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Abstract
The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the
computations performed on its afferent inputs. However, the spikes of such a neuron are a very
low-dimensional and discrete projection of this continually evolving signal. We explored the
possibility that the neuron’s efferent synapses perform the critical computational step of
estimating the membrane potential trajectory from the spikes. We found that short-term changes in
synaptic efficacy can be interpreted as implementing an optimal estimator of this trajectory. Short-
term depression arose when presynaptic spiking was sufficiently intense as to reduce the
uncertainty associated with the estimate; short-term facilitation reflected structural features of the
statistics of the presynaptic neuron such as up and down states. Our analysis provides a unifying
account of a powerful, but puzzling, form of plasticity.

Synaptic efficacies can increase (facilitate) or decrease (depress) several-fold in strength on
the time scale of single interspike intervals1-3. This short-term plasticity (STP), which is
well captured by simple, but powerful, mechanistic models1,3,4, is of a regularity and
magnitude that argues against it being treated only as wanton variability5. There have thus
been various suggestions for the function of STP, including low, high or band-pass filtering
of inputs3,6 (but see ref. 7), rendering postsynaptic responses insensitive to the absolute
intensity of presynaptic activity8,9 decorrelating input spike sequences10, and maintaining
working memories in the prefrontal cortex11.

However, despite the ubiquity of STP in cortical circuits2, these suggestions are restricted to
select neural subsystems9,11 or forms of STP5,8-10 and are often limited to feedforward
networks8-10 or to a firing rate–based description of presynaptic activities8, thereby ignoring
the fundamentally fast fluctuations in synaptic efficacies as a result of STP. Worse, the vast
bulk of models of neural circuit information processing require synaptic efficacies to be
constant over the short term of a single computation, changing at most very slowly to
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average across the statistics of input or changing only in the light of a gating
mechanism12,13. These would seem to be incompatible with substantial STP. Here, we argue
that, far from hindering such circuit computations, STP is in fact a near-optimal solution to a
central problem neural circuits face that is associated with spike-based communication.

Although, as digital quantities, spikes have the mechanistic advantage of allowing
regenerative error correction, they are a substantially impoverished representation of the
fast-evolving, analog membrane potentials of the neurons concerned14-16. These analog
quantities are normally considered to lie at the heart of computations,17,18 and it is common
to appeal to averages over space (that is, multiple identical neurons) and/or time (that is,
slow currents) to allow them to be represented by spike trains18. However, both sorts of
averages are neurobiologically questionable. In many circumstances, computations need to
be executed in the matter of a few interspike intervals19-21, precluding extensive averaging
over time; and, in many circuits, neurons represent independent analog quantities, as in
recurrent network models of autoassociative memories22,23, or partially independent
quantities, as in surface attractor models of population codes24. We make the alternative
suggestion that the analog membrane potential of a neuron is being estimated in a
statistically appropriate manner by its efferent synapses on the basis of the spike trains that
the neuron emits and that STP is a signature of this solution.

In particular, the informativeness of an incoming spike about the membrane potential varies
greatly depending on the uncertainty left by the preceding spike train. This makes the
spike’s effect very context dependent. We found that important elements of this context
dependency are realized by synaptic depression and facilitation. Furthermore, as incoming
spikes are sparse, the behavior of the optimal estimator critically depends on prior
assumptions about presynaptic membrane potential dynamics. Thus, our approach allowed
us to make detailed predictions about how the properties of STP, implementing the optimal
estimator, should be matched to the statistics of presynaptic membrane potential
fluctuations.

RESULTS
Postsynaptic potentials and the optimal estimator

We first defined the optimal estimator of the continuously varying membrane potential u of
a presynaptic cell from its past spikes. We found that it depends on these spikes in the same
way as a particular measure of its efferent synapses’ contributions to their postsynaptic
membrane potentials. Because spikes are discrete, they cannot support recovery of u with
absolute certainty and the full solution to the estimation task is a posterior probability
distribution20,25-29 P(ut | s0:t) over the possible values that the presynaptic membrane
potential at time t, ut, might take on the basis of all of the spikes observed so far, s0:t. The
mean of this posterior is then the estimator  that minimizes the squared error25. We
interpret the local postsynaptic potential at an excitatory synapse vt as representing this
optimal estimate. This local potential is loosely defined as the sum of all excitatory
postsynaptic potentials (EPSPs) at this synapse (Supplementary Note and Supplementary
Fig. 1); a filtered version of it is recorded in standard experiments into STP.

To be correct, the estimator must implicitly incorporate a statistically appropriate model of
membrane potential fluctuations and spike generation in the presynaptic neuron25. For the
latter, we adopted the common characterization that a spike is created stochastically
whenever ut exceeds a (soft) threshold30,31 (Fig. 1 and Supplementary Fig. 2). In this case,
the occurrence of a spike implies that the membrane potential is likely to be high and the
absence of spikes implies that the membrane potential is likely to be low. Thus,  should
increase following a spike and decrease during interspike intervals (Fig. 1a and Online
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Methods). The decrease should be gradual, as the firing rate of a neuron is limited even at
high membrane potential values, and thus the absence of a spike is relatively weak evidence
that the membrane potential is low. As required by our interpretation, the local postsynaptic
potential, vt, at an excitatory synapse shows the same qualitative characteristics: it increases
suddenly at the times of presynaptic spikes and decayes gradually toward a lower baseline
between transmission events (Fig. 1a).

However, this observation is only approximate. As we have mentioned, under STP, the
actual size of an EPSP depends on the past history of spiking. Such history dependence is
also a hallmark of optimal estimation, as the evidence supplied by a spike needs to be
evaluated in the context of the current state of the estimator, that is, the current posterior25.
The posterior is computed on-line in a recursive manner, according to standard Bayesian
filtering. In this, likelihood information from the current presence or absence of a spike, st,
P(st | ut), is combined with the posterior computed in the previous time step, P(ut–δt | s0:t–δt)
(Online Methods):

(1)

Thus, the effect of an incoming spike on the mean of the posterior, , will be context
dependent and vary as a function of the posterior propagated from the past.

The precise nature of the context dependence of the changes in  will depend on the
particular statistical model assumed for the dynamics of ut, P(ut | ut–δt ). Below, we consider
two increasingly complex models: one in which ut performs a random walk around a fixed

‘resting’ (or baseline) membrane potential, urest (Fig. 1), and one in which  itself also
changes in time (Fig. 2). This allowed us to explore two fundamental factors contributing to
the context dependence of  that correspond to the effects of synaptic depression and
facilitation on vt.

Synaptic depression and uncertainty
After eliminating the influence of spikes themselves, the simplest approximation to the
statistics of the membrane potential ut of the presynaptic neuron is as an Ornstein-Uhlenbeck
process32,33. For this, the total input to the presynaptic cell is assumed to be Gaussian white
noise33 and is subject to leaky integration, decaying toward its resting value, urest (Fig. 1a
and Supplementary Fig. 2; Online Methods). In this case, the posterior distribution P(ut | s0:t)

can be well characterized as a Gaussian with mean  and variance , which expresses the
estimator’s current uncertainty about . Given the assumption about the way it is generated,
observation of a spike provides evidence that ut is high. However, the quantitative effect on
raising  depends on the uncertainty σt. The less the uncertainty, that is, the better known is
ut, the less the estimate should be influenced by a spike (Fig. 1b) and the lower the synapse’s
apparent efficacy. The uncertainty is determined by the evidence from past spikes and we
should therefore expect the magnitude of the EPSPs to fluctuate according to this history.

Uncertainty in the optimal estimate increases during interspike intervals (Fig. 1c), as the
absence of a spike is only weak evidence for a low membrane potential. Therefore, spikes
that arrive after a longer period of silence should increase  by more than spikes arriving in
quick succession. This closely resembles, all the way down to fine quantitative details, the
effect of synaptic depression in a biophysically motivated canonical STP model5,34 (Fig. 1).
In such a model, depression is mediated by the depletion of a synaptic resource variable xt,

which behaves as the biophysical analog of estimator uncertainty, .

Pfister et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2013 January 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In fact, for a paired-pulse protocol, the dynamical equations describing the time evolution of

the optimal estimator and its uncertainty,  and , are formally equivalent to those of the
biophysical STP model describing the time evolution of the postsynaptic membrane
potential and synaptic resource variable, vt and xt, respectively (Online Methods). As a
result, higher presynaptic firing rates lead to diminishing postsynaptic responses in both the
optimal estimator and the STP model (Fig. 3a).

Synaptic facilitation and ‘up’ state probability
The assumption that the presynaptic membrane potential follows an Ornstein-Uhlenbeck
process is often too simplistic35. Fortunately, it is straightforward in our framework to
incorporate other statistical properties of membrane potential fluctuations and to study their
effects on the features of STP. For example, many cortical cells show phasic activation
patterns in which their membrane potential alternates between a resting and a depolarized
state, such as ‘up’ and ‘down’ states in the cortex36,37, or out-of-place field and within-place
field activity for hippocampal place cells38. This can be captured by extending the model for

the dynamics of ut to allow the resting membrane potential  to switch between two
possible values, corresponding to an up and a down state (Fig. 2, Supplementary Note and
Supplementary Fig. 2).

In this extended model, the true current value of  is unknown to the postsynaptic cell, as
with ut. Thus, the full solution to the estimation problem is a posterior distribution
expressing joint uncertainty about these two quantities (Supplementary Note). In this case,

the estimated probability that  is in its up state also reflects recent spikes and influences
 (ρt; Fig. 2a–c). Observing a spike when the current estimate of the membrane potential is

compatible with the presynaptic neuron being in its down state increases this probability
somewhat. Observing a second spike in a short time window, providing substantial extra
evidence for this up state, will thus cause a larger increment in  (Fig. 2a). EPSPs in the
facilitating biophysical STP model and in actual facilitating synapses in a paired-pulse
protocol39 (Figs. 2d and 3b) showed the same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the statistical properties of the
presynaptic membrane potential fluctuations that it needs to estimate. Thus, fitting the
optimal estimator to experimentally measured STP data (Fig. 3a,b) allowed us to predict,
without further parameter fitting, properties of the membrane potential dynamics that the
corresponding presynaptic cell type should exhibit. Testing these predictions is challenging
because they are about the natural statistics of membrane potential fluctuations and thus
require in vivo intracellular recordings, preferably from behaving rather than anaesthetized
animals.

Nevertheless, starting from our fits to data about synaptic depression and facilitation for
cerebellar climbing fibers (Fig. 3a) and hippocampal Schäffer collateral inputs (Fig. 3b), we
predicted membrane potential fluctuations in inferior olive neurons (Fig. 3c) and
hippocampal pyramidal cells (Fig. 3d) respectively, that were in broad qualitative agreement
with those found in vivo in these cell types38,40 (Fig. 3e,f). Note that the absence and
presence of marked up and down states in these two cell types, respectively, is predicted by
our theory directly from the absence and presence of facilitation in their corresponding
efferent synapses.
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The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the presynaptic
membrane potential, we measured how well  or its biophysical analog vt performed on the
estimation task in terms of the time-averaged squared error between ut and its estimate
(Online Methods). We compared the optimal estimator of the presynaptic membrane
potential (Fig. 4a) with the postsynaptic membrane potential occasioned by a synapse
undergoing STP. These two traces were very close. Notably, a static synapse without STP,
whose fixed efficacy is still optimized for the same estimation task, performed substantially
less well.

Our account of synaptic dynamics assumes no transmission failure or, equivalently, a large
number of release sites between the pre- and postsynaptic cells. Therefore, we also ran
simulations with stochastic synapses4 (Online Methods) to test a more realistic regime of
synaptic communication (Fig. 4b). The advantage of a dynamic over a static synapse was
maintained when the number of release sites was low, even in the face of transmission
failures and the added variability of the dynamic synapse entailed by the stochastic
restocking of vesicles.

DISCUSSION
We found that STP arranges for the local postsynaptic membrane potential at a synapse, vt,
to behave as an optimal estimator of the presynaptic membrane potential ut. We argue that
this is central for a wide swathe of feedforward and recurrent neural circuits. In particular, it
allows network computations based on analog quantities encoded in the somatic membrane
potentials of neurons to be realized, even though their spikes offer only a low-dimensional
and discrete projection of those potentials.

As a first step, we concentrated on the interaction between a pair of cells and on reproducing
as close an estimate as possible to the exact presynaptic membrane potential on the
postsynaptic side. Of course, vt can be changed by many factors other than synaptic currents,
such as voltage signals propagating from other dendritic compartments or backpropagating
action potentials from the soma. However, under most experimental procedures that have
been used to test STP41,42, the magnitudes of these other factors are minimized, such that
the somatic membrane potential recorded reflects, perhaps with some dendritic filtering, the
local EPSPs at the stimulated synapse. This allows our theory to be directly applied to data
obtained under such conditions (Supplementary Note).

A substantial apparent challenge to our theory, as indeed to many previous functional
accounts of STP8-11, is that different efferent synapses of the same cell can express different
forms of STP1. Two particular classes of factors that can affect vt may account for this. Both
factors have to do with the overall computation performed by the neuron in the network,
which need not strictly factorize into individual estimation of each presynaptic membrane
potential and combination of these across multiple synapses (Supplementary Fig. 1).

First, computations might be based on estimates of different functions of the presynaptic
membrane potentials rather than just their mean value; for example, their rates of change or
higher order temporal derivatives. In this case, the different efferent synapses of a single
neuron might estimate different functions and therefore be different. It will be an interesting
extension of our theory to study how synaptic estimation and single-neuron computation can
be blended, rather than being performed as separate algorithmic steps.

Second, the long-run efficacies of synapses in a neural circuit are also important in the
computations it performs18,43, suggesting that presynaptic membrane potentials scaled by
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these computational factors should be reproduced instead. In this case, the optimal estimator
just scales as well. However, if the synapse suffers from saturation or other similar nonlinear
constraints, then the form of STP that minimizes the error in the estimate of the scaled
presynaptic potential would have to reflect these nonlinearities and change as the long-run
weight alters. These changes could take potentially quite complex forms. As different
efferent synapses have different long-term weights, they could exhibit different forms of
STP. Indeed, metaplasticity of STP as a result of long-term potentiation has been observed
experimentally41,44.

We should also note that differences in STP across efferent synapses have been
predominantly shown for inhibitory interneurons1,45,46. In our theory, estimation of the
membrane potential comes in the service of network computations, which are typically
posed in terms of the excitatory principal cells rather than inhibitory interneurons. Thus, the
theory does not fully extend to cover inhibitory neurons.

Our theory employs a standard account of the relationship between ut and the presynaptic
spikes and is thus a complement of the suggestion47 that generation is more complex so that
estimation can be straightforward even with a static synapse. The latter account is not easy
to reconcile with the fluctuations evident in STP. Others have pursued ideas similar to ours
about adaptive gain control mechanisms in neurons generally acting as optimal filters48 and
dynamic synapses specifically acting as estimators of presynaptic firing rates15 (B. Cronin,
M. Sur & K. Koerding. Soc. Neurosci. Abstr. 663.6, 2007) or interspike intervals15. Some of
these studies do not encompass STP, whereas others address depression, but not facilitation.
Finally, these studies have primarily sought to predict a general advantage (if one exists at
all7) of dynamic synapses over static ones.

Our approach is unique in suggesting that synaptic dynamics are matched to the statistics of
presynaptic membrane potential fluctuations that we were able to demonstrate at least
qualitatively (Fig. 3c–f). Even such a qualitative match is noteworthy, given that the STP
data that we fitted were not extensive, were recorded in vitro under potentially very different
stimulation regimes and neuromodulatory milieux for synaptic dynamics than those relevant
in vivo, and given our highly simplified statistical model of presynaptic membrane potential
dynamics. For example, a common dynamical motif shared by many neurons, including
olivary neurons and hippocampal pyramids, and ignored by our model, is the presence of
subthreshold membrane potential oscillations38,40.

The simplicity of our model of presynaptic membrane potential dynamics makes it hard to
provide a direct biological interpretation of the optimal parameter values (Online Methods)
from the fits to data. Further theoretical work would be necessary to incorporate higher-
order statistical regularities of these dynamics into the model. Further empirical studies
recording STP under more naturalistic conditions and in vivo membrane potential recordings
from the same identified pair of neurons, or at least the same cell type, will also be required.
These would jointly license more direct comparisons and interpretations. Such experiments
would of course be technically challenging. However, the link to optimal estimation offered
by our theory provides them with the potential to test directly an important facet of neural
circuit computations.

ONLINE METHODS
The optimal estimator

Our goal was to understand the factors contributing to the mean of the posterior or the
estimate
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(2)

corresponding to the postsynaptic potential under our interpretation and, in particular, to the
size of change in this estimate in response to an incoming spike, the analogue of the size of
an EPSP.

The Ornstein-Uhlenbeck process
The generative model involves two simplifying assumptions. First, we assume that
presynaptic membrane potential dynamics are discrete time and Markovian (Supplementary
Fig. 1)

(3)

In particular, we assume that the presynaptic membrane potential evolves as an Ornstein-
Uhlenbeck process, given (in discrete time steps of size δt and thus as a first-order
autoregressive process, AR(1)) by

(4)

where urest is the resting membrane potential of the presynaptic cell (assumed to be constant
here), τ is its membrane time constant and σW is the step size for the random walk behavior
of its membrane potential. Because both τ and σW are assumed to be constant, the marginal

variance of the presynaptic membrane potential, , is stationary.

The second assumption is that spiking activity at any time only depends on the membrane
potential at that time

(5)

In particular, we assume that the spike-generating mechanism is an inhomogeneous Poisson
process. Thus, at time t, the neuron emits a spike (st = 1) with probability g(ut)δt and the
spiking probability given the membrane potential can be written as

(6)

We further assume that the transfer function is exponential (Supplementary Fig. 1)

(7)

where g0 and β are the base rate and determinism of the spike generation process,
respectively.

Because equations (3) and (5) define a hidden Markov model, the posterior distribution over
ut can be written in a recursive form as in equation (1)

(8)
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That is, the posterior at time t, P(ut | s0:t), can be computed by combining information from
the current time step with the posterior obtained in the previous time step, P(ut–δt | s0:t–δt).
Note that even though inference can be performed recursively and the hidden dynamics is
linear-Gaussian (equation (4)), the standard (extended) Kalman filter cannot be used for
inference because the measurement does not involve additive Gaussian noise, but instead
comes from the stochasticity of the spiking process (equations (6) and (7)).

Performing recursive inference (filtering), as described by equation (8), under the generative
model described by equations (3–7) results in a posterior distribution that is approximately

Gaussian5 with a mean  and a variance 

(9)

Note that the smaller the bin size δt is, the closer this posterior distribution is to a Gaussian.
The expected firing rate γt of the presynaptic cell at time t is obtained from the
normalization condition 

(10)

The mean and variance of the posterior in equation (9) evolve (in continuous time, by taking
the limit δt → 0) as5

(11)

(12)

where  denotes the spike train of the presynaptic cell represented as a sum of
Dirac delta functions, and ε is an arbitrary small positive constant that ensures that at the
time of a spike t = tspike, the update of  is based on the variance just before the spike

. (A similar, but not identical, derivation can be found in ref. 26.)

Equation (11) indicates that each time a spike is observed, the estimated membrane potential
should increase proportionally to the uncertainty (variance) about the current estimate. In
turn, this estimation uncertainty then decreases each time a spike is observed (equations (10)
and (12)). Conversely, in the absence of spikes, the estimated membrane potential decreases
while the variance increases back to its asymptotic value. It can be shown5 that the
representation of uncertainty about the membrane potential by σ2 is self-consistent because
it is predictive of the error of the mean estimator, .

The dynamics of the membrane potential estimator in equations (11) and (12) is closely
related to the dynamics of short-term depression. This can be shown formally by taking the
limit when presynaptic spikes are rare. In this case, equations (11) and (12) can be rewritten5

as
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(13)

(14)

where  is the normalized variance of the estimator. The other constants involved

are , , ,  and , and ,  and γ∞ are
the stationary posterior mean, variance and expected firing rate in the optimal estimator
(equations (9) and (10)) in the absence of presynaptic spikes. More precisely, from equations
(11) and (12), we have

(15)

(16)

where the expected firing rate is . Although it is difficult to get an
explicit expression for  as a function of the model parameters alone, from equations (15)

and (16) we can still express it as a function of the stationary variance 

(17)

Equations (13) and (14) directly map the posterior mean  and (normalized) variance 
onto the postsynaptic membrane potential v and the synaptic resource variable x in a
canonical, biophysically motivated model of a synapse undergoing synaptic depression (see
equations (20) and (21)).

The switching Ornstein-Uhlenbeck process
We modeled presynaptic membrane potential fluctuations with an Ornstein-Uhlenbeck
process around a constant resting membrane potential. We then generalized this process by
letting the resting potential itself change. In this switching Ornstein-Uhlenbeck process, the

resting membrane potential  is not fixed, but randomly switches between two levels, u+

and u−, corresponding to up and down states (Supplementary Fig. 1)

(18)

where η− and η+ are the rates of switching to the down and up states, respectively. Similarly
to equation (4), the presynaptic membrane potential evolves as an Ornstein-Uhlenbeck

process around the resting potential  which is now time dependent
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(19)

Spike generation is described by the same rule as before (equations (6) and (7)). Although
we were able to develop some analytical insight into the behavior of the optimal estimator in
the case of a switching Ornstein-Uhlenbeck process (Supplementary Note), a full analytical
treatment remains a challenging task. Thus, the results displayed in Figure 2 were obtained
by using standard particle filtering techniques50 (see below).

Biophysically motivated STP model
The model we used was taken directly from reference 11 as a canonical model of a synapse
undergoing STP. It describes how the postsynaptic potential vt, the synaptic resource xt
(responsible for depression) and the utilization factor yt (responsible for facilitation) co-vary
in time

(20)

(21)

(22)

where v0 is the postsynaptic resting membrane potential, τm is the postsynaptic membrane
constant, J is (the static part of) synaptic efficacy, Y is the maximal synaptic utilization (and
the rate of increase in y in response to a spike), τD is the time constant of synaptic
depression and τF is the facilitation time constant. Note that if the facilitation time constant
is very short (τF →0), then yt can be replaced by Y in equations (20) and (21), resulting in
pure depression. Also note that this standard model ignores the finite rise time of EPSPs.
However, as rise times are usually about an order of magnitude faster than decay time
constants, the effects of this approximation on the estimation performance of a synapse (as
shown in Fig. 4) are expected to be negligible and, in any case, affect the static and the
dynamic versions of the model equally.

Measuring the performance of estimators
The performance of an estimator, P, was measured as its rescaled root mean squared error
(Fig. 4)

(23)

where  can be substituted with vt to measure the performance of the biophysical models.
Note that this provides a suitably normalized measure of performance as perfect estimation
results in P = 1 and an estimator that outputs the expected mean presynaptic membrane
potential, thereby completely ignoring presynaptic spikes, has P = 0.
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Stochastic release
Figure 4 shows the performance of static and depressing synapses and the optimal estimator
for the case of stochastic vesicle release. Here, we provide the details of the calculations
involved following reference 4.

Depressing synapses
Let N denote the total number of independent release sites. Each site can release at most one
vesicle each time a presynaptic spike occurs. Each released vesicle gives rise to a quantum q
= J/N postsynaptic response, where J is the maximal EPSP amplitude. The postsynaptic
membrane potential evolves as

(24)

where τm is the membrane time constant, v0 is the postsynaptic resting potential and St is the
presynaptic (delta) spike train. The total number of vesicles released at time t in response to
a presynaptic spike, , depends on the number of vesicles that are ready to fuse, , and the
utilization fraction Y. More precisely, at the time of a spike,  is drawn from a binomial
distribution

(25)

The number of ready-to-fuse vesicles  decreases by  each time there is a spike and
increases stochastically back to N with a time constant τD in the absence of spikes.
Formally, the dynamics of  is given by

(26)

where  and tstk denote the stochastic restocking times produced by an
inhomogeneous Poisson process with intensity .

It is easy to show that taking the expectation of equations (24) and (26) over the stochastic
release and restocking events, and setting , we get back the standard model of
short-term depression (see equations (20) and (21)).

Static synapses
If we take the limit of a short time constant for depression, that is, τD → 0, the restocking of
the vesicle described by equation (26) becomes instantaneous and we have . As a
consequence, the number of released vesicles at the time of a spike is given by

(27)

Optimal estimator
In the case of stochastic vesicle release, the variables of the optimal estimator evolve as

(28)
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(29)

where the number of released vesicles  is given by equation (27). Note that if we replace 
by its expectation , we get back the deterministic optimal estimator derived in
equations (11) and (12).

The utilization parameter Y describes the probability of release for a presynaptic spike in all
three models. For a fair comparison, it was chosen to be Y = 0.39 for all models, which
optimized the performance of the dynamic synapse in the deterministic case for β = 2 (the
value we used for the stochastic simulations) and which is consistent with experimentally
reported values for the probability of release in cortical pyramidal-to-pyramidal cell
connections42.

Numerical simulations for the optimal estimator
We evaluated the mean posterior , the conditional means μ+ , μ− and the conditional
variances σ+ , σ− numerically using a standard particle filtering technique50. In practice, we

used Npart = 10,000 particles, each of which was two-dimensional ,i = 1, K,
Npart. They evolved according to

(30)

(31)

where  is given by equation (18) and  by equation (19).

There was an (importance) weight, , assigned to each particle, which was updated
according to

(32)

In each step of the simulation, all weights were renormalized such that . The
particles were resampled when the weights became strongly uneven. Formally, if the
number of effective particles at time t, defined as

(33)

fell below a given threshold Nthresh = 9,000, then all particles were resampled and the

weights were all set back to .

The empirical mean and variance of the posterior membrane potential distribution were
determined as
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(34)

(35)

The numerical evaluation of  , ,  and  followed the same procedure except
that the summation was restricted to the particles that were in the up (or down) state and the
weights were renormalized accordingly.

Model parameters for simulations
Unless otherwise noted, the presynaptic membrane time constant was set to τ = 20 ms. The
spiking determinism parameter was β−1 = 3 mV, and g0 was set such that g(−60 mV)=10
Hz. For Figure 1, the s.d. of the presynaptic membrane potential was σOU = 5 mV and the
resting membrane potential was urest = −60 mV. For Figure 2, the resting values were u− =
−65 mV and u+ = −55 mV. The transition rates were η+ = η− = 2 Hz and σOU = 2 mV. For
Figure 3a, the fitted parameters were βσOU = 1.13, τ = 1000 ms and g(−60 mV)= 10 Hz.
Each one of those three parameters were then sequentially perturbed by ± 5% (resp. ±10%).
For Figure 3b, the lower baseline potential was fixed at u− = −65 mV. The fitted parameters
were σOU = 0.28 mV, τ = 85.7 ms, u+ = −53.9 mV, η− = 1.09 Hz, η+ = 1.13 Hz, β−1 = 3
mV, and g0 was set such that g(−60 mV ) = 17.8 Hz. Each one of those seven parameters
were sequentially perturbed by ± 5% and by ±10%. Note that in this figure, we did not
display the experimental data point for the shortest interspike interval (5 ms) because our
current spiking model does not include the effects of refractoriness and burstiness that may
dominate estimation at such short intervals. For Figure 4, we set urest = −60 mV, σOU =1
mV and β−1 = 0.5 mV.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Estimating the presynaptic membrane potential from spiking information. (a) Sample trace
(black) of the presynaptic membrane potential generated by an Ornstein-Uhlenbeck process.
When the membrane potential exceeds a soft threshold, action potentials (vertical black
lines) are generated. The optimal estimator of the presynaptic membrane potential (red line,
mean estimate ; red shading, one s.d. σt) closely matches an optimally tuned canonical
model of short-term plasticity11 (blue). Inset shows a magnified section. (b) EPSP amplitude
of the optimal estimator (red, mean ± s.d.) and of the canonical model of short-term
plasticity (blue, mean ± s.d.) as a function of the estimator uncertainty σ2. Note that EPSP
amplitudes in the biophysical model tend to be smaller than those in the optimal estimator,
which is compensating for a somewhat slower decay in the biophysical model (see inset in

a). (c) The dynamics of the scaled uncertainty  (red) closely match the resource
variable xt of the canonical model of STP (blue), σ2.
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Figure 2.
Estimating the presynaptic membrane potential when the resting membrane potential
randomly switches between two different values. (a) Presynaptic subthreshold membrane
potential with action potentials (black), its optimal mean estimate ( , red line) with the
associated s.d. (σ, red shading), and the postsynaptic membrane potential in a model
synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) optimal
estimator (red solid line) strongly depends on the estimated probability ρ of being in the up
state (red dashed line). (b) EPSP amplitude in the optimal estimator depends on its
uncertainty (horizontal axis, σ2) and the change in the estimated probability that the
presynaptic cell is in its up state (color code, Δρ). (c) The estimated probability that the
presynaptic cell is in its up state ρ (red) tracks the state of the presynaptic neuron (black) as
it randomly switches between its up and down states. (d) EPSP magnitudes in the optimal
estimator against EPSP magnitudes in the model synapse.
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Figure 3.
The optimal estimator reproduces experimentally observed patterns of synaptic depression
and facilitation. (a) Synaptic depression in cerebellar climbing fibers (circles: mean ± s.e.m.;
redrawn from ref. 6) and in the model (solid line), measured as the ratio of the amplitude of
the eighth and first EPSP as a function of the stimulation rate during a train of eight
presynaptic spikes. (b) Synaptic facilitation in hippocampal Schäffer collaterals (circles,
mean ± s.e.m.; redrawn from ref. 39) and in the model (solid line), measured as the ratio of
the amplitude of the second and first EPSP as a function of the interval between a pair of
presynaptic spikes. Shading in a and b shows the robustness of the fits (Online Methods):
model predictions when best-fit parameters are perturbed by 5% (dark gray) or 10% (light
gray). (c–d) Predictions of the model for the dynamics of inferior olive neurons (c) and
hippocampal pyramidal neurons (d). Sample traces were generated with parameters fitted to
the data about STP in cerebellar climbing fibers (shown in a) and Schäffer collaterals
(shown in b). (e–f) In vivo intracellular recordings from inferior olive neurons of the
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal cells of the
behaving rat (f, reproduced from ref. 38).
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Figure 4.
Estimation performance of the presynaptic membrane potential. (a) Performance as a
function of the determinism of presynaptic spiking, β (Online Methods), in the optimal
estimator (red), an optimally fitted dynamic synapse (blue) and an optimally fitted static
synapse without short-term plasticity (green). When β = 0 (entirely stochastic spiking),
spikes are generated independently of the membrane potential and, as a consequence, all
models fail to track the membrane potential. As β becomes larger (more deterministic
spiking), the dynamic synapse model matches the optimal estimator in performance and
substantially outperforms the static synapse. Realistic values for βσOU (here σOU = 1 mV)
have been found to be between 2 and 3 in L5 pyramidal cells of somatosensory cortex49. (b)
Estimation performance with stochastic vesicle release as a function of the number of
synaptic release sites, N. The dynamic synapse (blue) tracked the performance of the
optimal estimator (red) well and outperformed the static synapse (green) at all values of N.
The performance of all estimators decreases only when the number of independent release
sites becomes very low (N = 1 or 2 ). When N is large (N → ∞), synaptic transmission
becomes deterministic, even though spike generation itself remains stochastic (with
parameter β = 2 shown by the arrow in a).
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