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Abstract: MicroRNAs (miRNAs) are small non-coding and highly conserved RNAs that act

in biological processes including cell proliferation, invasion, apoptosis, metabolism, signal

transduction, and tumorigenesis. The previously identified miRNA-326 (miR-326) has been

reported to participate in cellular apoptosis, tumor growth, cell invasion, embryonic develop-

ment, immunomodulation, chemotherapy resistance, and oncogenesis. This review presents

a detailed overview of what is known about the effects of miR-326 on cell invasion, metastasis,

drug resistance, proliferation, apoptosis, and its involvement in signaling pathways.
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Introduction
With short sequence length, non-coding and endogenous microRNAs (miRNAs)

can regulate gene expression by binding to the 3ʹ untranslated region of target

messenger RNAs (mRNAs), thus suppressing translation or degradation of the

mRNA. MiRNAs participate in several significant biological processes, including

cell differentiation, proliferation, apoptosis, and host response against viral

infections.1–3 All known or assumed protein-coding genes are reportedly expressed

only in a small proportion of the entire genome, and miRNAs evidently constitute

approximately 1–2% of all genes in worms, flies, and mammals.2 A single miRNA

can regulate expression of many genes.4 Overall, gene expression that is regulated

by miRNA may significantly contribute to overall regulation.

The goal of this review was to describe miRNA-326 (miR-326) activity in tumors,

as miR-326 is downregulated in most tumors. Low expression of miR-326 is drama-

tically related with unfavorable prognosis, tumor development, metastasis, and pro-

gression. For example, downregulated miR-326 is positively correlated with the risk of

metastasis in patients with gastric cancer, prostatic carcinoma, esophageal squamous

cell carcinoma, and non-small lung cancer (NSCLC).5–8 In this review, we summarize

the promising effects of miR-326 on cell invasion, metastasis, drug resistance, prolif-

eration, apoptosis, and its involvement in signaling pathways.

miR-326 in Invasion and Metastasis
Tumor invasion and metastasis processes are influenced by multiple factors. The

progress of early tumor development into metastasis includes invading from the

extracellular matrix to the stromal layers and then transferring to distant organs via

infiltration from blood vessels to remote parenchymal tissues.9,10 Studies have shown

that miR-326 is involved in tumor cell invasion and metastasis in NSCLC, gastric

cancer, breast cancer (BC), cervical cancer, osteosarcoma, glioma, colorectal cancer,
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endometrial cancer, prostatic carcinoma, and esophageal

squamous cell carcinoma.5,6,11–18

In NSCLC, upregulated expression of miR-326 limits

tumor metastasis by targeting a disintegrin and metallopro-

tease 17 (Adam17), nucleosome-binding protein 1 (NSBP1),

and paired-like homeobox 2a (Phox2a).11,19,20 As a member

of the tumor necrosis factor converting enzyme family,

Adam17 is an indispensable regulator of tumor

metastasis.21,22 Adam17 can adjust the expression of epider-

mal growth factor receptor by activating Notch1.23 Studies

found that miR-326 can inhibit NSCLC cell invasion, possi-

bly by downregulating Adam17 expression level.19,23

NSBP1 can regulate gene transcription by binding chroma-

tin. It is distinctly expressed in various tissues and is

a potential oncogene in diverse tumors.24,25 Li et al reported

that miR-326 hampered NSCLC cell invasion via inhibiting

the protein level of NSBP1.20 Phox2a essentiality was

demonstrated in neurogenesis and in recent years its role in

cancer has been described. Wang et al found that miR-326

slowed NSCLC metastasis by targeting Phox2a.11 In gastric

cancer, low expression of miR-326 was associated with

clinical stage, tumor depth, lymph nodes, and distant metas-

tasis. Survival analysis indicated that low expression of miR-

326 was a prognostic factor for poor outcome for gastric

cancer patients. Downregulation of miR-326 promoted

metastasis by targeting Fascin 1 (FSCN1).6 As an actin-

binding protein, FSCN1 is often upregulated in different

cancers, and overexpression of FSCN1 promotes tumor inva-

sion and metastasis.26–28 In BC, miR-326 was reported to

repress cell metastasis by targeting B7-H3, an immunomo-

dulin belonging to the B7 family. B7-H3 is highly expressed

in various tumors and is correlated with adverse

prognosis.29,30 In cervical cancer, restoration of ETS domain-

containing protein (ELK1) was reported to eliminate cell

invasion due to miR-326 mimics, indicating that miR-326

suppressed cell invasion and metastasis by targeting ELK1.31

As a member of the ETS oncogene family, ELK1 affects

cytoskeleton transformation and tumor invasion.32,33 As

a conserved protein, nin one binding 1 (NOB1) affects

RNA metabolism and protease function.34,35 In osteosar-

coma, glioma and colorectal cancer, miR-326 can target

NOB1 to inhibit metastasis.16,36,37 TWIST1, a transcription

factor, affects tumorigenesis and tumor progression, espe-

cially in metastasis.38 Analysis from data in TargetScan and

MicroRNA.org identified TWIST1 as a potential target of

miR-326, and luciferase reporter assays were consistent

with the targeting of TWIST1 by miR-326. Forced expres-

sion of miR-326 significantly decreased the levels of

TWIST1.39,40 In endometrial cancer, in vitro assays revealed

that knockdown of TWIST1 inhibited tumor cell invasion.17

In prostatic carcinoma, miR-326 functioned as a tumor sup-

pressor by negatively regulating Mucin1 (MUC1). Previous

studies indicated that MUC1 is involved in the regulation

processes of several specific miRNAs on tumor cell prolif-

eration and invasion.41 Furthermore, the miR-326/MUC1

axis inhibits prostatic carcinoma cell invasion partly via

suppressing c-Jun amino terminal kinase (JNK) signaling

activation.5 In esophageal squamous cell carcinoma, Su

et al reported that vascular endothelial growth factor-C

reduced miR-326 expression and increased Src substrate

cortactin (CTTN) protein level and invasive abilities, sug-

gesting vascular endothelial growth factor-C upregulated

CTTN expression through Src-mediated downregulation of

miR-326.18 Additionally, the expression of miR-326 was

correlated with poor prognosis in esophageal squamous cell

carcinoma patients.8

Thus, several studies have shown that miR-326 plays

a role in inhibiting invasion and metastasis in a variety of

tumor cells, but the specific mechanism has not been

elucidated. More in-depth experiments should be per-

formed to identify appropriate targets to tackle metastatic

issue.

miR-326 in Cell Proliferation and

Apoptosis
Tumor cells can exert complex effects on apoptosis and

proliferation of malignant tumor cells.42 Numerous genes

may be involved in the regulation by miR-326 on cell

apoptosis and proliferation, such as CyclinD1 (CCND1),

fibroblast growth factor 1 (FGF1), son of sevenless homo-

log 1 (SOS1), and neuroblastoma RAS viral oncogene

homolog (NRAS).7,43,44

As a pivotal cell cycle regulatory protein, CCND1 expres-

sion and cellular localization varies in human tumor cells. It is

a gate-keeping protein that regulates conversion through the

cell cycle restriction point between the G1 phase and the

S phase. Consequently, changes in CCND1 gene amplifica-

tion, posttranscriptional or posttranslational modifications,

rearrangements, and variant polymorphisms can give rise

to abnormal protein expression and increase risk of

tumorigenesis.45,46 In NSCLC, miR-326 may inhibit tumor

proliferation by targeting CCND1. Sun et al found that miR-

326 could suppress cyclin D1, thus facilitating the expression

level of p57 and p21, which might explain the proliferation-

inhibition property of miR-326.7 Kaplan–Meier survival
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analysis revealed that patients with low expression levels of

miR-326 had shorter overall survival compared to patients

with high expression levels of miR-326. These results demon-

strated that down-regulation of miR-326 was associated with

poor prognosis in NSCLC. As a member of the fibroblast

family, FGF1 can facilitate the repair of damaged blood ves-

sels and FGF family members can promote cancer cell growth

and intensify chemotherapy resistance. FGF1 is overexpressed

in a variety of tumors includingNSCLC, ovarian, prostate, and

breast cancers.47,48 Studies have shown that miR-326

restrained FGF1 expression to modulate cell proliferation

and apoptosis.43 FGF family members target the fibroblast

growth factor receptor (FGFR) to enhance tumor cell prolif-

eration and invasion by controlling endothelial cells and peri-

cytes in tumors.49,50 The signaling pathways downstream of

FGFR, i.e. mitogen-activated protein kinase (MAPK), phos-

phatidylinositol 3-kinase (PI3K), Ras, and JNK pathways, can

promote cancer cell proliferation and distant dissemination,

with participation in every step from tumorigenesis to

oncogenesis.51,52 In NSCLC, FGF1 increases the phosphory-

lation level of FGFR to activate PI3K and JNK, so decreased

FGF1 regulated by miR-326 upregulation may inhibit the

malignant behaviors of glioma cells by weakening the activ-

ities of PI3K/Protein kinase B (PI3K/AKT) andMAPK kinase

(MEK) 1/2 pathways.53,54 As a dual guanine nucleotide

exchange factor for Ras and Rac1, SOS1 can convert inactive

Ras-guanosine diphosphate to active status.55 EGFR can reg-

ulate Ras to affect tumor cell apoptosis, metastasis, and

tumorigenesis.56,57 Additionally, nerve growth factor (NGF)

can regulate cell proliferation through SOS1 stimulation and

Ras signaling. NGF may promote endothelial cell migration

and growth and influence cancerous angiogenesis.58 NRAS,

which belongs to the Ras family, is widely expressed in

diverse cells, and NRAS activation may participate in SOS1

stimulation and be related to NGF and EGFR signaling.

According to a previous study, SOS1 and NRAS are abundant

in the NGF and EGFR signaling pathways.59 Therefore, miR-

326 might regulate tumor cell proliferation and angiogenesis

through the NGF and EGFR signaling pathways. However,

the detailed mechanisms underlying the regulation of these

targeted genes by miR-326 have not been elaborated.

Involvement of miR-326 in Signaling

Pathways
Hedgehog/Gli (Hh/Gli) Signaling Pathway

Changes in the Hh/Gli pathway can occur through both non-

canonical and canonical mechanisms.60 The activation of

the canonical Hh/Gli pathway is controlled by the receptor

Patched that inhibits the movement of Smoothened.61 Sonic

hedgehog (SHH) protein ligand can bind to Patched, thus

moderating Smoothened inhibition, allowing activation of

Hh/Gli that leads to Gli2 transcription factor activation and

movement to the nucleus.62 Gli2 can promote the transcrip-

tion activity of Hh/Gli target genes, including Patched 1 and

Gli1. Additionally, focal deletions, mutations, or gene

amplifications that encode pathway components like Gli2,

Smoothened, and Patched 1 have been shown to be involved

in crucial oncogenic events in SHH-driven medulloblas-

toma (SHH-MB).63–66 Other mechanisms of activation of

non-canonical Hh/Gli pathways include p53/17p gene dele-

tion, aberrant PI3K/Akt/S6 activation, histone methylation,

and post-transcriptional modification of Gli1.60,67–69

Additionally, miRNAs are crucial regulators of Hh/Gli

signaling.70 Suppressed expression of miR-326 and its

host gene Arrestin B1 are characteristics of cancer-stem

cells derived from SHH-MB. Overexpression of miR-326

and Arrestin B1 can inhibit the Hh/Gli pathway by targeting

numerous activator components of this signaling pathway

that Gli1, Gli2, and Smoothened require for cancer-stem

cells activity.71

PI3K/Akt Signaling Pathway

As part of the Receptor Tyrosine Kinases signaling pathway,

the PI3 kinase pathway has a significant function in stimulat-

ing tumor cell growth and proliferation. The members of this

pathway alter the progress of cell malignant transformation

through active participation in cellular biological activities

such as cell differentiation, proliferation, cell migration, inva-

sion, trafficking, and glucose homeostasis.72,73 Preternatural

signaling via the PI3 kinase pathway leads to a change in the

expression level of transcription factors. Activation of the

PI3 kinase pathway is characteristic of malignancies.74

Dimerization and autophosphorylation occur due to complex-

ing of growth factor ligands with membrane receptor tyrosine

kinases, and the PI3 kinase is activated by catalytic conversion

of phosphatidylinositol (3,4)-bisphosphate lipids to phospha-

tidylinositol (3,4,5)-trisphosphate.75 PKB/Akt exhibits high

affinity to phosphatidylinositol (3,4,5)-trisphosphate, allowing

its infiltration of the plasma membrane. Phosphorylation of

T308 by phosphoinositide-dependent kinase 1 initiates excita-

tion, which is then completed by phosphorylation on the S473

residue, possibly due to the action of diverse proteins, such as

mTOR.76 Phosphorylated Akt then can induce downstream

pathways that control cell proliferation and survival, including

the phosphorylation and activation of MDM2 E3 ubiquitin
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ligase transcription factor, NF-kB, and mTOR kinase, and the

inactivation of pro-apoptotic protein BAD and FOXO1 tran-

scription factor to promote tumorigenesis.77,78 In addition

to the protein coding genes, other mechanisms like

aberrant activity of the PI3K pathway may affect miRNAs

whose expression levels are influenced by the PI3 kinase

signaling.79 For example, miR-326 expression level is

restrained by abnormal PI3 kinase signaling, resulting in

downregulation in glioblastoma.15,80

RAS/ERK Signaling Pathway

In the RAS/extracellular signal-regulated kinase (RAS/

ERK) pathway, Ras-family guanosine triphosphatases iso-

forms bind to RAF-family serine/threonine kinases, RAFs

then interact with the dual-specificity MEK1 and MEK2,

and then the MEKs together with MAPKs ERK1 and ERK2

participate in signaling for pivotal biological activities,

including cell survival, proliferation, and differentiation

leading to the development of carcinogenesis.56 MEK can

phosphorylate ERK1 and ERK2 (ERKs), which promotes

the formation of homodimers, which are more stable than

the labile heterodimers. The function of the dimerized

ERKs has not yet been determined, and may affect diverse

cell processes.81 Dimerization can regulate ERK activity

levels depending on the mono- or bi-phosphorylated state of

the monomers.82 Some studies have linked the phosphor-

ylation state with the subcellular distribution of ERK.

Dimerization was proposed as essential for ERK’s nuclear

translocation because mutations that alter dimerization of

ERK2 reduced nuclear access.83,84 However, the activities

of ERKs to dimerize and then interact with nuclear pore

proteins via the same structural motifs have not been clearly

separated. Recent analysis showed that ERK dimers were

detected predominantly in the cytoplasm, together with

scaffold proteins that serve as ERK-dimerization platforms

that allow ERKs to find their cytoplasmic substrates. ERK

dimerization is also indispensable for cellular transforma-

tion and the transmission of tumorigenic signals by RAS/

ERK pathway oncogenes.85–87 Kang et al showed that miR-

326 plays tumor-suppressive roles in melanoma by directly

regulating KRAS and indirectly regulating the ERK signal-

ing pathway.88

Effects of miR-326 on Drug Resistance
Chemotherapy is widely used to treat cancer, but various

processes can prevent the effective killing of cancer cells

by anticancer drugs, such as diversification in absorption,

anomalous metabolism, and multidrug resistance (MDR).

MDR presents a significant problem in chemotherapy,

especially for patients who cannot sustain surgical resec-

tion or radiation therapy.89,90 Studies have reported that

miR-326 is involved in the MDR mechanism of hepato-

cellular carcinoma and BC, with two genes reported to be

involved, ABCC1 and Bcl-xL.12,91

ABCC1 is a key efflux transporter and a member of the

ABCC family, and can affect the absorption of drugs by cells.

Suppression of ABCC1 expression has been linked to

reduced tumor progression and chemotherapy resistance.92,93

Adriamycin (ADM) is an effective and widely used drug for

hepatocellular carcinoma and BC chemotherapy.94,95 Ma et al

found that miR-326 regulates the expression of the ABCC1

gene and ABCC1-mediated ADM-resistance in hepatocellular

carcinoma. They transfected miR-326 mimic or negative con-

trol into HepG2 cells and then determined the cell survival rate

byMTTassay. The result showed that transfection of miR-326

mimic significantly reduced cell viability compared with the

negative control and mock transfection, and suggesting the

underlying mechanism might be the blocking of MDR-related

genes.91 VP-16, a semi-synthetic derivative of podophyllo-

toxin, is one of the most effective antineoplastic agents used

routinely in first-line combination chemotherapy treatment of

small cell lung cancer, testicular cancer, and non-Hodgkin’s

lymphoma. Liang et al found that miR-326 could attenuate the

expression of ABCC1 and sensitize BC cells to ADM and

VP-16. They transfected miR-326 mimic into MCF-7/VP-16-

resistant (MCF-7/VP) cells and determined the sensitivity of

these mimic-transfected cells to VP-16 and ADM.MTTassay

was performed with increasing concentrations of VP-16 and

ADM with 48h treatment. The IC50 of MCF-7/VP cells resis-

tant to VP-16 prior to transfection of miR-326 was 15.3 times

higher than that of their parental cells, MCF-7. The IC50 of

miR-326-transfected MCF-7/VP cells to VP-16 was 7.1 times

lower than MCF-7/VP cells transfected with control ADM,

and only 2.1 times higher than the MCF-7 parental cells.

Transfection of MCF-7/VP with miR-326 also resulted in

decreased resistance to ADM. The resistance of MCF-7/VP

prior to transfection of miR-326 to ADMwas 20 times higher

than the MCF-7 parental cells. After MCF-7/VP cells were

transfected with miR-326, their IC50 to ADM was 10 times

lower than that of MCF-7/VP cells transfected with control

oligonucleotide and only 1.9 times higher than the MCF-7

parental cells.12 However, the details of the mechanism have

not been determined. Another in vivo study also transfected

miR-326 mimic or negative controls into HepG2 cells and

similarly found significantly reduced cell viability compared

with negative control cells and mock-transfected cells. They
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found that miR-326 altered the protein expression of Bcl-xl by

luciferase assay, suggesting that miR-326 might sensitize

hepatocellular carcinoma cells to 5-Fluorouracil by targeting

Bcl-xL, though the detailed mechanism remains unclear.96

Bcl-xL belongs to the Bcl-2 family, which contains pro-apop-

totic and anti-apoptotic (Bcl-2 and Bcl-xL) members.97,98

An effective and widely used chemotherapeutic agent,

5-Fluorouracil is applied in treatment of colorectal cancer

and other tumors including pancreatic cancer, esophageal

cancer, gastric cancer, hepatic cancer, and BC. This drug

disturbs DNA replication by replacing thymidine with fluori-

nated nucleotides that are incorporated into DNA, thus causing

cell death.99,100

Conclusion
We discussed the potential roles of miR-326 in cell pro-

liferation, apoptosis, migration, invasion, metastasis, and

signaling pathways in diverse cancers. There is significant

evidence that miR-326 can act as a tumor suppressor gene

and is associated with tumor prognosis in many cancer

types. We may be able to artificially inhibit tumor growth

and metastasis using miR-326 mimics or synthetic agents,

or to predict the prognosis of tumor patients by detecting

the expression level of miR-326. Overall, we need to

further explore the mechanisms by which miR-326 affects

tumor suppression and study the molecules and pathways

that interact with miR-326 to understand the roles of this

RNA in cancer and to develop gene therapy strategies for

clinical treatment.
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