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Abstract

Background: Pain is generally concomitant with an inflammatory reaction at the site where the nociceptive fibers
are activated. Rodent studies suggest that a sterile meningeal inflammatory signaling cascade may play a role in
migraine headache as well. Experimental studies also suggest that a parenchymal inflammatory signaling cascade
may report the non-homeostatic conditions in brain to the meninges to induce headache. However, how these
signaling mechanisms function in patients is unclear and debated. Our aim is to discuss the role of inflammatory
signaling in migraine pathophysiology in light of recent developments.

Body: Rodent studies suggest that a sterile meningeal inflammatory reaction can be initiated by release of peptides
from active trigeminocervical C-fibers and stimulation of resident macrophages and dendritic/mast cells. This
inflammatory reaction might be needed for sustained stimulation and sensitization of meningeal nociceptors after
initial activation along with ganglionic and central mechanisms. Most migraines likely have cerebral origin as
suggested by prodromal neurologic symptoms. Based on rodent studies, a parenchymal inflammatory signaling
cascade has been proposed as a potential mechanism linking cortical spreading depolarization (CSD) to meningeal
nociception. A recent PET/MRI study using a sensitive inflammation marker showed the presence of meningeal
inflammatory activity in migraine with aura patients over the occipital cortex generating the visual aura. These
studies also suggest the presence of a parenchymal inflammatory activity, supporting the experimental findings. In
rodents, parenchymal inflammatory signaling has also been shown to be activated by migraine triggers such as
sleep deprivation without requiring a CSD because of the resultant transcriptional changes, predisposing to
inadequate synaptic energy supply during intense excitatory transmission. Thus, it may be hypothesized that
neuronal stress created by either CSD or synaptic activity-energy mismatch could both initiate a parenchymal
inflammatory signaling cascade, propagating to the meninges, where it is converted to a lasting headache with or
without aura.

Conclusion: Experimental studies in animals and emerging imaging findings from patients warrant further research
to gain deeper insight to the complex role of inflammatory signaling in headache generation in migraine.
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Background
Pain is generally concomitant with an inflammatory re-
action of varying intensity at the site where the nocicep-
tive fibers are activated. Migraine is probably no
exception; there is ample experimental evidence, mostly
from rodents, suggesting that the nociceptive trigemino-
cervical afferents mediating the headache can be acti-
vated by a sterile meningeal inflammatory process [1].
This process may directly originate within the meninges
or be triggered by intrinsic brain activity such as cortical
spreading depolarization (CSD) although debated [1–3].
Evidence from studies on mice and rats suggests that a
parenchymal neuroinflammatory signaling between neu-
rons, astrocytes and microglia, which eventually migrates
to the meninges [2, 4–11], could be the potential link
communicating a non-homeostatic event in the insens-
ate brain to pain-sensitive meninges. Recent clinical im-
aging studies have provided supporting evidence for the
presence of parenchymal as well as meningeal inflamma-
tion in migraine patients [12, 13]. In this review, our
goal is to briefly summarize the current understanding
of meningeal neurogenic inflammation and then focus
on parenchymal inflammatory signaling in more detail.
We should note from the beginning that these self-
limited, physiological inflammatory responses should not
be considered identical to conventional inflammation
seen under pathological conditions despite shared
mechanisms.

Meningeal neurogenic inflammation and
nociceptor activation
Prolonged activation and sensitization of primary and
central nociceptors within the trigeminocervical complex
are thought to underlie the throbbing headache and allo-
dynia during migraine. Rodent experiments suggest that
a sterile meningeal inflammation initiated by release of
peptides from trigeminocervical C-fibers and activation
of resident inflammatory cells (mast cells, macrophages
and dendritic cells) could contribute to sustained activa-
tion and sensitization of meningeal nociceptors [14–17].
Supporting these experimental findings, the association
of meningeal inflammation with migraine headache has
recently been shown by a positron emission tomography
- magnetic resonance imaging (PET-MRI) study of 11
migraine patients using a highly sensitive inflammatory
tracer [(11) C]PBR28 [13] (Fig. 1). Despite significant dif-
ferences between species (e.g. the dominant peptide type
expressed in nociceptors), it is likely that a form of sub-
tle inflammatory reaction is required as a common
mechanism to sustain stimulation of trigeminocervical
nociceptive fibers for hours and even days following ini-
tial activation [16, 18]. Available evidence suggests that
this inflammatory signaling may take place in the trige-
minocervical ganglia as well as meninges and might in-
volve central nociceptive pathways on chronification of
headache [19, 20].
Meningeal nociceptive fibers can release a number of

vasoactive peptides including calcitonin gene-related

Fig. 1 [(11) C]PBR28 PET/MRI showing inflammatory activity in the occipital cortex (black arrow), overlying meninges (red arrows), and bone
marrow (white arrows) in a patient suffering from migraine with visual aura attacks (from [13] with permission)
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peptide (CGRP), pituitary adenylate cyclase-activating
polypeptide (PACAP), substance P and neurokinin-A
upon prolonged activation [1, 21]. By way of a mono-
synaptic reflex between the trigeminal nucleus caudalis
and superior salivatory nucleus in brain stem, parasym-
pathetic nerve fibers around meningeal vessels are con-
comitantly activated, releasing vasointestinal peptide
(VIP), PACAP and acetylcholine [1, 22]. This parasym-
pathetic reflex is thought to mediate the middle menin-
geal artery (MMA) dilation lasting about an hour in the
wake of CSD [2, 23, 24]. Its short duration suggests that
MMA dilation is not directly involved in headache but it
still could be a measurable indicator of early trigemino-
vascular activation. This brief change in MMA diameter
may have evaded detection in patients during spontan-
eous migraine attacks with MR angiograms, as patients
were scanned several hours after attack onset [25, 26].
Indeed, MMA dilation in migraine has only been re-
corded at the initial phase of attacks induced by agents
like CGRP or cilostazol [27, 28], which was significantly
larger on the side ipsilateral to the pain unlike the dila-
tions observed in intracranial arteries as a consequence
of the direct vasodilatory actions of the agents used. In
line with the view that MMA dilation may not be dir-
ectly related to nociception, recent experimental studies
have shown that systemically given CGRP antagonist,
fremanezumab did not affect post-CSD MMA dilation
and dural plasma protein extravasation (that has a paral-
lel time course to MMA dilation) yet inhibited A∂-fiber
mediated nociception [24, 29]. This is in contrast to ac-
tion of triptans, which inhibit CGRP release from

nociceptors, hence, suggests that triptans and CGRP an-
tagonists may have different sites of actions on the bipolar
trigeminocervical nerves (e.g. presynaptic varicosities or
Ranvier nodes of peripheral meningeal branches or the
ganglion) and dural inflammatory cells although they lead
to similar pharmacological endpoints [19]. Among the
peptide mediators released, CGRP is the one with the best
documented role in migraine pathophysiology, because,
CGRP concentration in plasma of jugular vein signifi-
cantly increases during migraine attacks [30], intravenous
CGRP infusion triggers migraine-like episodes in migrai-
neurs [31] and anti-migraine treatments targeting either
CGRP release (triptans) or CGRP peptide or its receptor
(CGRP antagonists) are clinically effective [32].
Several lines of experimental evidence suggest that ac-

tivation of inflammatory cells such as mast cells, macro-
phages and dendritic cells contribute to meningeal
neurogenic inflammation, at least in rodents [14–17]
(Fig. 2). Dural macrophages activated by a single CSD
reportedly retract their processes, assume a transient
(20–50min) circular phenotype and stay in close prox-
imity to transient receptor potential cation channel sub-
family (TRP) V member 1 (TRPV1)-positive meningeal
nociceptors [17]. Dural mast cells are lined up along
nociceptive fibers, suggesting a functional collaboration
between them. Experiments in rodents have shown that
mast cell activation contributes to activation of nocicep-
tors by releasing several algesic mediators such as sero-
tonin and prostaglandin I2 [33]. Tryptase is also secreted
by mast cells, which activates the protease-activated re-
ceptors (PAR) found on dural afferents and causes

Fig. 2 CSD activates trigeminal nociceptors around pial and dural vessels as well as meningeal macrophages and dendritic cells within 6–20 min
in rodents [17]. Mast cell degranulation also contributes to the sterile meningeal inflammatory response. These inflammatory cells are in close
proximity to the meningeal nociceptor fibers (pial nociceptive fibers and their axon collaterals around dural vessels) and may contribute to
sustained stimulation and sensitization of nociceptors after initial activation, causing hours to days lasting headache. Blood-brain barrier (BBB)
impermeable drugs such as anti-CGRP antibodies and sumatriptan can reach dural nociceptors located outside the BBB unlike pial nociceptors
under the pial membrane. This figure is produced using Servier Medical Art (http://www.servier.com)
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migraine-like pain behaviors in mice [34–36]. Moreover,
mast cells express purinergic receptors [37], which can be
activated by adenosine triphosphate (ATP) elevated in the
extracellular medium during inflammatory conditions. In
mast cell-deficient animals, extracellular ATP-induced
nociceptor firing is significantly weaker [38]. PACAP and
glyceryl-trinitrate (GTN), both of which cause migraine-
like headaches in humans are potent inducers of mast cell
degranulation [39, 40]. VIP, Substance P, but not CGRP,
degranulate human mast cells in vitro [41]. Although no
CGRP receptor expression was detected in human mast
cells [42], macrophages and dendritic cells [17] express
CGRP receptors [43, 44] and can release mediators cap-
able of activating nearby mast cells. The parasympathetic
reflex can also contribute to mast cell activation by releas-
ing PACAP and VIP. However, the evidence from humans
for these inflammatory cellular reactions identified in ex-
perimental animals is yet incomplete. For instance, Khan
et al., studied uptake of paramagnetic particles by macro-
phages in patients within 24 h of a migraine without aura
(MO) attack [45], unfortunately however, their resolution
allowed imaging macrophages only in the parenchyma,
not in the meninges. Not surprisingly, they did not find in-
creased macrophage activity in the pain processing hemi-
sphere because the parenchymal neuroinflammatory
signaling in migraine likely does not involve participation
of inflammatory cells as discussed below.
As noted above, a strong support for involvement of

vasoactive neuropeptides and sensory fibers in migraine
pathogenesis is based on the success of anti-CGRP
monoclonal antibodies, triptans and ditans in the clinic.
CGRP antagonists inhibit CGRP or its receptors,
whereas ergots and 5-hydroxytriptamine 1B/1D
(5HT1B/1D) receptor agonist triptans, as well as the novel
5-HT1F agonist lasmiditan suppress CGRP release from
C-fibers [46–48]. Development of clinically useful trip-
tans and CGRP antagonists is a striking example of how
animal models of meningeal neurogenic inflammation
provided information about neuropeptides that was in-
strumental and highly informative for clinical drug dis-
covery. The successful relief of headache by monoclonal
CGRP antibodies, which cannot permeate the blood-
brain barrier (BBB) due to their large size, point to the
significant role of CGRP in migraine nociception al-
though the precise site of action is yet not clear [19]. Al-
leviation of migraine headache with sumatriptan that is
also poorly BBB-permeable is in line with the effect of
antibodies against CGRP and its receptor. These findings
altogether suggest a site of action outside the BBB for
triptans and CGRP antagonists either in the dura, the
trigeminal ganglion or both. On the contrary, the clinical
inefficiency of neurokinin-A antagonists that inhibit
plasma protein extravasation in rodents led to the sug-
gestion that the meningeal neurogenic inflammation

might be a mere indicator of nociceptor activation but not
the cause of headache [49–52]. It was further argued that
the peripheral site of action of acute migraine drugs did
not necessarily exclude the role of central mechanisms be-
cause a primarily intrinsic brain dysfunction could sec-
ondarily activate the peripheral trigeminal mechanisms.
Similarities (e.g. throbbing nature, photo and phono-

phobia) to headaches of subarachnoid hemorrhage or
meningitis, known to be caused by meningeal irritation
and inflammation, point to the meningeal nociception as
the substrate of migraine headache as well [53]. How-
ever, despite the shared cascade of events, the intensity
of inflammatory reaction is dramatically different be-
tween the two conditions. For example, while meningitis
causes manifest gadolinium contrast enhancement in
MRI, no enhancement has been detected during experi-
mentally induced dural neurogenic inflammation [54–
56] and there are is only a few case reports of contrast
enhancement observed during severe familial hemiplegic
migraine (FHM) attacks or prolonged aura [57–59]. The
subtle inflammatory changes in meningeal neurogenic
inflammation are therefore difficult to detect clinically
by using routine neuroimaging methods. Indeed, a sensi-
tive inflammatory tracer and sophisticated PET-MRI
technology were necessary to be able to show this in-
flammatory activity in migraine patients suffering from
frequent attacks [13].

Origin of meningeal neurogenic inflammation
Activation and sensitization of trigeminocervical noci-
ceptors, as part of an acute sterile inflammation, can
take place at the level of meninges or the trigeminocervi-
cal ganglia, without any intrinsic brain involvement [60,
61]. Indeed, some migraine headaches may be initiated
by direct activation of meningeal nociceptors with envir-
onmental irritants. For example, umbellulone evaporat-
ing from the leaves of headache tree (Umbellularia
californica) is thought to stimulate TRP subfamily A
member 1 (TRPA1) channels on meningeal nociceptors
and thus cause headache [62]. Besides this direct mech-
anism of nociceptor activation, some irritants may act by
inducing meningeal mast cell degranulation [15]. An-
other activator of the meningeal mast cells, GTN [39,
63] induces headache within 4–6 h after administration
to migraineurs [64, 65] and meningeal neurogenic in-
flammation in rodents [63].
As noted above, a transient central dysfunction trans-

lated to headache by the trigeminocervical complex and
its peripheral nociceptors are considered the most likely
mechanism initiating migraine headache. A cerebral ori-
gin is indeed suggested by presence of several prodromal
neurological symptoms preceding the headache [66].
Based on these, the central ‘migraine generator’ theory
has been proposed [67–70]. PET studies of spontaneous
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or induced migraine attacks pointed to the brain stem
areas including the periaqueductal gray matter and/or
dorsolateral pons as potential trigger zones [67, 70–73].
However, considering that these areas cover several
brain stem nuclei or neuronal populations having oppos-
ing roles in pain modulation, the resolution of the im-
ages was not sufficient to make a compelling argument
for a pain-generating brain stem dysregulation [74, 75].
Imaging studies also disclosed an increased hypothal-
amic activity during migraine attacks, which led to sug-
gestion of the hypothalamus as a potential trigger zone
[76–78]. Indeed, an abnormal activity in hypothalamic
nuclei and increased connectivity with thalamic and
brain stem nuclei have been documented in the pre-
monitory phase of migraine, as early as 24 h before
symptomatic attack [78, 79]. This early hypothalamic ac-
tivation is consistent with prodromal symptoms like ap-
petite change, sleep abnormalities or autonomic
alterations. However, the headache generator hypothesis
currently lacks a convincing explanation for why a trig-
ger zone should be present specifically for the trigeminal
ophthalmic nociceptive system associated with migraine,
whereas no such mechanism exists for neighboring areas
transmitting/modulating the nociceptive impulses from
rest of the body. Therefore, other intrinsic brain events
arising in the parenchyma under suboptimal homeostatic
conditions should also be considered for subsequent ac-
tivation of peripheral and central nociceptors and, men-
ingeal neurogenic inflammation.
In line with the latter view, although debated, migraine

aura appears to be one of the triggers of the meningeal
nociception [3, 16, 80, 81]. Several key experimental
findings support this possibility: For example, it has been
shown that CSD, the neurophysiological correlate of mi-
graine aura [82], can lead to vasodilation, plasma ex-
travasation and mast cell degranulation in dura about
20 min after a single CSD in rodents [2, 23, 24]. These
changes can be prevented by trigeminal nerve denerv-
ation, indicating that they are caused by activation of the
trigeminal nerve by CSD [23]. Indeed, both the trigemi-
nal ganglion and second-order neurons in brain stem
have been shown to start firing around 20 min after CSD
in the rat [83–87]. Supporting animal experiments,
headache also emerged within 35 min after the experi-
mentally induced auras in migraineurs by hypoxia or by
exercise (alone or combined with photic stimulation) or
by photic stimulation [82, 88]. Focal hypoperfusion/hyp-
oxia-induced headaches following an aura are one of the
earliest symptoms of hereditary vasculopathies such as
CADASIL [89, 90].
Conforming with the experimental findings, meningeal

contrast enhancement was recorded with MRI during
severe FHM or prolonged aura attacks [57–59] and, al-
bumin leakage to dura was detected by single-photon

emission computed tomography imaging during a mi-
graine attack in a non-familial migraine case [91]. How-
ever, the most compelling evidence has recently been
obtained by using a sensitive PET inflammation marker
([(11) C]PBR28), showing clear meningeal tracer uptake
in 11 of 11 patients suffering from migraine with aura
[13]. Importantly, the labeling was most prominent over
the occipital cortex generating the visual aura and lasted
several days after a migraine attack. The tracer uptake
was strong enough to be visualized in single patients,
creating the opportunity to test various hypotheses re-
garding the role of meningeal inflammation in migraine
(e.g. whether it is suppressed by triptans and CGRP an-
tagonists). Tracer uptake was extended into the overly-
ing bone marrow, raising the interesting possibility that
inflammatory bone marrow cells might also contribute
to dural inflammation. This finding is also supported by
the identification of direct vascular channels in rodents
and humans, connecting skull bone marrow to the brain
surface and meninges and allowing migration of myeloid
cells [92].
About 2/3 of migraineurs, on the other hand, do not

experience aura before headache (MO), which requires
identification of brain dysfunctions other than CSD that
can also lead to trigeminovascular activation. In fact, this
need led to the hypothesis of a central dysfunction in
pain pathways as discussed above. Alternatively, silent
(asymptomatic) CSDs limited to gyri outside the visual
and sensory cortices have been proposed to underlie
MO attacks [93, 94]. The activation of parenchymal in-
flammatory signaling pathways and subsequent menin-
geal inflammation by cortical disturbances other than
CSD has been proposed as another possibility [95]. Ac-
cording to this hypothesis, a mismatch between the rap-
idly escalating metabolic demand during intense
glutamatergic transmission and synaptic energy supply
can initiate the inflammatory signaling cascade and
cause headache [96]. Migraine triggers such as fasting,
sleep deprivation and hormonal changes may predispose
to such a mismatch by impacting astrocytic energy sup-
ply mechanisms at transcriptional level [95–97]. For in-
stance, sleep deprivation has been shown to lead to
inadequate utilization of astrocytic glycogen because of
the transcriptional changes induced that favor glycogen
synthesis over glycogen breakdown [95, 96]. Glycosyl
units liberated from glycogen are preferentially used over
glucose for the uptake of extracellular potassium and
glutamate by astrocyte processes due to the differential
kinetics of enzymes involved and rates of glucose trans-
port versus glycosyl liberation [95–97]. The same mech-
anism has also been shown to lower the CSD threshold
in rodents by causing insufficient clearance of extracellu-
lar potassium and glutamate, hinting clues for emer-
gence of migraine with and without aura attacks in the
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same individual by using a final common pathway [95–
97]. Clinically supporting a potential role of metabolic
perturbation in MO, headache emerged before as well as
after the aura in migraineurs subjected to prolonged
hypoxia [88]. The extensive literature about the potential
role of a cerebral energy imbalance in migraine has re-
cently been reviewed [98, 99].

Parenchymal neuroinflammatory signaling
Several groups have reported a parenchymal inflammatory
response to CSD, which might migrate to meninges and
activate the trigeminovascular system and meningeal in-
flammation [2, 5–11]. Of note, this is simply a non-
cellular, molecular inflammatory signaling cascade report-
ing the suboptimal homeostasis in brain but not an overt
inflammation as seen, for example, in multiple sclerosis or
around glial tumors. Such parenchymal signaling appears
to be a prerequisite for migraine attacks starting within
the brain except those initiated by direct activation of
meningeal nociceptors. CSD-induced flux of algesic medi-
ators such as H+, ATP and nitric oxide (NO) from inter-
stitium to perivascular and subarachnoid spaces can
activate perivascular pial nociceptors [23]. Indeed, in rats,
firing of a group of neurons in trigeminal ganglion and
nucleus caudalis concomitantly with CSD has been re-
corded, which can account for the auras coincident with
headache [17, 83–87]. However, most of the nociceptive
units started firing 15min after a CSD wave when the tis-
sue homeostasis had already been restored, in line with
the clinical observation that headaches being delayed by
15–20min after majority of migraine auras. This delay in
dural nociceptor firing also conforms to the slowly rising
MMA blood flow in the wake of CSD in rats and mice [2,
23, 24]. A 12–20min delayed activation of dural macro-
phages and dendritic cells, following early activation of
pial macrophages has also been proposed to explain this
time lag after CSD [17].
Supporting the hypothesis of parenchymal inflamma-

tory signaling, a recent PET/MRI study showed wide-
spread uptake of an inflammatory tracer in the brains of
13 patients having frequent migraine with aura attacks
[12]. According to the observations made in mice and
rats, neural stress created by high extracellular potas-
sium, glutamate and intracellular calcium as well as
swelling during a single CSD leads to opening of pan-
nexin 1 (Panx1) large-pore channels and release of
interleukin-1β (IL-1β) and high mobility group box pro-
tein 1 (HMGB1) from neurons [2] (Fig. 3). These pro-
inflammatory mediators cause nuclear translocation of
the transcription factor nuclear factor-kappa B (NF-κB)
in astrocytes and induce transcription of inflammatory
enzymes and cytokines, which likely results in synthesis
and release of prostanoids, cytokines, and NO from as-
trocytes to the perivascular and subarachnoid spaces [2].

The inflammatory mediators can directly reach nocicep-
tive fibers around pial vessels over the glia limitans
through a menigeo-astroglial network of interconnected
cellular processes [100] (Fig. 3) or by way of cerebro-
spinal fluid (CSF) fluxes toward the surface in perivascu-
lar spaces. Axon collaterals from pial perivascular
nociceptive fibers are thought to activate dural nocicep-
tors and trigger the inflammatory signaling observed in
rodent studies (Fig. 2). Indeed, an overt inflammatory
tracer uptake in meninges overlying the occipital cortex
was detected in the PET/MRI study of migraine with
aura (MA) patients as mentioned above [13]. In the sec-
tions below, we will review the main elements of this
parenchymal inflammatory cascade in more detail.
One advantage of the parenchymal inflammatory signal-

ing hypothesis is that it can explain activation of menin-
geal nociceptors in the absence of CSD (in MO) as well as
with CSD (in MA). For example, migraine triggers such as
sleep deprivation or acute psychological stress induce
transcriptional changes in astrocytes that direct glucose in
astrocyte processes preferentially to glycogen synthesis,
thereby, hindering glutamate and potassium clearance
during rapidly escalating intense neuronal activity because
glycogen-derived glycosyl units are essential to fuel astro-
cytic uptake mechanisms [95, 96]. This synaptic activity-
related neuronal stress has been shown to initiate the par-
enchymal signaling cascade by opening of the neuronal
Panx1 channels, causing caspase-1 activation and HMGB1
release in the absence of CSD in the mouse [95]. Thus,
migraine triggers could potentially activate the parenchy-
mal inflammatory signaling pathway and induce headache
without needing CSD (i.e. aura).
Although multiple CSDs were previously proposed to be

necessary for headache generation in rodents [101, 102],
recent behavioral tests clearly showed that a single CSD
evoked by noninvasive methods was sufficient to generate
headache within an hour [103, 104] as suggested by previ-
ous electrophysiological recordings from dural afferents in
rats [17, 83–87]. Of note, inflammatory response is ex-
pectedly heightened after multiple CSDs and is known to
lead to activation of microglia, thus, can exhibit a more
complex expression profile, which may be more akin to
the inflammatory reaction in patients suffering from fre-
quent migraine with aura attacks [9, 11, 105, 106].
Whereas multiple CSDs are useful as an experimental tool
to disclose CSD-induced subtle changes, it should be kept
in mind that, typically, a single CSD causes most of the
auras in humans and, the associated hemodynamic
changes matching the symptoms are localized to a single
lobe or a few gyri, as captured with functional MRI or
PET performed within 30min of aura onset [82, 93, 107–
112]. However, aura does not always lead to headache in
patients, suggesting that, to be able to induce pain, CSD-
induced inflammatory signaling has to coincide with a
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period when the somatosensory threshold is low. Fluctua-
tions in the somatosensory threshold throughout the mi-
graine cycle were previously shown with repeated
functional MRIs (fMRI) during trigeminal stimulation and
the extensive literature on migraine thresholds has re-
cently been reviewed [113, 114]. Furthermore, pain
threshold is well known to show inter and intra-individual
variability and is modulated by several biological factors
(e.g. genetic and hormonal). Indeed, some people never
suffer from headaches at all [3].

Neuronal stress sensors - Pannexin channels
Pannexins are membrane proteins harboring a large-
pore ion channel. Although they are structurally similar

to gap junction connexins, they assemble as membrane
hemichannels without forming cell-to-cell coupled con-
duits. Of the 3 types of pannexin channels, Panx1 and
Panx2 are present in the nervous system. Panx1 is widely
expressed in both excitatory and inhibitory neurons as
well as oligodendrocytes, astrocytes and microglia [115].
In neurons, it is mainly localized at the postsynaptic
membrane [116] and functions as a modulator of gluta-
matergic transmission and a sensor for stressful condi-
tions [117–119]. For example, when postsynaptic
metabotropic N-methyl-D-aspartate (NMDA) receptors
are activated, Src family of tyrosine kinases phosphoryl-
ate Panx1, allowing release of anandamide through
Panx1 channel, which inhibits Ca2+ influx to the

Fig. 3 Neuronal Panx1 channel opening after CSD initiates a neuroinflammatory cascade, characterized by inflammasome formation and caspase-
1 activation in neurons followed by release of HMGB1 and IL-1β, which trigger NF-κB nuclear translocation in astrocytes. A, B NF-κB leads to pro-
inflammatory transcriptional activity and secretion of nitric oxide, cytokines and prostanoids from astrocyte endfeet, reaching meningeal
nociceptors by way of meningo-astroglial network (C) to stimulate them (from [2 and 100], with permission). In A, red labels show agents used to
inhibit each step in the inflammatory cascade and red circles represent propidium iodide (PI) influx through open Panx1 channels
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presynaptic terminal and glutamate release, hence, stabi-
lizes excitatory activity [120]. When extracellular potas-
sium and glutamate are high and NMDA receptors are
intensely stimulated, Panx1 activation leads to inflamma-
some formation in neurons and IL-1β release, whereas
more severe conditions jeopardizing cell survival cause
caspase-mediated cleavage of C-terminal domain and
persistent pore opening [121–123]. Panx1 activation by
caspase-mediated cleavage releases large amounts of
ATP to the extracellular medium, which recruits im-
mune cells for clearance of apoptotic fragments [124].
Panx1 channels can be activated by various signals in-

cluding increases in extracellular K+, glutamate and intra-
cellular Ca2+ concentration [125], NMDA receptor
stimulation [121], c-Jun N-terminal kinases, Src family of
tyrosine kinases [126] and mechanical stress (e.g. spine
swelling) [127]. Panx1 has two pore- opening states; a
low-conductance ion channel with selective Cl− perme-
ability (no neuronal function is known) and a large-
conductance nonselective channel permeable to molecules
up to 900 Da, allowing considerable potassium and ATP
efflux and, possibly, calcium influx [119, 128]. The latter
feature is used to detect Panx1 opening with membrane-
impermeant fluorescent dyes smaller than 900 Da like
propidium iodide or YoPro-1 [124, 129]. This method has
been instrumental to disclose the CSD-induced Panx1 ac-
tivity in the brain [2, 10](Fig. 3). The exact mechanism of
how neuronal Panx1 channels open in large-conductance
state after CSD or synaptic metabolic stress is not entirely
clear. High extracellular K+ and glutamate, NMDA recep-
tor overactivation, high intracellular calcium, neuronal
swelling may contribute to Panx1 large channel opening
[2, 95]. It has recently been shown that CSD-induced
stimulation of NR2A type NMDA receptor subunits acti-
vates Src-family kinases, which phosphorylate Y308 near
the intracellular C-terminal, hence, promotes opening of
Panx1 channels [10].
ATP released to the extracellular environment through

the Panx1 large pore channels can activate nearby P2X7
receptors [130, 131]. Like Panx1 channels, P2X7 receptors
are also able to switch to large conductance pore opening
and activate inflammasome formation [130–132]. At least
in macrophages, these two channels together are consid-
ered as a functional unit both capable of triggering forma-
tion of the inflammasome complex [125, 133, 134].
Whether or not neurons express P2X7 is controversial
and the recent data do not support the expression of
P2X7 in mature neurons in adult rodents [135–137]. Any
close collaboration between neuronal Panx1 and P2X7 re-
ceptors on nearby astrocytes [138] and microglia pro-
cesses [139] remains to be investigated.
Experimentally, it is possible to inhibit Panx1 or puri-

nergic receptor activity with agents like carbenoxolone,
probenecid, mefloquine 10panx peptide, disodium 4,4′-

diisothiocyanatostilbene-2,2′-disulfonate or brilliant blue
G [140]. Probenecid and mefloquine are clinically regis-
tered drugs [129], however, no reports have been pub-
lished on their potential effect on migraine at the
currently used doses although they are widely prescribed
for gout and malaria treatment for many decades.

Inflammasome complex formation and release of
IL-1β and HMGB1 from neurons
Inflammasome complex formation is the downstream
step to Panx1 channel activation. Inflammasomes are
multimeric protein complexes that oligomerize in re-
sponse to infectious agents or homeostatic disruptions.
Inflammasome formation is a common step initiating
most neuroinflammatory conditions by serving as a mo-
lecular machinery processing proinflammatory media-
tors to their active forms. An inflammasome complex is
formed by clustering of the node-like receptors (NLRs),
which detect the exogenous pathogen-associated mo-
lecular patterns (PAMPs) or endogenous damage-
associated molecular patterns (DAMPs), and the adapter
molecule, apoptosis-associated speck-like protein con-
taining a C-terminal caspase recruitment domain (ASC)
[141, 142]. Pro-caspase-1 dimerizes on the inflamma-
some complex and cleaves itself to release the active
caspase-1, which mediates the proteolytic cleavage of
pro-IL-1β in the cytoplasm to yield the active IL-1β.
Inflammasome activation is also linked to HMGB1
translocation from nucleus to cytoplasm [143, 144].
Components of the inflammasome complexes are
expressed in CNS cells [145, 146]. After CSD, inflamma-
some complex is rapidly formed as shown by appearance
of the cleaved form of caspase-1 in neurons and detec-
tion of released IL-1β in CSF [2](Fig. 3). An increase in
IL-1β expression as early as 10 min after a single nonin-
vasively (optogenetically) triggered CSD has also been
reported, which is followed by expression of several
other pro-inflammatory genes [11]. However, the latter
transcriptional changes detected in the cortical extracts
may also reflect the NF-κB-induced transcriptional
changes in astrocytes as discussed in the next section.
Parenchymal IL-1β production could also be a signifi-

cant step leading to meningeal nociceptor activation in
migraine without aura (i.e. without CSD) [95, 96]. In-
deed, MO attacks are seen in patients with cyropyrin-
associated periodic syndromes, in which IL-1β is over-
produced due to mutations in the inflammasome com-
ponent NLRP3. Interestingly, these migraine attacks are
suppressed with IL1 receptor antagonist anakinra [147–
149]. Further supporting a role for parenchymal inflam-
matory signaling in MO, IL-1β, prostaglandin E2, tumor
necrosis factor-α (TNF-α), IL-6, and nitrite levels in the
internal jugular vein (which drains mainly the brain
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parenchyma but not the meninges) were found to be ele-
vated within the first hour of a MO attack [150–152].
HMGB1 is one of the non-histone proteins that binds to

DNA in the nucleus and is expressed in high amounts by
almost all cells [153]. It plays a role in chromosome
stabilization, nucleosome mobility, DNA repair and con-
trol of transcription by binding to DNA [153]. Moreover,
HMGB1 belongs to the family of alarmin proteins that ini-
tiate a rapid inflammatory response upon release from the
cell [154]. HMGB1 passively leaks from necrotic or dam-
aged cells but it can also be actively transported out of the
cell after an inflammatory stimulus such as cell swelling,
tissue injury or infection [155, 156]. In such cases, its
three-dimensional structure changes by acetylation, phos-
phorylation or methylation of different amino acids [156].
This structural change allows the nuclear export signal to
be exposed and leads to translocation of HMGB1 from
nucleus to cytoplasm. HMGB1 can activate various in-
flammatory pathways including NF-κB in nearby cells
bearing receptor for advanced glycation end products
(RAGE) and toll-like receptors (TLRs) [156, 157].
About half of the neuronal nuclei lose their HMGB1 im-

munoreactivity right after a single CSD, whereas glial nu-
clei are not affected [2, 158] (Fig. 3). Single
optogenetically-induced CSD also causes a comparable
HMGB1 release to pinprick- or KCl-induced single CSDs
(unpublished data), ensuring that HMGB1 release was
caused by CSD but not experimental injury. The best
available method to show CSD-induced HMGB1 release
appears to be the immunohistochemistry (i.e. loss of nu-
clear HMGB1 immunoreactivity), whose specificity was
validated by showing prevention of the CSD-induced NF-
κB translocation in astrocytes with a neutralizing antibody
against HMGB1 or by BoxA fragment of HMGB1 that
shows antagonistic activity or by HMGB1-shRNA [2].
Some of the released HMGB1 leaks into CSF, however, it
reaches detectable levels with Western blotting only after
multiple CSDs. Furthermore, collecting CSF from small
rodents with a stable intracerebroventricular cannula
without injuring the brain is challenging. This small
HMGB1 loss from brain tissue could also be detected in
Western blots of cortex extracts as a decrease in HMGB1
levels 3 h after multiple, but not single, CSDs giving the
impression that only multiple CSDs could cause HMGB1
release [5]. After a single CSD induced by either pinprick
or KCl or optogenetically, NF-κB rapidly translocates to
the nucleus (i.e. becomes activated) in astrocytes in re-
sponse to HMGB1 released from neurons in the mouse
brain [2, 158–160] (Fig. 3).
HMGB1 has also been linked to several other pain-

associated conditions. HMGB1 translocation in spinal
cord neurons contributes to bone cancer-related hyper-
algesia [161]. HMGB1 can directly induce pain, as shown
by subcutaneous injection of HMGB1 to the paw or

application over the sciatic nerve [162, 163]. HMGB1 ex-
pression is reportedly increased in the spinal cord in dia-
betic neuropathic pain [164] and mechanical
compression pain, in which anti-HMGB1 neutralizing
antibodies reverse the pain-related behavior in rodents
[165].

Astrocyte and microglia activation and NF-κB
pathway
Release of IL-1β and HMGB1 activates the NF-κB path-
way in neighboring cells. Transcriptional NF-κB activity
in astrocytes and microglia is particularly important for
orchestrating the neuroinflammatory response; however,
the timing and pro or anti-inflammatory nature of tran-
scriptional activity may vary between astrocytes and
microglia. The NF-κB transcription factor family oper-
ates by combining five subunits in pairs [166, 167].
These subunits are p65, cRel, RelB, p52, and p50. Each
subunit contains a region called Rel homology domain
[166]. This region contains the specific amino acid se-
quence that allows the subunit to form a pair, enter the
cell nucleus and bind to DNA. The transactivation zone
necessary for transcription is found only in the p65, cRel,
and RelB subunits. Therefore, when pairs that do not
contain one of these subunits (e.g. p50/p50) are attached
to DNA, they only modify activities of the transcription-
inducing pairs [166]. The NF-κB signaling operates
through two alternative pathways, classical and non-
classical. While the classical pathway plays a role in in-
nate immunity and cell survival, the non-classical path-
way is effective in acquired immune response. In
conditions that create a sterile immune response such as
inflammatory signaling induced by CSD, the classical
pathway is activated [2, 9]. Effective subunits in this
pathway are p65, p50 and cRel [168].
Pro-inflammatory mediators released from neurons or

astrocytes activate microglia, the main immune cells of
the CNS. After multiple CSDs, overt microglial activa-
tion is delayed by 24 h and depends on TLR2/4 [169].
These microglia are hypertrophic, exhibit increased mo-
tility/migration and phagocytic activity, reactive oxygen
species production and IL-1β and TNF-α secretion [105,
106, 170–173]. Importantly, these changes are observed
only after multiple CSDs but not a single CSD. The de-
layed emergence of inflammatory changes after the in-
duction of CSD suggests that activated microglia may
function in elimination or repair of the injured (swollen)
dendritic spines during repeated CSDs [106, 174, 175].
Interestingly, naïve FHM mutant mice show microglial
activation characterized with increased branching even
under baseline conditions [176]. This may be caused by
the recurrent spontaneous CSDs in these animals. More-
over, microglia may also play a downregulatory role in
resolution of the parenchymal inflammatory signaling by
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switching to an anti-inflammatory phenotype, however,
this remains to be investigated [177].

Clinical outlook and conclusions
A fundamental step to further our understanding on mi-
graine pathophysiology is to document the presence of
the above-discussed mechanisms in migraine patients.
Recent advances in neuroimaging techniques are prom-
ising in this regard. Detection of the meningeal inflam-
mation over the occipital cortex exhibiting parenchymal
inflammatory tracer uptake in patients suffering from
migraine with visual aura is particularly encouraging, al-
though preliminary [13] (Fig. 1). Improved tracers, if
successful, can be instrumental to resolve some of the
controversies on the role of meningeal inflammation in
migraine. In this study, researchers took advantage of a
sensitive PET ligand, [(11) C]PBR28 that detects the in-
flammatory activity in astrocytes and microglia by bind-
ing to the translocator protein (TSPO) located on outer
mitochondrial membranes of active inflammatory cells.
[(11) C]PBR28 was able to mark both CNS and menin-
geal involvement, as TSPO is upregulated in activated
parenchymal glial cells as well as activated macrophages
and peripheral immune cells. These observations are
translationally relevant because experimental studies
using the same radioligand showed increased uptake in
the ipsilateral rat brain for up to 15 days after multiple
CSDs [178]. Of note, the activity of the glia and menin-
geal inflammatory cells visualized by [(11) C]PBR28 up-
take might not solely be caused by a pro-inflammatory
state but might also involve anti-inflammatory activity
because majority of the patients had their last headache
attack a few days before imaging. Indeed, ongoing stud-
ies in our laboratory show that resolution of the inflam-
matory activity induced by a single CSD takes at least 3
days in the mouse brain [159, 160].
[(11) C]PBR28 PET may also provide insight into the re-

lationship between inflammatory signaling and headache
in secondary headache disorders. As in migraine, paren-
chymal inflammation can also play a role in post-seizure
headache, as suggested by studies showing activation of
the neuroinflammatory cascade in seizure models [179,
180]. Similarly, acute ischemia attacks are associated with
headache [181]; but not always, possibly because ischemic
nociceptive fibers around pial vessels become dysfunc-
tional due to hypoperfusion of these arteries (the cause of
the stroke) and, hence, cannot fire despite inflammatory
mediators reaching to the pia from the ischemic brain. In-
deed, headache is more prevalent after intracerebral hem-
orrhages and subarachnoid hemorrhage, which also
activate Panx1 and downstream pathways [182].
In conclusion, experimental studies in animals and

emerging imaging findings from patients warrant further
research to gain deeper insight into the complex role of

inflammatory signaling in headache generation. Research
over the past 50 years have revolutionized our under-
standing of migraine, however, many unanswered ques-
tions and controversies remain. We need cutting-edge
tools to directly and comprehensively study the complex
nociceptive mechanisms in experimental animals and
also high-resolution advanced imaging technologies to
assess the significance of basic findings in the clinic. Ad-
mittedly, current experimental and clinical methods have
shortcomings to provide unequivocal evidence for com-
peting hypotheses.
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