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Abstract

Background

Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need

to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and

conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of

PwMS under controlled conditions. We determine the accuracy and precision of BioS-

tampRC in measuring gait kinematics by comparing to contemporary research-grade mea-

surement devices.

Methods

A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moder-

ate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study.

Participants completed a series of clinical walking tests. During the tests participants were

instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as

an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity

was simultaneously measured with the inertial sensors. Step number and temporal gait

parameters were calculated from the data recorded by each sensor. Visual inspection and

the MTx served as the reference standards for computing the step number and temporal

parameters, respectively. Accuracy (error) and precision (variance of error) was assessed

based on absolute and relative metrics. Temporal parameters were compared across

groups using ANOVA.

Results

Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms

error for stride time and 6±7ms error for step time (0.6–2.6% relative error). Swing time had

the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters.

GT3X had the least accuracy±precision (8±14% relative error) in step number estimate
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among the devices. Both MTx and BioStampRC detected significantly distinct gait charac-

teristics between PwMS with different disability levels (p<0.01).

Conclusion

BioStampRC sensors accurately and precisely measure gait parameters in PwMS across

diverse walking impairment levels and detected differences in gait characteristics by disabil-

ity level in PwMS. This technology has the potential to provide granular monitoring of gait

both inside and outside the clinic.

1. Introduction

Multiple sclerosis (MS) is an immune-mediated disease that affects an estimated 400,000 peo-

ple in the USA, and has a worldwide prevalence of 2.5M [1]. MS is characterized by inflamma-

tory demyelination and axonal damage in the central nervous system, which result in

conduction delays and blockage of electrical potentials along neuronal pathways [2]. The MS

pathology transitions into a neurodegenerative disease process associated with insufficient

neurotrophic support resulting in irreversible axonal and neuronal loss [3]. This progressive

disease commonly affects mobility (i.e. gait function) [4]. Gait impairment in persons with MS

(PwMS) has been identified by altered spatio-temporal gait parameters such as slower gait

speed, reduced cadence, shorter step length, prolonged stride time and increased double sup-

port period [5, 6]. Therefore, accurate assessment of gait characteristics in PwMS is required to

examine the severity and progression of gait impairment.

Gait assessment in PwMS has relied on analysis in gait laboratories, with specialized equip-

ment including expensive motion capture systems, pressure sensitive walkways, and force-

plates [7]. Clinicians also utilize objective performance based measures (e.g. timed-25 foot

walk (T25W)), 6 minute walk test (6MW) [8], and subjective functional ambulation tests (e.g.

Performance-Oriented mobility assessment, Dynamic Gait Index)) [8, 9] to assess gait func-

tion. However, all of these clinical assessments only provide a ‘snapshot’ of an individual’s

walking ability that may not extrapolate to typical gait performance under normal daily

conditions.

To overcome these limitations, there has been increasing interest in approaches for objec-

tively examining the walking activity of PwMS in real-world situations [10, 11]. Consequently,

body-mounted sensors such as the GT3X (Actigraph, Inc.) have been leveraged to enable long-

term ambulatory data collection. These ambulatory monitoring systems may allow for a more

granular assessment of gait and a better understanding of MS symptom presentation at the

micro (minutes to hours to days) and macro (weeks to months to years) time scales [11].

Activity counts by such wearable activity monitors have been reported to be associated with

disability status, and walking impairment in PwMS [12, 13]. There have also been several

investigations describing the accuracy of wearable activity monitors for counting steps in pop-

ulations with gait impairment, including PwMS [14–17]. The GT3X activity monitor has been

found to accurately measure step number while walking at moderate and fast speeds in indi-

viduals with mild gait impairment [14–16, 18]. However, this sensor significantly underesti-

mates strides at slower walking speeds only among those with severe gait disability [14, 15, 17].

Additionally, the GT3X only counts stride/step numbers and does not record temporal gait

parameters (e.g. stride time, swing time) which are important indicators of gait pathology [19].
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To measure temporal gait parameters in real life environments over extended durations,

one requires light-weight inertial sensors (i.e. accelerometers and gyroscopes) that can be

affixed to the body [20]. Indeed, commercially available MTx inertial sensors (Xsens Inc.)

have been found to be a valid tool to measure temporal gait parameters during an extended

walk (i.e. 6 minute walking test) in PwMS with a range of walking impairment levels [21].

Nevertheless, most inertial sensors are not suitable for monitoring ambulation in daily life

as they require relatively cumbersome sensors to be secured to the body with straps and

wires.

Recently, a wireless, skin-mounted, conformal inertial sensor, BioStampRC (MC10, Inc.)

has been developed (Fig 1). The BioStampRC sensors do not constrain or affect natural body

motions. The intimate coupling of the BioStampRC sensors to the skin makes this system

well suited for testing in a number of settings to assess various aspects of walking. One such

assessment is T25W, which has been utilized as a clinical measure of maximal walking speed

[8]. Another assessment is 6MW, which is a validated measure of walking endurance [22].

Also, the timed up and go test (TUG) examines dynamic balance and coordination as it

includes various aspects of ambulation such as rising from a chair, walking, turning, and sit-

ting [23].

In this study, we applied the BioStampRC system to measure gait characteristics in PwMS

during several walking tests and compared the results to commercially available sensors

(GT3X and MTx) and visual inspection (manual step count). Importantly, the GT3X and MTx

were included as standard measurements because these are commonly used activity monitors

and inertial sensors for analyzing ambulation [24, 25]. Also, their accuracy and precision in

analyzing gait characteristics has been validated in healthy and neurologic populations [24,

25]. We tested several hypotheses during this study: 1) BioStampRC will distinguish gait char-

acteristics between healthy controls and individuals with MS as well as across walking

impairment levels in PwMS; 2) BioStampRC has comparable accuracy and precision to mea-

sure gait characteristics of PwMS compared to GT3X and MTx; 3) accuracy of BioStampRC is

lower in PwMS with greater walking impairment; and 4) accuracy of the BioStampRC is con-

sistent across the various walking tests.

Fig 1. BioStampRC a novel wireless, skin-mounted conformal inertial sensor.

doi:10.1371/journal.pone.0171346.g001
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2. Materials and methods

2.1. Study participants

45 PwMS and 15 healthy control subjects were recruited in this study. PwMS were recruited

from previous subject pools and the local community. The control group was recruited

through digital advertisements sent out to the local community. To be included in the MS

group, participants were required to have a neurologist-confirmed diagnosis of MS, be able to

walk 6 minutes with or without an aid, be at least 18 years old, and have the willingness to

wear the inertial sensors used in this study. To be included in the control group, participants

were required to have the ability to walk 6 minutes without an aid, have no history of neuro-

logical or orthopedic conditions that might influence their balance or mobility, be at least 18

years old, and have the willingness to wear the inertial sensors. PwMS were further divided

into groups based on comfortable over-ground walking speed. Specifically, cut points for com-

fortable walking speed were used to classify subjects into three categories (mild: speed > = 1.1

m/s, moderate: 0.7 < speed < 1.1 m/s, severe: speed < = 0.7 m/s) [26]. A conscious effort to

have 15 subjects in each group was made during a recruiting process. The gait impairment

level of the participants was estimated during a recruiting process by asking general questions

on walking ability and assistive device usage.

2.2. Experimental procedures

All procedures were approved by the University of Illinois at Urbana-Champaign institutional

review board. Upon arrival at the laboratory, all participants had the experimental procedures

explained in detail and were provided an opportunity to ask any questions. When all questions

were addressed, participants provided written informed consent. Participants with MS com-

pleted several questionnaires concerning their disability including the self-reported expanded

disability status scale (EDSSSR)[27], the twelve item MS Walking Scale (MSWS) [28] and

patient determined disease steps (PDDS) [29] scale. At the end of the ambulation assessment

described below, the participants completed a survey focusing on comfort and wearability of

each sensor. The participants indicated comfort level utilizing a 1–5 score where 1 was “very

comfortable”, 2 was “somewhat comfortable”, 3 was “neither comfortable nor uncomfortable”,

4 was “somewhat uncomfortable”, and 5 was “very uncomfortable”.

2.2.1. Sensors. Once participants completed the questionnaires, they were outfitted with

three types of wearable motion sensors (Fig 2): 1) BioStampRC devices (MC10, Inc., Lexing-

ton, MA), 2) MTx inertial sensors (Xsens Technologies B.V., Netherlands), and 3) tri-axial

activity tracker GT3X (Actigraph, Pensacola, FL). The BiostampRC devices were applied to the

skin bilaterally on the tibialis anterior in line with tibia tuberosity. The MTx sensors were

placed bilaterally on the medial surface of each tibia [18]. The GT3X was placed on the partici-

pant’s non-dominant hip with an elastic fabric belt [18]. The locations of each sensor were

determined to minimize the skin movement artifacts and interference between the sensors

[18, 30].

2.2.2. Gait assessments. After being outfitted with the sensors, the participants under-

went a series of mobility and gait assessments. The participants completed a comfortable walk-

ing test, Timed 25 feet walk test (T25W), Timed Up and Go test (TUG), and a series of six-

minute walking bouts (6MW). All walking tests are validated clinical measures of walking abil-

ity and capacity in PwMS [29]. In the comfortable walking test, the subject was instructed to

walk for 25 feet over the ground at a self-selected normal, comfortable pace. For the T25W and

TUG test, the participants were instructed to walk as quickly but safely as possible [31, 32].

The over-ground comfortable walking test, T25W and TUG tests were completed twice. The
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time for each trial was manually recorded and was averaged. The use of an assistive device was

permitted during the testing.

The 6MW tests were conducted at slow, comfortable and fast walking speeds on a motor-

ized treadmill [10]. The walking speed for comfortable 6MW condition was initially estimated

based on the gait speed of the over-ground comfortable walking test. Also prior to a 6MW

trial, the participants walked at the estimated comfortable speed on the treadmill and

responded whether it would be comfortable to maintain the speed for 6 minutes. Based on

their answer, the comfortable walking speed on the treadmill was slightly adjusted. The slow

and fast speed settings were determined as 20% above and 20% below the comfortable speed

respectively. Those speeds were selected based on previous research that found the maximum

safe gait speed of a clinical population was ~20% faster than their comfortable gait speed [33].

Once the speed was determined, the participants were instructed to walk at the designated

speed for 6 minutes and were allowed to rest by stopping the treadmill if needed. The partici-

pant was allowed to hold on to the rails when walking on the treadmill if necessary for safety

purposes; any use of the rails was recorded on a datasheet where necessary.

2.2.3. Data analysis. Step counts were manually measured in the 6MW test and served as

a gold standard. The distance covered in 6 minutes was recorded with a calibrated measure-

ment wheel attached directly to the treadmill.

Data collected by BioStampRC and MTx were analyzed to calculate the number of strides

as well as temporal gait parameters including stride time, swing time and step time. All data

processing was done using custom developed MATLAB code (The MathWorks, Natick, MA,

USA).

BioStampRC collected tri-axial acceleration and angular velocity of the shank while MTx

recorded tri-axial angle of the shank. Both devices sampled data at 50Hz. A numerical differen-

tiation was performed to the MTx data to obtain angular velocity of the shank recorded by the

device. Then the angular velocity of the shank collected by each device was digitally filtered

Fig 2. Location of BioStampRC, MTx, and GT3X sensors on the body.

doi:10.1371/journal.pone.0171346.g002
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with fourth-order, zero-phase, low-pass Butterworth filter with 10 Hz cutoff frequency [34].

Prior to the calculation of the temporal gait parameters of each trial, the reference frames of

the BioStampRC and MTx were aligned using custom developed MATLAB script that employs

a singular value decomposition based approach.

The projection of the shank angular velocity onto the medial-lateral axis was then analyzed

to identify the gait events based on a method described previously [20]. This algorithm has

been utilized in several investigations analyzing temporal gait parameters in diverse popula-

tions including MS [21, 35]. Heel strike point (HS, when the foot first touches the floor) was

defined as the time point where the minimum negative peak shank angular velocity occurs

immediately following the time point where the positive peak shank angular velocity occurs.

This derives from the fact that the shank angular velocity reaches its highest value at the mid-

swing phase and at the end of the swing phase the leg is brought to a halt by a heel strike lead-

ing to a sharp negative peak of shank angular velocity [36]. Toe off point (TO, when the foot

takes off) was defined as the time point where minimum negative peak occurs immediately

before the positive peak [20]. Prior to the swing phase, the toe off contributes to progression

with a forward push leading to negative peak of shank angular velocity [36] (See Fig 3). Once

every HS and TO point was obtained, the temporal gait parameters were calculated using the

following equations:

Stride timeðiÞ ¼ HSLeftðiþ 1Þ � HSLeftðiÞð1 � i � N � 1; N : number of gait cyclesÞ ð1Þ

Swing timeðiÞ ¼ TOLeftðiÞ � HSLeftðiÞ ð2Þ

Step timeðiÞ ¼ HSLeftðiÞ � HSRightðiÞ ð3Þ

For Actigraph GT3X data, the sensor recorded tri-axis acceleration at 30Hz in 6MW trials.

The data was processed to count step numbers with ActiLife 6 software (Actigraph, Pensacola,

FL) in one second epoch intervals (i.e. sampling window). Following the manufacturer’s guide-

line [17, 37], a low frequency extension filter was used as it increases the sensitivity for detect-

ing low-frequency accelerations (i.e. slow walking).

Fig 3. Schematic of shank angular velocity and gait events.

doi:10.1371/journal.pone.0171346.g003
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GT3X was included as standard measurements for step count since it is the most commonly

used activity monitor for analyzing ambulation in healthy and diseased populations, including

MS [24]. MTx served as a reference standard for assessing temporal gait parameters as its accu-

racy to measure these has been validated [25, 34].

2.2.4. Statistical analysis. Accuracy (mean of error) and precision (variance of error)

were reported based on absolute and relative metrics. Absolute accuracy was defined as a dif-

ference between gait parameters recorded by devices and those recorded by the reference stan-

dards. The reference standard for a step number was visual inspection (manual count) while

the reference standard for temporal parameters was those derived from MTx [34]. The abso-

lute accuracy was presented by the median and the inter quartile range (IQR) for step numbers

and by mean and 95% confidence interval (CI) for temporal gait parameters. Relative accuracy

was based on percentage error ð¼ tested equipment� standard equipment
standard equipment � 100Þ. Absolute precision (vari-

ance of error) was based on the standard deviation of the absolute errors recorded per device,

whereas relative precision involved standard deviation of the relative errors per device. Also,

Bland-Altman plots were generated for visually examining systematic patterns of error in esti-

mation of temporal gait parameter.

Difference of gait parameters between the groups and the devices were assessed with two-

way (group × device) ANOVA analysis. Also, differences of accuracy of gait parameters relative

to the device, group and tests were examined with three-way (device × group × test) ANOVA

analysis. When appropriate, Bonferroni analysis was used for post-hoc analysis. Group differ-

ences of parametric data of demographics were assessed using ANOVA analysis. For non-

parametric data, Kruskal-Wallis test was conducted to examine group differences followed by

Mann-Whitney U test for post-hoc analysis. All analysis used two-sided tests, and p-values

equal to or less than 0.05 were considered statistically significant. The analysis was performed

with IBM SPSS statistics for Windows (version 22; IBM SPSS Inc., Armonk, NY, USA).

As there were no differences in the results of the accuracy analysis between left and right

sides, we only reported left side results for brevity. The data for the right side are reported sepa-

rately in the supplementary data section (S1 and S2 Tables).

3. Results

3.1. Demographics

The final sample included 60 adults divided equally into 4 groups based on presence of MS

and gait speed: healthy controls (n = 15), mild walking impairment MS (n = 15), moderate

walking impairment MS (n = 15) and severe walking impairment MS (n = 15). The demo-

graphics and clinical characteristics of the groups are provided in Table 1. Per design, over-

ground comfortable walking speeds were not different between the control and mild MS

group (p>0.05) while it was significantly reduced with increasing impairment level in PwMS

(p’s<0.05). There was no group difference in age, height, weight and MS duration [F(3,59) =

1.39, p = 0.26; F(3,59) = 1.51, p = 0.22; F(3,59) = 2.09, p = 0.14; F(3,59) = 0.91, p = 0.44, respec-

tively]. EDSS, MSWS and PDSS were significantly different among the MS groups [χ2(2) =

27.9,p<0.01; χ2 (2) = 20.4,p<0.01; χ2 (2) = 24.1,p<0.01, respectively]. Post-hoc analysis

showed that MSWS and PDSS score were significantly different between each group

(p’s<0.05) while there was no significant difference in EDSS between the moderate and severe

group [U = 81, Z = -1.4, p = 0.10]. Overall, 23% of the participants used a cane and 7% used a

walker during over-ground trials. A total of eight subjects wore an ankle-foot orthosis (AFO)

during the test (moderate: 3 subjects, severe: 5 subjects). Also, 53% of the participants held on

to the support rails during 6MW test (control: none, mild MS: 4 subjects, moderate MS: 12

subjects, severe MS: 15 subjects).

Monitoring gait in MS with wearble sensors
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3.2. Performance of gait assessments

Table 2 demonstrates the performance outcomes of the clinical gait assessments by cohort.

Overall, there was group effect in all of the tests [T25W: F(3,59) = 22.6, p<0.01; TUG: F(3,59) =

30.2, p<0.01; 6MW comfortable: F(3,59) = 33.3, p<0.01; 6MW slow: F(3,59) = 35.8, p<0.01;

6MW fast: F(3,58) = 36.9, p<0.01].

The post-hoc analysis revealed that no difference in gait performance between the control

and the mild MS group in all of the tests (p’s>0.05). There was significant reduction in gait

performance as a function of severity level in the MS groups (p’s<0.01). One participant in the

severe MS group chose not to complete 6MW at fast speed condition. The subject was

removed from the pool for the fast 6MW.

3.3. Gait parameters recorded by BioStampRC

Table 3 displayed gait parameters recorded by BioStampRC as a function of group. There was

no significant difference between control and mild MS groups in any gait parameters

(p’s>0.05). Significantly increased stride time and step time and decreased step number were

observed with increasing impairment level in the MS cohort (p’s<0.01). Swing time of the

moderate and severe group was not significantly different in 6MW comfortable and slow

speed tests (p’s>0.05). Also swing time of the control and moderate group was not signifi-

cantly different in over-ground comfortable walking and 6MW comfortable speed tests

(p’s>0.05). There was neither significant device (MTx vs BioStamp) effect nor group�device

effect in all of the tests (p>0.05).

Table 1. Demographics and clinical characteristics.

Control Mild MS Moderate MS Severe MS

N 15 (10F/ 5M) 15 (12F/ 3M) 15 (10F/ 5M) 15 (10F/ 5M)

Age (yrs) 57.9±12.9 53.7±12.3 59.7±8.3 61.1±8.3

Height (cm) 169.0±6.7 165.9±7.7 171.7±8.6 168.0±7.0

Weight (kg) 77.4±15.0 75.1±15.9 81.5±16.3 86.4±28.9

MS duration (yrs) - - 14±8 18±6 21±10

Assistive device (none/cane/ walker) 15/0/0 15/0/0 7/7/1 4/8/3

EDSSSR (Median(IQR)) - - 1.5 (0–2.5) 6.0 (3.5–6) 6.0 (5.5–6)

MSWS (Median(IQR)) - - 17 (14–20) 43 (26–49) 48 (43–55)

PDDS (Median(IQR)) - - 0 (0–1) 4(3–5) 5 (4–5)

Over-ground comfortable walking speed (m/s) 1.28±0.18 1.28±0.17 0.86±0.10 0.60±0.12

doi:10.1371/journal.pone.0171346.t001

Table 2. Performance of clinical gait assessments as a function of groups.

Test Control Mild MS Moderate MS Severe MS

T25W (sec) 4.22±0.54 5.10±0.80 6.81±1.04* 10.6±4.41*†δ
TUG (sec) 5.86±1.01 7.28±1.19 11.0±3.24*† 16.5±5.72*†δ
6MW_Comfortable (m) 424±127 443±102 256±67*† 135±54*†δ
6MW_Slow (m) 339±100 354±83 206±68*† 105±43*†δ
6MW_Fast (m) 504±139 536±115 303±101*† 168±58*†δ

Note: significantly (p<0.05) different from

*the controls;
†the mild MS;
δ the moderate MS

doi:10.1371/journal.pone.0171346.t002

Monitoring gait in MS with wearble sensors

PLOS ONE | DOI:10.1371/journal.pone.0171346 February 8, 2017 8 / 19



3.4. Accuracy and precision of step number count

Table 4 presents the data for accuracy and precision of step number count per device when

comparing to the reference standard (manual count). The absolute error of the BioStampRC

and MTx both had median values of two steps (IQR: 2—6steps) when compared to the refer-

ence standard. GT3X had median absolute error of 10 steps (IQR: 3–38 steps).

The mean relative accuracy ± precision was 0.9±1.2% for BioStampRC, 0.9±1.1% for MTx

and 8.1±14.2% for GT3X. Only three cases (2%) of step number data from BioStampRC and

two cases (2%) from MTx demonstrated� 5% relative error. On the contrary, 55 cases (31%)

of the GT3X data showed� 5% relative error in the step number record.

There was significant difference in relative error between the devices [F(2,348) = 163.8,

p<0.01]. Post-hoc analysis revealed that absolute and relative error of GT3X was significantly

greater than that of BioStampRC and MTx (p<0.01). There was no significant difference of

absolute and relative error between BioStampRC and MTx (p = 1.00).

Subsequent analysis revealed that the GT3X had significantly greater error in step number

in the severe group (24±19% error) than that in the other groups (control: 1±2% error; mild

MS: 1±2% error; moderate MS: 5±8% error) [F(3,174) = 32.7, p<0.01]. There was no signifi-

cant group difference in step number error in BioStampRC and MTx (p’s>0.05).

There was no significant difference in the error between the tasks with all of the devices

[BioStampRC: F(2, 174,) = 0.131, p = 0.88; MTx: F(2,174) = 0.64, p = 0.94; GT3X: F(2,174) =

1.20, p = 0.30]. Also there was no interaction effect of group, device and task (p’s>0.05).

Table 3. Gait parameters recorded by BioStampRC as a function of group and speed.

Test Gait parameter Control Mild MS Moderate MS Severe MS

Over-ground comfortable walking Stride time (ms) 1083±111 1035±64 1239±101*† 1594±419*†δ
Swing time (ms) 445±40 437±29 467±40† 521±87*†δ
Step time (ms) 543±53 522±36 619±51*† 800±208*†δ

T25W Stride time (ms) 874±108 915±50 1079±121*† 1369±368*†δ
Swing time (ms) 383±43 399±30 430±34*† 478±85*†δ
Step time (ms) 422±52 463±26 542±60*† 687±18*†δ

TUG Stride time (ms) 856±122 929±85 1082±172*† 1468±408*†δ
Swing time (ms) 378±51 395±41 427±43*† 481±92*†δ
Step time (ms) 429±58 471±43 549±93*† 744±211*†δ

6MW_Comfortable Step number 636±184 692±60 484±150*† 392±94*†

Stride time (ms) 1076±92 1047±96 1385±193*† 1857±40*†δ
Swing time (ms) 461±33 447±29 498±57† 534±87*†

Step time (ms) 538±46 523±46 693±97*† 929±202*†δ
6MW_Slow Step number 562±168 614±68 466±74*† 340±92*†δ

Stride time (ms) 1214±128 1184±141 1587±285*† 2233±600*†δ
Swing time (ms) 486±38 482±41 543±76*† 574±101*†

Step time (ms) 607±64 592±705 793±142*† 1047±414*†δ
6MW_Fast Step number 680±204 736±78 548±110*† 380±150*†δ

Stride time (ms) 1009±109 987±103 1342±267*† 1668±596*†δ
Swing time (ms) 440±34 425±41 495±60*† 546±95*† δ
Step time (ms) 505±54 494±51 671±133*† 833±297*†δ

Note: Significantly (p<0.05) difference from

*the controls;
†the mild MS group;
δ the moderate MS group

doi:10.1371/journal.pone.0171346.t003
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3.5. Accuracy and precision of temporal gait parameters recorded by

BioStampRC

Table 5 presents accuracy and precision of temporal gait parameters collected by BioStampRC

when comparing to the reference standard (MTx). Fig 4. illustrates Bland-Altman plot of tem-

poral gait parameters measured by BioStampRC and reference system (MTx) for 6MW com-

fortable speed. The graphical comparisons for other assessments are reported in the

supplementary data section (S1 Fig).

Table 4. Accuracy and precision of stride/step number count per device.

Test Device Gait parameter Absolute accuracy Relative accuracy Precision

Medianerror IQR % error 5%<N 10%<N 15%<N ABS REL

6MW_Comfortable BioStampRC Step N diff 2 2–4 0.8% 1 0 0 3 1.2%

MTx Step N diff 2 2–4 0.9% 0 0 0 3 1.2%

GT3X Step N diff 10 3–48 10.1% 19 14 11 78 17.0%

6MW_Slow BioStampRC Step N diff 2 2–6 1.0% 1 0 0 2 1.3%

MTx Step N diff 2 2–4 1.0% 1 0 0 2 1.2%

GT3X Step N diff 13 2–56 9.4% 23 17 10 53 14.0%

6MW_Fast BioStampRC Step N diff 4 2–6 0.9% 1 0 0 3 1.2%

MTx Step N diff 4 2–6 0.9% 1 0 0 2 1.0%

GT3X Step N diff 6 2–20 6.1% 13 8 7 57 12.7%

Note: Total N = 60 for each test, ABS = absolute, REL = relative

doi:10.1371/journal.pone.0171346.t004

Table 5. Accuracy and precision of temporal gait parameters measured by BioStampRC.

Test Gait parameter Absolute accuracy Relative accuracy Precision

Meanerror 95% CI Mean error 5%<N 10%<N 15%<N ABS REL

Over-ground comfortable walking Stride time diff (ms) 8.9 5.2–12.6 0.6% 0 0 0 12.0 0.9%

Swing time diff (ms) 20.6 17.3–23.9 4.4% 18 5 1 17.8 3.6%

Step time diff (ms) 7.1 4.4–9.7 1.2% 1 0 0 9.1 1.5%

T25W Stride time diff (ms) 8.3 6.0–10.5 0.8% 0 0 0 11.8 1.3%

Swing time diff (ms) 21 17.8–24.2 5.0% 19 5 1 16.9 4.1%

Step time diff (ms) 7.4 5.7–9.2 1.4% 1 0 0 9.4 1.4%

TUG Stride time diff (ms) 12.6 9.7–15.5 1.2% 1 0 0 14.9 1.2%

Swing time diff (ms) 26.9 23.2–30.6 6.5% 32 18 7 23.2 5.0%

Step time diff (ms) 14.1 11.4–16.8 2.6% 7 0 0 12.5 2.1%

6MW_Comfortable Stride time diff (ms) 0.7 0.3–1.1 0.0% 0 0 0 1.5 0.1%

Swing time diff (ms) 29.8 24.7–35.0 6.3% 31 9 1 19.0 3.9%

Step time diff (ms) 0.4 0.2–0.6 0.0% 0 0 0 0.6 0.1%

6MW_Slow Stride time diff (ms) 1.6 0.4–2.8 0.0% 0 0 0 4.5 0.2%

Swing time diff (ms) 27.5 22.3–32.8 5.3% 24 6 1 19.7 3.7%

Step time diff (ms) 0.9 0.4–1.3 0.0% 0 0 0 1.8 0.2%

6MW_Fast Stride time diff (ms) 1.2 0.4–2.1 0.1% 0 0 0 3.2 0.2%

Swing time diff (ms) 29.7 24.3–35.0 6.1% 30 9 0 20.0 3.8%

Step time diff (ms) 0.6 0.3–0.9 0.1% 0 0 0 1.1 0.1%

Note: Total N = 60 for each test, ABS = absolute, REL = relative

doi:10.1371/journal.pone.0171346.t005
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Fig 4. Bland-Altman plot of (a) Stride time (b) Swing time (c) Step time of BioStampRC compared with

that of reference system (MTx). Limits of agreement are specified as average difference (solid line) and

±1.96 standard deviation of the error (dotted line).

doi:10.1371/journal.pone.0171346.g004
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The absolute accuracy±precision of stride time and step time was 6.3±8.7ms and 5.8

±7.1ms, respectively, when compared to the reference standard. The absolute accuracy±preci-

sion of swing time was the worst (24.6±18.9ms) among the temporal gait parameters.

The mean relative absolute±precision error was 0.5±0.9%, 5.4±4.1% and 1.0±1.5% for stride

time, swing time and step time, respectively. Only one case of stride time data (1%) and 9 cases

of step time data (2%) derived from the BioStampRC had� 5% relative error. Swing time data

had the greatest frequency of data with� 5% relative error (154 cases, 43% of data) with a

maximum of 20% relative error.

There was a significant group difference in absolute and relative error in stride time and

step time (p’s<0.01). Post-hoc analysis revealed that there was significantly greater error in

stride time and step time of the severe MS group (stride time error: 10.6 ms, 0.6% error; step

time error: 6.5ms, 1.3% error) compared to that of the other groups (p’s<0.01). There was no

significant difference in swing time accuracy between the groups in all gait assessments

(p’s>0.05).

Also, there was significant difference in absolute and relative error in stride time and step

time between the clinical assessments (p’s<0.01). Post-hoc analysis showed that there was sig-

nificantly greater error in stride time and step time during the TUG than that of the other

assessments (stride time: p = 0.05; step time: p<0.01). Also, there was significantly less error in

stride time and step time (p’s <0.01) during 6MW than during the other assessments. There

was no difference in the error between 6MW tests with different speed conditions (p’s>0.05).

There was no significant difference in swing time error between the gait assessments

(p’s>0.05).

3.6. Sensor wearability

All of the participants reported that they felt comfortable when wearing BioStampRC (Median:

1, IQR: 1–1) and GT3X (Median: 1, IQR: 1–1) to the extent they were not aware of the sensors

during the assessment. However, 32% of the participants reported MTx was uncomfortable

(Median: 2, IQR: 1–3) due to the cumbersome sensor hub around the waist, the wires affecting

natural movement, and the straps compressing their shins during walking.

4. Discussion

The primary objective of this study was to examine the accuracy and precision of a novel wear-

able device, the BioStampRC, as a measure of gait in PwMS with a wide range of gait function.

Our results show that the BioStampRC has comparable or improved accuracy in measuring

step number and temporal gait parameters compared to commercially available research grade

inertial sensors and accelerometers. Additionally, the BioStampRC detected altered gait char-

acteristics in PwMS (i.e., elongated stride time, swing time, and step time). Taken together,

these results demonstrate that BioStampRC has sufficient accuracy and precision for gait mea-

surement in clinical research involving PwMS in controlled settings.

Step number was the most inaccurate in GT3X

Both BioStampRC and MTx demonstrated highly accurate and precise measurements of step

number (0.6% underestimated step number) across all groups and all speed conditions of

6MW. GT3X showed the highest error in counting steps (8% underestimated step number).

The trunk and hip, where the GT3X is located, experience reduced accelerations in the

medial-lateral and vertical directions during slow walking especially when an assistive device

or support is used [38]. The algorithm present in the ActiLife software calculates steps based

on vertical accelerometer data after filtering out the baseline noise level [37]. Following the
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manufacturer’s guidelines, GT3X data were processed with a unique filtering mode, the low

frequency extension filter to improve sensitivity to detect steps in lower amplitude movements

[17, 37]. However, despite usage of the unique filtering system, GT3X still significantly under-

estimated the step number of the severe MS group. This observation corresponds to a previous

study that found overall GT3X had 5% error in step counts for PwMS and it had the greatest

error for the PwMS with severe walking disability (13% error) [14]. Additionally, it should also

be noted that all of the participants in the severe MS group spontaneously held on to the rails

on the treadmill during 6MW. Previous research found that GT3X had increased error in step

count for participants walking with an aid (17% underestimated error) [17].

It is possible that the recommended algorithm might not be sensitive enough to detect steps

with minimized vertical acceleration of the hip due to characteristics of gait impairment and

assistive device use. Considering that gait impairment is a common symptom of MS and nearly

half of PwMS use an assistive device during walking [4], relying solely on vertical acceleration

of the hip is problematic and may lead to significant measurement error. It has been suggested

that step count accuracy was best when activity monitors were located distally such as on the

ankle [17, 39]; however, despite this fact, the GT3X is frequently worn at the waist to minimize

its interference with daily life activities [17]. Thus, both sensor location and the algorithm for

assessing impaired gait may contribute to the errors in the GT3X results.

Swing time was the least accurate and precise

In terms of assessing temporal gait parameters, BioStampRC demonstrated highly accurate

and precise calculations of stride time (6±9ms, 0.5±0.9% error on average) and step time (6

±7ms, 1.0% error on average) whereas there was less accuracy with the swing time calculation

(25ms, 6.1% error on average). The algorithm utilized to determine temporal gait parameters

was based on the work of Aminian, et al. They also reported that stance time calculations,

which is the mathematical inverse of swing time, were less accurate (23ms error) compared to

stride time (8ms error) [20]. Additionally, inaccuracy in swing time has been consistently

observed in studies that have utilized the same algorithm for measuring gait events with gyro-

scope sensors mounted on the lower limb (35-55ms error) [34, 40, 41]. However, the origin of

the swing time error is controversial as some investigations reported the error at heel strike

detection [20, 34], whilst others reported the bias at toe off detection [40]. The discrepancy

might be due to the fact that the investigations used pressure sensor switches as a reference

standard and the choice of sensor threshold critically influences the detection of gait events

[40]. Therefore, refinements in the algorithm to enhance accuracy of estimating swing time

are warranted. It should be noted that both step time and stride time rely solely on heel-strike

events (Eqs 1 & 3), while swing time also uses toe-off events (Eq 2). Therefore, improving sys-

tematic heel-strike and toe-off detection may improve swing-time algorithm performance.

Algorithm refinements as well as incorporating additional data sources such as three dimen-

sional accelerometer data may improve accuracy in detecting swing phase. Importantly, the

swing time error, which demonstrated the greatest error among the gait parameters, was not

different between the groups. This suggests that the origin of the swing time error is not rele-

vant to gait impairment level of the participants.

Accuracy of gait parameter measurement was the least in TUG and the

greatest in 6MW

There are a few possible reasons that error in stride time and step time was greatest during the

TUG test. The increased error might be due to inclusion of diverse movement during the test

such as turning, sitting, standing, initiation and termination of gait [42]. The accuracy of the
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gait detection algorithms based on the inertial sensors was only investigated in continuous

straight-line walking [20, 34]. Therefore, the various movements included in TUG might

increase inaccuracy of calculation of gait parameters detected by the BioStampRC and MTx.

This observation is important as the dynamic movements required in the TUG test have been

suggested to have increased relevance in community ambulation [42]. In order to utilize the

inertial sensors to monitor daily life walking, the algorithm for detecting gait events may need

to be improved so that it can be applied to diverse ambulation tasks. Additionally, the 6MW

had better accuracy and precision compared to the short distance walking tests. The greater

number of steps during 6MW might eliminate influence of outliers and increase the accuracy

and precision of the measurement. This observation is important considering that the BioS-

tampRC sensor has potential to provide long-term gait monitoring.

The severe MS group had greater stride and step time error

The greatest error in stride time and step time occurred in the severe MS group. The gait

impairment characteristics such as slowed angular motion of the shank and a dragged foot

might lead to the increased inaccuracy of detecting gait events using the algorithm based on

shank angular velocity [43]. However, it should be noted that despite the increased error, the

stride time and step time still demonstrated minimal absolute and relative error in the severe

group (stride time error:10.6ms, 0.6% error; step time error: 6.5ms, 1.3% error).

BioStampRC could monitor gait impairment of MS.

BioStampRC sensors detected differences in step time and stride time by disability levels in

PwMS, while swing time was less distinctive between the groups. The current observation was

consistent with previous researches that reported significant prolongation in step time and

stride time, but not in swing time in PwMS [6, 21]. Also, corresponding to previous research

[6, 19], there was no difference in the gait parameters between the control and mild MS group

whereas elongated temporal gait parameters were observed as severity of gait impairment

increased in PwMS. The trend was also observed in the data derived from the standard refer-

ence MTx [21, 44]. Therefore, BioStampRC might be useful in identifying gait pathology in

PwMS as well as in evaluating the progression of gait disability in PwMS.

Strengths and limitations of the investigation

The current study included a relatively large sample of persons with varying MS disability as

well as healthy controls. Furthermore, we studied four types of clinical gait assessments that

have been validated to examine gait function in PwMS [8]. Additionally, three different speed

conditions were included in 6MW.

Despite the strengths of the paper, it is not without limitations. A main limitation of the

study is that 6MW trials were conducted on a motorized treadmill. It is established that tread-

mill walking is distinct from over ground walking. The use of treadmill and usage of the hand

rail have been associated with altered gait characteristics such as increased cadence and

reduced knee angle compared to over-ground walking condition [45, 46]. Additionally, a few

studies have suggested that treadmill may artificially reduce the natural variability of gait pat-

terns (i.e. stride-to-stride fluctuations during walking) [46]. The alternation of the gait variabil-

ity has been reported to be a unique marker of gait impairment in PwMS [47]. Therefore,

future research is necessary to confirm the accuracy of the novel sensor and its applications in

PwMS during over-ground walking that mimics real-world walking.

The treadmill was utilized in an effort to maintain gait speed within a given trial. The

well-controlled speed constraints permitted more explicit comparison of the temporal gait
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parameters between the speed conditions and devices. The current investigation serves as a

starting point in the assessment of accuracy of the novel sensor in a controlled manner. In

order to minimize impact of the treadmill condition on natural gait characteristics, we

established the walking speed based on over-ground comfortable walking speed. Further-

more, the distance walked during the 6MW in the current study were similar to previous

investigations of the over-ground 6MW test [21, 48]. Even so, treadmill walking might still

be a novel task to some participants and therefore not an ideal representation of real-life

walking.

Also, while the inertial sensors provide tri-axial angular velocity as well as acceleration data,

the study only utilized angular velocity data to analyze temporal gait parameters. The use of

the angular velocity derived from a gyroscope signal is advantageous since unlike accelerome-

ters, gyroscopes are less sensitive to the influence of gravity and therefore the signal is less

influenced by accurate sensor placement [49]. However, it has been reported that angular

velocity signal recorded by body-worn gyroscopes can be affected by noise and artifact [49]. A

few studies have developed algorithms to analyze the acceleration data to examine gait charac-

teristic of healthy and clinical populations [50]. Therefore, it is promising to examine whether

fusing acceleration and angular velocity data improves the accuracy of computed temporal gait

parameters.

Further, the different devices used were not attached in the same location on the body.

While this helped to minimize interference between devices, there might be some error due to

the different attachment locations. To overcome this, an additional computation was con-

ducted to match the orientation between BioStampRC and MTx. Indeed, the current study

observed improvement in accuracy of temporal parameters after the adjustment. Also, the

study did not include gold-standard for estimating the true outcomes for temporal gait param-

eters. However, previous studies have been found that the accuracy of MTx in measuring gait

is valid when compared to the gold standards (motion capture system, pressure sensor

switches) [25, 34]. Lastly, gait speed was utilized to distinguish gait impairment levels of PwMS

since it has been reported as an objective spatiotemporal measure of gait impairment [51].

A major benefit of these novel skin-mounted, conformal inertial sensors is their broader

applicability to monitoring gait in free-living environment. In the present study, all of the par-

ticipants reported that they felt comfortable when wearing BioStampRC sensors to the extent

they were unaware of the sensors during gait assessments. An essential next step will be to con-

firm their validity to measure gait characteristics in real-life ambulation.

5. Conclusion

We demonstrate that the BioStampRC provides sufficient data to enable a highly accurate

measurement of step count and temporal gait parameters in diverse clinical gait tests and

speed conditions across varying disability in PwMS. Accuracy was the lowest in swing time

such that the error increased up to 5% on average. Improving the algorithm used to detect gait

events in order to enhance the accuracy of swing time detection is suggested. BioStampRC was

also able to detect differences in gait characteristics by disability progression in PwMS. This

ambulatory monitoring system has the potential to provide a more granular assessment of gait

and a better understanding of MS related changes in walking symptoms outside of the clinic.

Such real-life continuous gait monitoring might overcome the limitations inherent in taking

‘snapshots’ of patient gait state in clinical or laboratory settings. Thus, long-term gait monitor-

ing systems might exhibit greater sensitivity in detecting onset and changes in drug therapy

efficacy. A future study confirming the validity of the sensor’s ability to measure gait activities

in everyday life is warranted.
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