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Objective: Incidence of both Type 2 diabetes mellitus (T2DM) and hepatocellular carcinoma (HCC) are
rapidly increasing worldwide. One of the leading causes of HCC is hepatitis C virus (HCV), which is a
resource of blood-borne viral infection. HCV increases the risk for HCC probably by promoting fibrosis
and cirrhosis. Association among T2DM and HCV related HCC remains significant, indicating that such
association is clinically reliable and robust. Lawson was the first who uncovered HCC in person suffered
from T2DM. Until now, genetic association between HCV related HCC and T2DM is poorly known. Current
work was designed to figure out the molecular mechanisms of both diseases by identifying the hub genes
and therapeutic drugs using integrated bioinformatics analysis.
Methods: Four microarray datasets were downloaded from GEO database and analyzed using R in order
to obtain different expressed genes (DEGs). Protein–protein interaction (PPI) networks was constructed
using STRING tool and visualized by Cytoscape. Moreover, hub genes were identified on the basis of their
degree of connectivity. Finally, Networkanalyst and DGIdb were used for the identification of transcrip-
tion factors (TFs) and selection of candidate drugs, respectively.
Results: A total of 53 DEGs were identified, of which 41 were upregulated genes and 12 were downreg-
ulated genes. PPI network obtained from STRING were subjected to Cytoscape plugin cytoHubba, and top
10 genes (AURKA, JUN, AR, MELK, NCOA2, CENPF, NCAPG, PCK1, RAD51AP1, and GTSE1) were chosen as
the target hub genes based on the highest degree of connectivity. Furthermore, 47 drugs of AURKA, JUN,
AR, MELK, and NCOA2 were found having therapeutic potential to treat HCV-HCC in patients with T2DM.
O, Gene
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Conclusion: This study updates the information and yield a new perspective in context of understanding
the pathogenesis and development of HCV related HCC in affected persons with T2DM. In
vivo and in vitro investigation of hub genes and pathway interaction is essential to delineate the specific
roles of the novel hub genes, which may help to reveal the genetic association between HCV-HCC and
T2DM. In future, hub genes along with their candidate drugs might be capable of improving the person-
alized detection and therapies for both diseases.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Type 2 diabetes mellitus (T2DM) is the third main chronic meta-
bolic disorder, which threatens public healthworldwide. It is a com-
plex multifactorial disease caused by environmental and genetic
factors (Chatterjee et al., 2017, Dong et al., 2019). T2DM is character-
ized by insulin deficiency, and hyperglycemia. However, it is not
only related to cardiovascular and nephropathy diseases but also
related to several liver diseases (Olokoba et al., 2012). From 2015,
it was found that about 90.5% of diabetes cases is a result of diabetes
mellitus type II and is more prevalent in under-developing and
developing countries presenting more risk to certain ethnic groups
at global level (Leahy, 2005, Sharma et al., 2016, Chen et al., 2012).
Moreover, it is more frequently diagnosed in childrenwith high rate
of obesity across the world (Zheng et al., 2018).

The most common and primary type of liver cancer is hepato-
cellular carcinoma (HCC) which usually occurs in people having
acute diseased conditions such as cirrhosis, hepatitis A or C (Di
Bisceglie et al., 1988, McGlynn et al., 2021, Bréchot et al., 2000,
Ozakyol, 2017). One of the leading causes of HCC is hepatitis C
virus (HCV) which is a resource of blood-borne viral infection (de
Oliveria Andrade et al., 2009). Slew of studies proved a strong asso-
ciation among HCC and HCV. HCV increases the risk for HCC prob-
ably by promoting fibrosis and cirrhosis; virtually all HCV-related
HCC cases occur among patients with cirrhosis (El-Serag, 2012).

In 1987, Lawson elaborated a relation in between HCC and DM
which is the sixth most common type of cancer cell occurring in
human’s accounting about 12% of human death (El-Serag et al.,
2004). Observational studies from Asia, Europe and America sup-
ported the fact that there exists a relationship in between DM
and HCC risk factors presented as independent factors (El–Serag
et al., 2006). It is related to increased proliferation effects as in case
of hyperglycemia and inflammatory effects of obesity. Diabetes has
proved to be condition and is associated with various types of
malignancies such as increased occurrence of non-fatty liger dis-
eases (Lawson et al., 1986). So, hepatitis C infection, consumption
of alcohol and diabetes mellitus are strong etiologic factors for
HCC in future (Hassan et al., 2002). Hence there exists a strong pos-
itive relationship between T2DM and development of risk associ-
ated with HCC (Donadon et al., 2008).

The discovery of potential biomarkers that can halt the patho-
physiology of the disease and can act as a virtual shortcut, will con-
sidered as the miracle of the current era. Mind boggling potential
benefits of molecular biomarkers offers multiple innovative per-
spective to improve diagnostic as well as treatment option. Now
a days, the use of bioinformatics is getting popular across all facets
of life sciences. Recently, it has been seen as an outbreak of emerg-
ing sequencing technologies that enable researchers to make
ground-breaking discoveries in the domain of computational biol-
ogy. In recent decades, bioinformatics along with microarray tech-
nologies has paved the way of researchers to identify disease
related genes involved in the pathogenesis of HCC in persons with
T2DM. Various bioinformatics related researches on plenty of
human diseases had proven reliable and persuasive, so it implies
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that integrated bioinformatics analysis can contribute to evaluate
the complex molecular mechanism underlying the development
of HCC in patient suffering from T2DM.

No study is conducted yet to find the genetic association
between HCV related HCC and T2DM, even that no sufficient evi-
dence is present yet to prove the existence of disease related genes,
and their involvement in the pathogenesis and development of
HCV-HCC in persons with T2DM. To tackle this issue, we conducted
integrated bioinformatics approaches to figure out the disease
related functional genes as problem-solving negotiators to switch
off the progression of both diseases. Moreover, investigation of
drug-genes interactions in the present work can contribute to the
discovery of therapeutic candidates for drug repurposing.

2. Materials and methods

2.1. Data sources

NCBI-GEO database is publicly accessible database that contains
gene expression datasets (Barrett et al., 2005). Three gene expres-
sion profile datasets of HCV related hepatocellular carcinoma
(GSE62232, GSE69715, GSE107170) and one dataset of T2DM
(GSE15653) were retrieved from GEO database (https://www.
ncbi.nlm.nih.gov/geo/). Detailed information of microarray data-
sets was provided in Table 1. Gene expression profiles were set
accordingly such as (1) Tissues samples collected from diseased
liver tissues and normal liver tissues, (2) number of samples were
obtained for each dataset were more than 3.

2.2. Identification of Differential Expressed genes (DEGs)

Differentially Expressed Genes (DEGs) for both diseases were
identified separately using the NCBI- GEO2R, which is an interac-
tive tool used to analyze and compare the data of two or more dif-
ferent sample groups under the similar experimental conditions
(Barrett et al., 2012). Genes that satisfy the criteria of |log fold
change (FC)| > 1.0 and adjusted P-value < 0.05 were distinguished
as DEGs. Genes showing up-regulation or down-regulation in both
HCC-HCV and T2DMwere identified by the Venn diagram web tool

(http://bioinfogp.cnb.csic.es/tools/venny/).

2.3. Analysis of DEGs at functional level

Gene Ontology (GO) enrichment analysis and KEGG pathways
analysis were conducted for the predictions of impending func-
tions of the hub genes using the DAVID (Database for Annotation,
Visualization, and Integrated Discovery) online tool (Sherman
et al., 2007). DEGs were subjected to DAVID for the prediction of
the function of DEGs at three level: Molecular function (MF), Bio-
logical process (BP), and Cellular component (CC). Bubble maps
were generated for the CC, MF, BP and KEGG pathways by employ-
ing the ggPlot2 (R package) based on statistically significant P-
value (P < 0.05).
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Table 1
List of datasets used in this study.

Datasets Disease Platform Control Affected sample

GSE62232 HCV related hepatocellular carcinoma GPL570 10 9 Liver
GSE69715 HCV related hepatocellular carcinoma GPL570 66 37 Liver
GSE107170 HCV related hepatocellular carcinoma GPL570 31 44 Liver
GSE15653 Diabetes mellitus GPL96 4 4 Liver

Table 2
A total 53 DEGs were identified of which 41 were upregulated and 12 were
downregulated genes.

Differential Expressed Genes
(DEGs)

Name of the genes

Upregulated genes (41) TPR, SQLE, SPINK1, MELK, CENPF, NCAPG,
AURKA, DTNA, TRPM3, CLGN, IGF2BP3,
SULT4A1, F5, RUNX1, BAX, PDCD2, GALNT10,
SSR3, RCN2, RABIF, RAD51AP1, LUC7L3,
GPD2, TPGS2, NCOA2, GTSE1, GPX2, NUDT3,
CD58, DLAT, ZBTB38, SMAD5, MLEC, HIC2,
CXCL11, GNAL, FADS1, KDM5B, POGZ, AR,
CYP3A4

Downregulated genes (12) PCK1, DUSP1, ALDOB, SPATA6, JUN, SGCD,
TM4SF1, MNDA, PLIN2, CXCL2, IGFBP1,
LRRC8B
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2.4. PPI network construction and hub genes identification

Interactive network of the common DEGs among all datasets
were constructed through an online interactive search tool STRING
(https://string-db.org/) with interactions score > 0.5. PPI network
was further visualized and analyzed through the Cytoscape version
3.8.2 (Demchak et al., 2014). Molecular Complex Detection
(MCODE) plugin from Cytoscape was utilized for distinguishing
the module that best represent the clusters of DEGs. In MCODE,
the modules were considered significant having number of
nodes � 3 and the score � 3. Further, the resulted three modules
were subjected to DAVID for the KEGG pathway analysis. Lastly,
Top 10 hub genes among DEGs were identified using the Cyto-
hubba plugin in Cytoscape based on highest degree of connectivity.

2.5. TF-Gene interaction network

Networkanalyst database was used to explore the human tran-
scription factors (TFs) of the related hub genes (Xia et al., 2014).
Networkanalyst database integrate three databases named JASPAR,
ENCODE and ChEA. In the current analysis, ChIP Enrichment Anal-
ysis (ChEA) database was used to find the target TFs of hub genes
(Xia et al., 2015). Moreover, Cytoscape tool was used to visualize
the interaction network among TFs and hub genes.

2.6. Drug-gene interaction

Using Drug gene interaction database (DGIdb), drugs were cho-
sen based on hub genes that acted as enthralling and promising
target (Griffith et al., 2013). Only drugs that had been approved
by the Food and Drug Administration and having DrugBank source
were included in this final drug list.
3. Results

3.1. Identification of DEGs

In the present study, four microarray datasets (GSE62232,
GSE69715, GSE107170, and GSE15653) were obtained from GEO
database and found the DEGs using GEO2R tool. The resulted DEGs
of each dataset were subjected to Venn diagrams for the identifica-
tion of overlapped genes among four microarray datasets. A total of
53 overlapped genes were identified, 41 upregulated and 12 down-
regulated genes (Table 2).

3.2. Analysis of DEGs at functional level

GO enrichment and KEGG pathways analysis of DEGs were per-
formed to analyze the gene function in terms of biological pro-
cesses, cellular components, and molecular function as well as
their associated pathways. GO enrichment analysis of top 10 signif-
icantly enriched terms showed that in BP category, the genes
involved are concerned with negative regulation of transcription,
DNA-templated, aging, oxidation–reduction process, positive regu-
lation of apoptotic process, cell division, and cell–cell signaling. In
terms of CC, the genes were enriched in nuclear envelope, endo-
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plasmic reticulum membrane, nucleus, pronucleus, and cytosol.
For MF, category the genes were mainly concentrated in the tran-
scription factor binding, enzyme binding, protein binding, and
chromatin binding. KEGG enrichment pathway analysis revealed
that genes were significantly enriched in glycolysis/gluconeogene-
sis, biosynthesis of antibiotics, and pathways in cancer.

3.3. Construction of PPI network and the analysis of DEGs

PPI network of DEGs obtained from STRING (Fig. 1) were sub-
jected to the MCODE plugin of cytoscape in order to analyze the
significant modules. From these modules, the top two functional
clusters of modules were selected based on the cutoff criteria of
node � 3 and the score is � 3 (Table 3). KEGG pathway analysis
of the selected modules revealed that the genes glycolysis/gluco-
neogenesis, biosynthesis of antibiotics, citrate cycle, pyruvate
metabolism, and carbon metabolism (Fig. 2).

3.4. Selection of hub genes

Using 12 methods available in the cytoHubba, the topmost ten
genes were selected and ranked by degree method. These ten
genes named AURKA, JUN, AR, MELK, NCOA2, CENPF, NCAPG,
PCK1, RAD51AP1, GTSE1 were considered as the hub genes
(Fig. 3). Moreover, the interaction network of hub genes to their
related neighboring genes is shown in Fig. 4.

3.5. TF-gene interaction network

A total of 136 nodes and 266 edges of the 10 hub genes were
examined from Networkanalyst software. Subsequently, the
resulted network was imported to Cytoscape for visualization of
interaction among TFs and hub genes (Fig. 5). The top ranked TFs
were MYC, KDM5B, STAT3, TCF4, CREM, NANOG, SOX2, HNF4A,
FLI1, and ASH2L Based on the results, we found that degree level
of JUN was very high as it was coregulated by 27 TFs.

3.6. Drug-gene interaction

A total of 47 drugs were explored using DGIdb that might have
potential to treat affected patient. AURKA, JUN, AR, MELK, and

https://string-db.org/


Fig. 1. PPI network of 53 commonly identified DEGs.

Table 3
Top 2 modules were selected having cutoff criteria node � 3 and the score is � 3.

Clusters Score Nodes

1 5.600 6
2 3.000 3

Fig. 2. 2 modules were selected having cutoff criteria node � 3 and the score is � 3. (A
constructed from MCDOE comprised of 3 genes (D) Pathways associated with the each
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NCOA2 were chosen as possible targets of 47 drugs based on Drug-
Bank source (Table 4). Furthermore, using STITCH tool, down-
stream interaction networks of AURKA, JUN, AR, MELK, and
NCOA2 were generated (Fig. 6).
4. Discussion

T2DM is conventionally demarcated as an endemic disease
worldwide. Slew of studies has made it clear that T2DM is major
risk factor for the development of HCC (Huang et al., 2007, Wang
et al., 2009, Hsiang et al., 2015). The chances of getting HCC is par-
ticularly higher nearly 2 to 3 times in patient suffering from T2DM
(Su et al., 2015). Despite numerous studies on the association
between HCC and T2DM, the underlying mechanisms behind the
development of HCC in patient suffering from T2DM is still lacking
(Mukherjee et al., 2015). There has been substantial heterogeneity
regarding various cases that leads the earlier detection, a thought-
provoking question. The current work planned to identify the dis-
ease related functional genes involved in the progression of HCC in
T2DM patient. This whole research revolves around the analysis of
gene ontology, gene enrichment pathways, PPI, hub genes, and
drug-gene interaction. Four different datasets were analyzed using
integrated bioinformatics analysis. Through KEGG pathway analy-
sis, the DEGs were significantly found to be enriched in the glycol-
ysis/gluconeogenesis, biosynthesis of antibiotics, and pathways in
cancer. Our functional annotation of target genes might be helpful
in understanding this targeted slicing on the development of both
Edges Nodes IDs

14 AURKA, GTSE1, RAD51AP1, NCAPG, MELK, CENPF
3 ALDOB, PCK1, DLAT

) First module constructed from MCDOE comprised of 6 genes (B) Second module
gene in 2 modules.



Fig. 3. (A) Construction of PPI network among 10 hub genes (C) Coexpression analysis of 10 hub genes using STRING.

Fig. 4. Interaction network of hub genes to their related neighboring genes.
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Fig. 5. Construction of TF-hub genes interaction network from cytoscape. Red rectangles in network represent the hub genes while the green rectangles in network represent
TF followed by arrows which shows the interaction among TF and hub genes.
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disease at once. In the current work, total 10 genes were found to
be altered in patients involving AURKA, JUN, AR, MELK, NCOA2,
CENPF, NCAPG, PCK1, RAD51AP1, and GTSE1. Hence, it represents
that these genes play important role in the development of HCC
in T2DM patients. Furthermore, 47 drugs of AURKA, JUN, AR, MELK,
and NCOA2 were found having therapeutic potential to treat HCC
patients with T2DM.

JUN is an oncogene, encodes for c-jun protein. Multiple studies
of evidence on JUN gene regarding their contribution in HCC has
made it clear that variation in JUN concerned with the develop-
ment of HCC (Endo et al., 2009, Yuen et al., 2001). TFs analysis of
hub genes in the current analysis revealed that degree level of
JUN was very high, hence TFs of JUN might play important roles
in the development of HCC in persons with T2DM. All these evi-
dences might prove fruitful to combat the disease condition by
preventing HCC from becoming malignant. These findings are fur-
ther strengthened by KEGG pathway analysis which revealed that
JUN genes contribute to the multiple pathways of cancer. By tar-
geting JUN, the pathogenic mechanisms of HCC in T2DM patients
can be controlled, hence might serve as molecular biomarker for
the diagnosis and treatment.

AURKA is a mitotic serine/threonine kinase, crucial for the cell
cycle progression. During the last ten years, slew of studies has
made it clear that alteration in AURKA gene encourages the devel-
opment of HCC hence might serve as potential diagnostic biomar-
ker (Wang et al., 2018). Moreover, many bioinformatics related
studies on HCC has also been enlisted the AURKA as key genes
involved in the progression of HCC (Zhou et al., 2018). Although,
involvement of AURKA genes has not been discovered in case with
T2DM. Hence all these evidences provide a precious clue that
upregulation of AURKA might control the intricate molecular
mechanism behind the pathogenesis and development of HCC in
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individuals with T2DM and might serve as biological marker to
detect both diseases at early stages.

MELK is considered as key member of AMPK family, and a ther-
apeutic target for multiple type of cancers. Numerous studies
regarding the development of HCC provide evidence that variation
in expression level of MELK is concerned with the development of
HCC (Jiang and Zhang, 2013, Xia et al., 2016). Hence by considering
MELK as molecular biomarker, the diagnosis and treatment of HCC
in T2DM patients might become an easy task. Considering our
analysis, we propose that upregulation of MELK might induce
HCC in T2DM patients.

Identification of aberrant pathways in affected patient might
help to identify the molecular mechanism underlying and to
uncover more enthralling and promising molecular candidates
with effective diagnostic and prognostic value. It is noteworthy
that KEGG pathway analysis of JUN, AR revealed that these gene
are key members of the pathways in which small disruption will
unfortunately leads to cancer. These findings shed light on the
pathogenesis of both diseases and facilitate the development of
personalized treatment. The disturbed pathways identified using
integrated bioinformatics analysis may have important role to play
in the pathogenesis of both diseases. Additional studied is required
to investigate the molecular mechanisms behind these aberrant
pathways and development of HCC in individuals with T2DM.

In conclusion, this research discerned hub genes as key biolog-
ical marker and their associated pathways involved in the develop-
ment of both diseases. In near future, further study and clinical
trials are required for the identification of genes and small drug
like molecule having effective diagnostic and prognostic value,
respectively. This research relies on various freely available data-
bases to shed light on pathogenesis and treatment and both dis-
eases at once. In vivo and in vitro investigation of gene and



Table 4
List of FDA approved drugs.

Genes Drug Interaction_types Sources Pmids

AURKA FOSTAMATINIB inhibitor DrugBank 26,516,587
JUN VINBLASTINE other/unknown DrugBank 16555127|15498923|12907245|17126817|16111654
JUN ADAPALENE antagonist DrugBank 26947815|15727806
JUN IRBESARTAN other/unknown DrugBank 15133856|15210574
AR PRASTERONE agonist DrugBank 15,994,348
AR TESTOSTERONE PROPIONATE agonist DrugBank 17086931|17084172|17128417|17322500|17202804|12604714
AR BICALUTAMIDE antagonist DrugBank 12517791|20381361|26000489|10754148|23017882

|21050768|29211833|22175694|10500149|11752352|10076535|11931851
AR ENZALUTAMIDE inhibitor|antagonist DrugBank 23779130|25184630|25634130
AR FLUOXYMESTERONE agonist DrugBank 8119180|6439037|2521824|17023534|11752352|10077001
AR DAROLUTAMIDE inhibitor|antagonist DrugBank 31571095|30197098|28801852
AR DANAZOL agonist DrugBank 9593936|2404115|2486535|10882672|18061638
AR SPIRONOLACTONE antagonist DrugBank 18,819,053
AR OXYMETHOLONE agonist|activator DrugBank 16,633,980
AR FLUTAMIDE antagonist DrugBank 11162924|26000489|10822172|10500149|10752671|12231070

|11752352|10879806
AR NILUTAMIDE antagonist DrugBank 12497018|26000489|3320565|16986000|3071951

|20541672|11752352|12497048|12496872|6374639
AR NANDROLONE DECANOATE agonist DrugBank 18,809,391
AR APALUTAMIDE antagonist DrugBank 23779130|22266222
AR NORGESTREL agonist DrugBank 3,139,361
AR DROMOSTANOLONE PROPIONATE agonist DrugBank 15351799|3758193|11752352
AR METHYLTESTOSTERONE agonist DrugBank 17086931|17084172|17128417|17322500|17202804|11752352
AR KETOCONAZOLE binder DrugBank 1,526,623
AR OXANDROLONE agonist DrugBank 15219414|17364004|11752352|20230007|11392377
AR TESTOSTERONE agonist DrugBank 17086931|17084172|17128417|17322500|17202804|11752352
AR DROSPIRENONE antagonist DrugBank| 15134826|7625729|11024226
AR NANDROLONE PHENPROPIONATE agonist DrugBank 12760377|17405825|14761877|11752352|14619588|14663936
AR STANOZOLOL agonist DrugBank 16159155|6539197|12589933
AR LEVONORGESTREL agonist|binder DrugBank 14672731|19836445|3139361|19833195
AR NORELGESTROMIN partial agonist DrugBank 15,625,768
AR MITOTANE antagonist DrugBank 9,705,896
AR GESTRINONE antagonist DrugBank
AR DIENOGEST antagonist DrugBank 18,061,638
AR OXYBENZONE antagonist DrugBank 15537743|15950433
AR PROGESTERONE potentiator|agonist DrugBank 19111796|10509795|1397870
AR NORETHINDRONE agonist DrugBank 15,063,480
AR NORGESTIMATE partial agonist DrugBank 15,625,768
AR SEGESTERONE ACETATE agonist DrugBank 11,108,869
AR TRICLOSAN DrugBank 20,943,248
AR NORETHYNODREL DrugBank 20,438,827
AR TAMOXIFEN DrugBank 14,751,673
AR FLUFENAMIC ACID DrugBank 17911242|10592235
AR FLUPHENAZINE DrugBank 17,606,915
AR ESTRONE DrugBank 12,676,605
AR ULIPRISTAL DrugBank 23,437,846
AR ACETOPHENAZINE DrugBank 17,606,915
AR PERICIAZINE DrugBank 17,606,915
MELK FOSTAMATINIB inhibitor DrugBank 26,516,587
NCOA2 ESTRADIOL BENZOATE DrugBank 15,123,288

Fig. 6. (A) Targetable AURKA subnetwork (B) Targetable JUN subnetwork (C)
Targetable AR subnetwork (D) Targetable MELK subnetwork (B) Targetable NCOA2
subnetwork.
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pathway interaction is essential to delineate the specific roles of
the identified genes, which may help to confirm gene functions
and reveal the mechanisms underlying the development of both
diseases. Additional experimental research on these hub genes lead
to increase our knowledge to fight against HCV-HCC in patients
with T2DM in future by means of novel therapeutic approaches.

5. Conclusion

In the present work, a new mechanism was proposed which
explain that progression in pathogenesis of both diseases might
due to the genes that disturbs the pathways which ultimately leads
to disease condition. AURKA, JUN, AR, MELK, and NCOA2 has not
been previously reported to be related to HCV-HCC in individuals
with T2DM, hence these genes might act as potential biomarkers
for diagnosis of both diseases at early stage. Our findings reveal
that hub genes cause disruption in cellular pathways which unfor-
tunately make the disease condition much worse. Our research will
serve as significant pioneer for the researchers who wants to iden-
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tify the associated pathways involved in the development and
pathogenesis of both diseases. Based on the hub genes, experimen-
tal models may be designed in terms for the detection of pathogen-
esis, evaluation of risk, and in determining the targeted therapies.
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