P set. 

The positive differential pressure verifies that the Pmeasured is always greater than P set. This is 

consistent with the fact that there exists a column of water above the sensor as well as the 

tubing attached to the pressure chamber. Furthermore, the comparison grows our confidence 

that systematic errors (if could not be accounted for) do not exceed ±1.5 mmHg since 

the maximum deviation of the two pressures is smaller than 3 mmHg. Finally, the small 

variation of the pressure difference at any P set is limited to ±0.25 mmHg that can be seen 

as the thickness of the line in Fig. 6. This variation is attributed to the inherent inaccuracy 

of the transducer. Accordingly, Fig. 6 grows our confidence in using the measured pressure 

from the transducer attached to the pressure chamber. Overall, errors associated with the 

setup (Figs. 1, 2) is about two to three orders of magnitude smaller that the error in the 

prediction of pressure using the frequency shift.

Three regression models were employed that were inspired by the architectures of ResNet 

(Chen et al., 2020), CNN (LeNet), and a baseline fully connected network. The baseline 

network included four fully connected layers, including 64, 32, 4 and 1 neurons. The hidden 

layers have a ReLU activation function, and one dropout layer is included between the 

second and third layers. The LeNet style regression model included two blocks of 1D 

convolutional layers with 16 filters with maxpooling layers with a pool with the size of 2 and 

stride of 2. This layer was followed by fully connected layers with 200, 40, and 1 neurons. 

The fully connected layers have the activation function of ReLU, while the layer with 40 

neurons features one dropout layer. The ResNet style regressor includes one dense block 

and four identity blocks (Chen et al., 2020). Each identity block included a dense layer, a 

dropout layer, and a batch normalization layer followed by the ReLU activation function.

We trained the regression networks on a training dataset of 2560 datapoints and a validation 

dataset of 320 datapoints. The remaining 320 datapoints were used for testing the chosen 

model. The batch size was 40 datapoints, the Adam optimizer was chosen, and the cost 

function was Mean Square Error (MSE). Each network was trained for 2000 epochs, and the 

model selection criterion was the lowest cross-validation cost function (Stone, 1974). In Fig. 

7, training, and validation error/loss for the regressors are plotted. It is noted that the dropout 

layer avoids overfitting, and this is why the training loss is often larger than the validation 

loss.
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Cross-validation is carried out for model selection (tuning hyperparameters) and evaluation 

of the performance. The approach was the hold-out cross-validation to reduce overfitting 

(Refaeilzadeh, Tang, & Liu, 2009; Reitermanova, 2010). For this purpose, the dataset was 

split (Reitermanova, 2010) into three subsets of 80% training, 10% validation, and 10% 

testing dataset. The validation dataset was used for model selection (i.e. termination of 

training) and choosing the hyperparameters values (dropout ratios). For this purpose, the 

training epoch was treated as a hyperparameter, and the model with the lowest validation 

loss was chosen among the first 2000 epochs (Reitermanova, 2010). Dropout ratio was also 

treated as a hyperparameter for each model (ResNet, Baseline and CNN regressor); and was 

manually chosen (in the range from 0 to 1) such that the validation loss is minimal. The 

test dataset (10%) was held out for the evaluation of the performance of the final models 

(Reitermanova, 2010) as reported in Table 1.

In training the models, the Adam optimizer’s hyperparameters (epsilon, learning rate, and 

gradient clipping) remained constant. The dropout ratio for each type of regressor was 

manually chosen from a range from 0 to 1. The optimal dropout ratio was chosen such that 

the validation loss becomes minimal. In our experience, in the fully connected model, a 

small dropout ratio (ranging from 0 to 0.1) outperformed the models with higher drop out 

ratio value >0.1. In the ResNet style regressor, we did not observe a significant improvement 

between different values of dropout ratios (validation loss varying from 10 to 17 mmHg2). 

In the CNN regressor, dropout ratios ranging from 0 to 0.5 were found to have a validation 

loss ranging from 7 to 11 mmHg2. Adapting non-zero dropout ratios did not reduce the 

validation loss, greater than 20%, in comparison with a model without a dropout layer.

5. Performance

Using the criterion of the lowest cross-validation loss (Stone, 1974), models were selected. 

Subsequently, the test dataset was used for the evaluation of the three chosen models named 

baseline, Res-Net style and CNN regressors. The test dataset was used only once, which 

was in the end of the model section. Furthermore, the nonzero (L-2) minimum distance 

between the datapoints (Fig. 4a) ensured that the feature vectors in the validation/training 

datasets are not repeated in the test dataset. Subsequently, the performance of the baseline 

model, ResNet, and CNN regression models on the test datasets are compared in Fig. 8. In 

Fig. 8, the pressure predicted by the three models for the test feature vectors are plotted 

as a function of the ground truth pressure labels. As mentioned earlier the total number 

of 320 datapoints are present in the test dataset and this figure. In Fig. 8a,b the predicted 

pressure is plotted for a wide range of the actual pressure ranging from 3 to 158 mmHg. 

Here the baseline, Res-Net style, and CNN regressors are presented by horizontal blue 

line, vertical red line, and green circles respectively. Moreover the ideal prediction (ground 

truth) is presented by large grey circles. For comparison with a conventional pressure 

prediction method, error bars (grey long vertical lines) are shown (Eq. (2)). These error 

bar lines estimate the lower bound of error in the pressure prediction if one only uses the 

change of resonant frequencies at 8.3 MHz (Fig. 5 and Eq. (2)). We note that in practice 

these error bars are the best-case scenario since the pressure/frequency plot is not linear 

beyond 100 mmHg (Fig. 5). The regressors’ average mean square error is evaluated for the 

training, validation, and test datasets in Table 1. Here the average mean square error for the 
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Baseline, ResNet-style, and CNN networks are presented. The accuracy (95% confidence) 

is calculated based on the MSE for the testing dataset and reported to be ±6, ±6, ±9 

mmHg for the CNN, ResNet-Style, and baseline regressors, respectively. These error bars 

are significantly smaller than the uncertainty expected from the aforementioned conventional 

method for measurement of pressure (~>±40 mmHg). This comparison demonstrates that 

use of NN can be highly advantageous for calculation of pressure from the acoustic signal 

reflected from the pressure transducers/sensors.

The regression network’s provides a reasonable level of accuracy (±6 mmHg) given that 

in intracardiac pressure measurement estimate, have a typical variation ranging from 1 to 

4 mmHg (Abraham et al., 2011). This accuracy is also close to the reported accuracy of 

pressure measurement using backscattered acoustic signals (±2.5 mmHg Forsberg et al., 

2005) in microbubbles. We note that the reported accuracy here does not outperform the 

best achievement in the reports (e.g. ±2.5 mmHg Forsberg et al., 2005). However, the 

success of these works is also attributed to optimizing the measurement tools, dimensions 

of the resonators, and mechanics/materials of these resonators (i.e., coating with protein or 

polymers), which are not the focus of this study. On the other hand, rather than optimizing 

all aspects of the acoustic transponder/sensors, we assess the utility of an algorithm that 

leverages neural networks. Our comparison demonstrates that utility of neural networks 

has potentials to improve the state-of-art accuracy of measurements using fully acoustic 

sensor/devices if it is combined with optimizing the transponders’ materials/dimensions, the 

readout systems, or acoustic pressures.

6. Conclusion

Neural networks offer a complete method for analyzing complex data in the reflection 

from a fully acoustic transponder with stationary transducers. In our setup, they offered 

an accuracy of about 4% of the full range of pressure, in aqueous media, with a 

minimal need for the intervention of the user. They significantly outperform a conventional 

signal processing method that only considers the shift to a single resonant peak, in our 

experiment. Our work also suggests that both deep residual networks and convolution 

networks outperform fully connected networks for regression of the pressure. They also 

suggest the need for further studies on utilizing neural networks in inferring pressures from 

acoustic transponders/sensors in lossy environments and those with significant motions/

misalignments.
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Fig. 1. 
An experimental setup stores the ultrasound reflection signal from acoustic resonators inside 

a pressure chamber at randomly chosen pressures. The setup includes a pressure regulator, a 

pressure chamber, ultrasound transducer, oscilloscope, and a computer.
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Fig. 2. 
A measurement test setup for precision characterization film-like resonator’s acoustic 

properties at various pressures.
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Fig. 3. 
The FFT of the ultrasound reflection (a) dips significantly shift by the change in pressure (3, 

60, 120, and 145 mmHg), (b) the shift of the resonant frequency as a result of changes in 

pressure is highlighted by arrows (dip ~8.5 MHz and 9.5 MHz). .
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Fig. 4. 
(a) The histogram for the normalized Euclidean distance between every possible pair of 

feature vectors shows that none of the datapoints are identical. (b) the histogram for the 

measured pressure ranges from 3 to 158 mmHg, which shows almost a uniform distribution 

of pressure.
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Fig. 5. 
The center of the frequency dip in the FFT of the ultrasound reflection signal (referring to 

the center frequency of the dip in Fig. 3b), significantly changes with the change of pressure. 

The error bars are calculated based on the standard deviation of the measurements (center 

frequency of dips at various pressures) that fall within each interval of pressures.
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Fig. 6. 
The pressure difference between the transducer attached to the pressure chamber (Pmeasured) 

and that of the pressure regulator (P set) as a function of the setting pressure (at the pressure 

regulator; P set). The small variation is attributed to the water column on top of the transducer 

and the noise is attributed to the inherent inaccuracy of the transducer.
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Fig. 7. 
Training and validation loss (average Mean Square Error) for CNN (top), ResNet style 

(middle), and baseline regressors (bottom).
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Fig. 8. 
Predicted data as a function of the actual pressure in the test dataset plotted for CNN, 

Resnet-Style, and a baseline regressor. (a) The behavior is following a line in a wide range 

from 3 to 158 mmHg for all three models. The error bar shows the minimum error for 

prediction of pressure, if only the shift of the resonant frequency is considered based on Fig. 

5. (b) At lower pressure the deviation from a linear relationship is more consequential for all 

three models because of the large percentage of error.
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Table 1:

The performance of three networks, named baseline ResNet-Style and CNN regressors, on the training (80%), 

test (10%), and validation (10%) dataset. The test dataset was used only for evaluation of the selected model 

while the validation dataset was used for the model selection and choosing hyperparameters (10%). The 

reported losses are associated with the same hyperparameters for each type of regressor.

Architecture Training MSE Validation MSE Test MSE Accuracy (95%)

Baseline DenseNet 17 (mmHg2) 19 (mmHg2) 19 (mmHg2) ± 9 mmHg

ResNet Style 7 (mmHg2) 10 (mmHg2) 10 (mmHg2) ± 6 mmHg

CNN Style 4 (mmHg2) 8 (mmHg2) 9(mmHg2) ± 6 mmHg

Resonant Frequency Shifta > ±40 mmHg

a
If the center of dip frequency at 8.5 MHz is used for inferring pressure (Figs. 3b, 5). Measurement of pressures beyond 100 mmHg results in a 

greater uncertainty (Fig. 5) due to the nonlinearity.
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