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Abstract

Background

It has become common practice to analyse large scale sequencing data with statistical

approaches based around the aggregation of rare variants within the same gene. We

applied a novel approach to rare variant analysis by collapsing variants together using pro-

tein domain and family coordinates, regarded to be a more discrete definition of a biologi-

cally functional unit.

Methods

Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency� 1%) together

in three different ways 1) variants within single genomic regions which map to individual pro-

tein domains 2) variants within two individual protein domain regions which are predicted to

be responsible for a protein-protein interaction 3) all variants within combined regions from

multiple genes responsible for coding the same protein domain (i.e. protein families). A con-

ventional collapsing analysis using gene coordinates was also undertaken for comparison.

We used UK10K sequence data and investigated associations between regions of variants

and lipid traits using the sequence kernel association test (SKAT).

Results

We observed no strong evidence of association between regions of variants based on

Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall

distributions of p-values from the protein domain analyses were comparable to that of a

conventional gene-based approach. Deviations from this distribution suggested that col-

lapsing by either protein domain or gene definitions may be favourable depending on the

trait analysed.
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Conclusion

We have collapsed rare variants together using protein domain and family coordinates to

present an alternative approach over collapsing across conventionally used gene-based

regions. Although no strong evidence of association was detected in these analyses, future

studies may still find value in adopting these approaches to detect previously unidentified

association signals.

Introduction
Despite the success in identifying genetic associations with complex disease in recent years, we
are still relatively unaware of the proportion of this phenotypic variation that rare variants are
responsible for. Study designs over the last decade have largely concerned common variants,
and whilst the amount of additive genetic variance explained by these variants is greater than
initially expected[1], the case of the “missing heritability” still remains. Endeavors have there-
fore shifted to uncover the role of rare variants, with potentially much larger effect sizes than
those observed from common variants[2, 3]. Due to breakthroughs in next generation sequenc-
ing we now have a wealth of data consisting of rare variants, paving the way for the develop-
ment of novel methodology that allows us to investigate the impact of rare genetic variation on
complex disease[4]. These methods should become particularly useful once next generation
sequencing becomes more extensively undertaken in large population collections.

One type of approach involves grouping all variants within the same gene together, as they
are likely to mark functional effects on the same protein or RNA, followed by analysing the
combined effect of these variants using recently developed association tests. However, typically
these approaches are underpowered[5]. A major cause of this is due to collapsing variants with
contrasting directions of effect, as well as variants with little to no effect (neutral variants),
which has inspired the development of variance-component tests (e.g. C-Alpha[6], SKAT[7]).
Another plausible explanation for this could be that variants within the same genomic region
that are grouped together do not necessarily share similar function. Analyses may therefore
benefit from redefining the region of interest on the basis of likely functional consequences.
Doing so may identify a more unified potential effect from sets of variants, not observed when
collapsing across entire genes.

Protein domains are distinct functional, structural and evolutionary units which can either
span sub-sections of a protein or its entire length. The exploration of human disease mutations
have found that they tend to cluster together within highly conserved protein positions[8, 9],
which certain protein domains occupy[10]. Amongst other functional tasks, protein domains
can interact with each other and lead to protein-protein interactions (PPIs). It is understood
that mutations that affect the binding interface of proteins can lead to dysfunctional allosteric
changes which can have a downstream effect on disease[11]. Domains which consist of the
same DNA sequence may occur multiple times across the genome in different genomic regions
but can have a similar functional consequence. These regions are collectively referred to as pro-
tein families.

In comparison to conventional approaches which aggregate variants according to gene
coordinates, we have undertaken a study to evaluate whether collapsing variants across regions
based on protein domain coordinates provides a viable alternative. We aggregated variants
together using 3 different definitions:

1. Protein domains: Individual regions of the genome which mapped to individual protein
domains. Certain protein domains can consist of the entire protein, which would therefore
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result in an identical analysis to using gene coordinates when analysing variants in exons.
The exception to this would be variants at the 3’ and 5’ locations. However, protein domains
can also consist of subsections of the protein, which would therefore only map back to a
subsection of the corresponding gene region. These individual regions therefore varied in
length based on definitions. In these instances we hypothesised that using domain coordi-
nates may aggregate together more functionally relevant variants, thus resulting in a gain of
statistical power in the resulting analysis.

2. Domain-Domain Interactions: As two individual protein domains can interact and subse-
quently lead to the formation of PPIs, it is plausible that the corresponding pair of genomic
regions may harbour functionally relevant variants. Whilst a mutation in either domain may
be sufficient to affect binding affinity, analysing these regions together may provide stronger
evidence of association than analysing each individually as they affect the same interaction.
Consequently this definition consists of all variants from within two of the regions analysed
using the previous definition, which were predicted to be responsible for a PPI.

3. Protein Families: As previously mentioned, protein families can be defined as multiple pro-
tein domains which have a similar sequence and structure. This final definition therefore
consists of multiple genomic regions which map to the same type of protein domain. Cer-
tain protein families can consist of a large frequency of domains and in these circumstances
it seemed unlikely that so many different proteins would be involved along the causal path-
way of disease. However, as these protein domains can have similar functionality it was
worthwhile investigating whether variants within these regions, after selecting only genes
with experimental evidence of interaction, were collectively associated with disease.

We hypothesised that, in comparison to conventionally used gene coordinates, aggregating
rare variants together across these alternative definitions may result in a greater proportion of
variants which have a similar impact along the causal pathway and fewer neutral variants
which dilute the observed signal. The potential trade-off to this is that variants with a similar
functional effect within the same gene region may end up being collapsed separately. Rare vari-
ant analyses using these alternative definitions were conducted using samples from individuals
involved in the UK10K project, which consists of participants drawn from the ALSPAC (Avon
Longitudinal Study of Parents and Children) and TwinsUK cohorts.

Methods

Cohort Description
The UK10K consortium has two main project arms. In this study, we have used data from the
cohorts’ arm which was designed to investigate the contribution of genome wide genetic varia-
tion to a range of quantitative traits. This arm contains individuals from two intensively studied
cohorts of European ancestry, ALSPAC (Avon Longitudinal Study of Parents and Children)
and TwinsUK:

ALSPAC. ALSPAC is a population-based cohort study investigating genetic and environ-
mental factors that affect the health and development of children. The study methods are
described in detail elsewhere[12, 13] (http://www.bristol.ac.uk/alspac).

Ethical approval was obtained from the National Research Ethics Service (NRES) Commit-
tee, South East London, REC 2. Written informed consent was obtained from parents for all
measurements made.

TwinsUK. The TwinsUK registry is a cohort of volunteer adult twins from all over the
United Kingdom[14]. Initially, only middle-aged women were recruited and as a result 83% of
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the registry is female. The registry currently contains 51% monozygotic (MZ) and 49% dizy-
gotic (DZ) twins aged 18–103 years. Further details are available online (http://www.twinsuk.
ac.uk/).

Informed consent was obtained from participants before they entered the study and ethical
approval was granted by the National Research Ethics Service (NRES) Committee, Westmin-
ster, London.

Sequencing Data
DNA Samples from 4,030 UK10K study participants (2,040 offspring from the ALSPAC
cohort, 1,990 from the TwinsUK cohort) were subjected to low coverage (6-8x average read
depth) whole-genome sequencing (WGS). Sequencing was performed at both the Wellcome
Trust Sanger Institute (WTSI) and the Beijing Genomics Institute (BGI). DNA (1–3μg) was
sheared to 100–1000 bp using a Covaris E210 or LE220 (Covaris, Woburn, MA, USA). Sheared
DNA was size subjected to Illumina paired-end DNA library preparation. Following size selec-
tion (300–500 bp insert size), DNA libraries were sequenced using the Illumina HiSeq platform
as paired-end 100 base reads according to manufacturer’s protocol.

Data that passed quality control (QC) was aligned to the GRCh37 human reference used in
phase 1 of the 1000 Genomes Project. Reads were aligned using BWA (v0.5.9-r16)[15]. Of the
4,030 participants, 3,910 samples (1,976 ALSPAC and 1,934 TwinsUK) went through the vari-
ant calling procedure. Low quality samples were identified by comparing the samples to their
GWAS genotypes using about 20,000 sites on chromosome 20. A total of 112 samples (48
ALSPAC and 64 TwinsUK) were removed, leaving 3,798 samples (1,928 ALSPAC and 1,870
TwinsUK) that were eligible for the genotype refinement phase.

Missing and low-confidence genotypes in the filtered VCFs were refined out using the
imputation procedure in BEAGLE 4[16] with default parameters. Additional sample-level QC
steps were carried out on refined genotypes, resulting in 17 samples (16 TwinsUK and 1
ALSPAC) being removed due to either non-reference discordance with GWAS SNV data>5%,
multiple relations to other samples or failed sex check. A principal components analysis was
conducted using EIGENSTRAT[17] to exclude participants of non-European ancestry after
merging our data with a pruned 11 HapMap3 population dataset[18]. 44 subjects (12 TwinsUK
and 32 ALSPAC) did not cluster to the European (CEU) cluster and were removed. The final
sample size for association analyses comprised of 3,621 individuals which did not include any
related pairs (1,754 TwinsUK and 1,867 ALSPAC).

Data Collection
UK10K Phenotypes. ALSPAC: Non-fasting blood samples were taken from participants

who attended the age 9 clinic (mean age: 9.9, range: 8.9–11.5). Plasma lipid concentrations
(total cholesterol (TC), triglycerides (TG) and high density lipoprotein cholesterol (HDLc))
were measured by modification of the standard Lipid Research Clinics Protocol with enzymatic
reagents for lipid determination[19]. Low density lipoprotein cholesterol (LDLc) concentration
was subsequently calculated using the Friedwald equation[20]:

LDLc ¼ TC � ðHDLcþ TG� 0:45Þ

TwinsUK: Blood samples were taken after at least 6 hours of overnight fasting. The samples
were immediately inverted three times and left to rest for 40 minutes at 4°C to obtain complete
coagulation. The samples were then centrifuged for 10 min at 2000g and serum was removed.
Four aliquots of 1.5 ml were placed into skirted micro centrifuge tubes and then stored in a -45°C
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freezer until sampling[21]. A colorimetric enzymatic method was used to determine TC, TG and
HDL-c levels. The Friedewald equation was used to calculate LDL-c levels in subjects.

Statistical Analysis
Simulated Data Analysis. As a proof of concept, we first undertook analyses using simu-

lated data consisting of 3,000 individuals each with 5,000 rare variants (i.e. MAF� 1%). 4,000
of these were neutral variants and 1,000 were disease causing variants (i.e. variants that were
associated with the dichotomous phenotype). The odds ratios for the disease causing variants
varied from 1.20 to 1.50, whereas the neutral variants only ever contributed to an odds ratio of
1.0. We randomly allocated variants into 250 ‘synthetic’ genes (i.e. not based on any genomic
location, simply blocks of variants) of varying number of variants per gene (from 10 to 30 vari-
ants). Within these genes we defined subgroups of variants to resemble domains, varying in
length between 5–20 variants. 1,000 of these synthetic domains were randomly selected for
analysis. We conducted gene-based and domain-based analysis using the sequence kernel asso-
ciation test (SKAT)[7] to examine association between groups of variants within these regions
and the synthetic phenotype. All simulated data was generated using PLINK v1.9[22].

Application to real data. Fig 1 summarises the planned analyses of this study. Using the
UK10K sequence data, we took all Pfam protein family and domain coordinates and mapped
them back to genomic coordinates using a custom Python script. These coordinates were
extracted from the hg19 download used by the prediction tool Mutation Assessor [23].

Fig 1. Graphical summary of how rare variants within domain regions were collapsed together for
analysis. This figure describes how regions of rare variants were collapsed together and analysed: •
Individual Domains: Regions which mapped to individual domains of a protein were analysed as opposed to
the conventional approach of using individual gene regions. • Domain-Domain Interactions: Pairwise regions
which mapped to two domains predicted to be responsible for a domain-domain interaction were analysed
together. • Protein Families: All regions which mapped to the same type of protein domain within proteins
which had experimental evidence of interaction were combined and analysed together. Domain images were
created using the generate graphics feature from Pfam (located at http://pfam.xfam.org/generate_graphic).

doi:10.1371/journal.pone.0153803.g001
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Variants were filtered to only include those with a MAF�1% and a CADD (Combined Anno-
tation Dependent Depletion) C-Score� 15. This threshold is suggested by the authors of
CADD as it equates to the 5% most deleterious variants across the genome as predicted by this
resource.

We conducted analyses on regions based on three novel definitions of a functional unit.
These were:

1. Protein domains: Individual genomic regions which mapped to individual protein domains
according to Pfam definitions. These regions comprised of either sections of proteins or in
some cases the whole protein. For the latter, analyses would have been identical to analysing
variants within the entire exonic region of the gene with the exception of variants at the 3’
and 5’ locations.

2. Domain-Domain Interactions: iPfam was used to identify which pairwise domains were
predicted to be responsible for a given protein-protein interaction according to STRINGdb
v9.1 [24]. Firstly, all pairwise protein interactions which had at least some experimental evi-
dence and with a STRING score� 0.8 were extracted. Then for each pairwise interaction it
was verified whether any domains from the first protein interacted with any domains in the
second protein, according to iPfam. If this was true, the two domain regions in questions
were added to the list of eligible domain-domain interactions (DDI) for our analysis. All
variants within regions that were responsible for each domain-domain interaction were
aggregated and analysed together (i.e. all variants within two of the regions in the previous
analysis which were predicted to be involved in a PPI).

3. Protein Families: Variants were collapsed together across regions that were located within
the same type of domain across the genome (i.e. variants within all regions which had the
same Pfam ID). However, only domains within gene regions whose product had experimen-
tal evidence of interaction according to STRINGdb (again using a STRING score� 0.8
threshold) were combined. This meant that variants within multiple regions involved in the
initial analysis (i.e. the individual domain analysis) were analysed together here.

Only regions which had at least 2 remaining variants were analysed using SKAT with each
lipid trait (HDL, LDL, TC and TG) in turn. All traits were inverse normal transformed prior to
analysis. Further details on trait standardization can be found in the Supplementary Material
(S1 File).

To evaluate whether results provided strong evidence of association we used a threshold for
multiple comparisons using the Bonferroni correction (i.e. 0.05/number of regions analysed).
All individual protein domains regions were reanalysed using the SKAT-O test [25] found to
have more power than SKAT in situations where variants within a region have the same direc-
tion of effect [26]. A single variant analysis was also conducted using each lipid trait for all rare
variants which were analysed previously. This was to ensure that aggregating variants together
across regions was not causing evidence of association observed from a single variant analysis
to consequently become undetected. These results were plotted using Quantile-Quantile (Q-Q)
plots.

Comparison between Individual Domain and Gene-based Results. Q-Q plots were gen-
erated using the distribution of p-values from the results of the individual protein domain anal-
ysis with results from a conventional gene-based analysis. This analysis was undertaken with
the same dataset but using gene start and end coordinates according to hd19 definitions and
analysed as before using SKAT with each lipid trait. The quantiles from the domain-based
analyses were therefore interpolated as there were more individual domains analysed
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compared to the number of genes[27]. Q-Q plots were generated using the R package
‘qqman’[28]. All statistical analyses were undertaken using R statistical software[29].

Results

Simulated Data analysis
Analysing groups of variants from within simulated domain regions provided stronger evi-
dence of association in comparison to collapsing by gene regions, as 23 gene-based results sur-
vived the correction for multiple testing (P<2.0 x 10−4 (250 tests)) in comparison to 47
domain-based results (P<5.0 x 10−5 (1,000 tests)). The tops hits from these analyses can be
found in S1 File. This was due to analysing smaller blocks of variants which consisted of a
higher proportion of disease causing variants (i.e. a smaller proportion of neutral variants were
involved in these analyses and therefore incorporated less statistical noise). It was therefore
hypothesised that, if a sufficient proportion of causal variants resided within domain regions,
that our planned analyses should identify associational signals which would not be detected
using a gene-based approach.

Sample Characteristics
5,330,943 sites were excluded from further analyses due to showing Sanger/BGI batch effects,
failed the test for Hardy-Weinberg equilibrium (P<1x10-6) or were below the VQSLOD score
cut-off (Variant Quality Score Recalibration) that corresponds to the maximum truth sensitiv-
ity tranche of 99.5% compared to HapMap3.3. Filtering to only include variants with a CADD
C-Score� 15 reduced the final number to 546,334.

After removing samples that failed QC, we were left with a sample size of 3,621 which did
not include related pairs or non-European individuals. Subsequently removing individuals
with missing phenotype information resulted in a final sample size of ~3,200 (3,210 for HDL,
3,191 for LDL, 3,206 for TC and 3,202 for TG).

Individual Domain Analysis
Wemapped 76,391 protein families and domains back onto the human genome. 39,016 of
which were canonical and used for all analyses. After filtering to only include variants with a
CADD C-Score� 15, ~9,570 domains contained at least 2 variants after applying a MAF cutoff
of 1%. These varied very slightly due to the small differences in sample size after matching on
phenotypes. Our threshold for multiple comparisons were therefore 5.22 x 10−6. No results
from this analysis survived this threshold using either the SKAT or SKAT-O tests (S1 File).

Domain-Domain Interaction Analysis
Using the iPfam and STRINGdb databases we predicted there to be 14,046 combined regions
that were responsible for domain-domain interactions. After filtering to include SNVs with a
CADD C-Score� 15, there were ~10,020 using the 1%MAF cutoff. This determined that our
threshold for multiple comparisons was 4.99 x 10−6. However, no results from the analysis sur-
vived this threshold (S1 File).

Variants Collapsed by Protein Family Analysis
2,356 unique Pfam identifiers were used in the previous analyses. We collapsed all variants
together within regions with the same Pfam identifier and then stratified them to only include
SNPs with a CADD C-Score� 15. There were 3,114 regions with 2 or more variants in after
filtering using the MAF cutoff of 1%, meaning our thresholds for multiple comparisons was
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1.61 x 10−5. We analysed these regions as before and did not observe any p-values lower than
the thresholds for multiple comparisons (S1 File).

Single variant analyses were undertaken for all variant analysed previously, to ensure that
collapsing variants together did not result in any association signals becoming undetectable
when using this approach. The results were plotted using Q-Q plots, which did not suggest that
strong evidence of association was detected using single variant analyses for each lipid trait (S1
File).

Comparison between Individual Domain and Gene-based Results
Q-Q plots which compare the distribution of p-values from the individual domain and gene-
based analyses were generated. Results varied according to lipid trait, as the HDL and TC anal-
yses suggested that the individual domain approach provided stronger evidence of association
due to an uptick in signal. In contrast, the LDL and TG plots are predominantly confined
within the 95% confidence intervals. These plots can be found in Fig 2.

Discussion
We have undertaken a novel approach to rare variant analysis which, to our knowledge, is the
first of its kind. Detecting strong evidence of association from multiple rare variants over an
entire gene region is challenging for many reasons, not least of all the possibility that these vari-
ants may reside in different types of structural and functional domains. By aggregating variants
together across protein domains and families, we hypothesised that sets of variants may be
more likely to have a similar functional impact, as well as contain fewer neutral variants, than
when collapsing variants across entire genes. However, we have been unable to provide evi-
dence to support this in our study. Future studies should therefore contemplate applying this
approach to large-scale sequence data to further evaluate whether collapsing variants in this
manner may identify association signals not detected using gene-based approaches.

It has become common practice for studies to undertake collapsing approaches using entire
gene regions, although typically their findings have been underwhelming. This is in no small
part due to a large proportion of neutral variants in collapsed regions which incorporate statis-
tical noise into the analysis. Furthermore, regarding genes as functional units can have limita-
tions. For instance, the protein product of a gene may contain multiple domains which can be
recombined in a different order and alter its overall function, which consequently can cause a

Fig 2. Quantile-Quantile plots to compare distributions of p-values identified using individual domain
and gene-based approaches to rare variant analysis. These Q-Q plots represent the distribution of p-
values from an analysis where rare variants have been collapsed together using protein domain coordinates
and analysed with lipid traits. The reference distribution for these plots are distributions of p-values from an
identical analysis except collapsing rare variants using conventional gene-based coordinates.

doi:10.1371/journal.pone.0153803.g002
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different phenotypic effect downstream[30]. The study of protein domains has previously
revealed important functional insights, such as the identification of LRRK2 as a promising ther-
apeutic target for the treatment of Parkinson’s disease[31]. Moreover, there have been studies
which have shown both Mendelian disease and somatic cancer mutations to cluster within cer-
tain types of protein domains[32, 33]. Proteins have evolved through the shuffling of functional
domains, causing some domain sequences to be located many times across the proteome. Pro-
tein-protein interfaces are typically more conserved than the rest of the protein surface which
is why in this study we examined the combined effect of rare variants that were responsible for
domain regions predicted to interact with one and other.

A limitation to using protein domain regions when aggregating rare variants together is that
the extent in which protein domains are categorised varies significantly. A subset of protein
domains have been thoroughly investigated, whereas the functional role of the majority of
domains remains unknown. Pfam definitions are based on amino acids sequences which are
repeated across the proteome according to hidden Markov models, rather than any evidence
implicating them in the aetiology of complex disease. However, as future research continues to
develop our understanding of the functional task of protein domains, as well as our overall
understanding of the genetic architecture of complex disease, there will be additional value in
aggregating variants in the manner undertaken in this study.

In terms of how we can proceed by analysing rare variants in this manner, there are valuable
resources that can aid domain-centric analyses. Along with the Pfam database used here, the
Conserved Domains Database (CDD)[10], the SUPERFAMILY[34] database and the Protein
Analysis Through Evolutionary Relationships (PANTER)[35] resource contain a wealth of
information which can be utilised to aid rare variant association analyses. Furthermore, we
have used STRINGdb in this study to define PPIs as it allowed us to filter only those interac-
tions with experimental evidence and high confidence (i.e. a STRING Score of� 0.8). How-
ever, resources such as IntAct[36] contain experimentally verified binding sites and could
therefore be incorporated into the analysis pipeline presented in this study. A catalogue of
mutation pathogenicity prediction tools have been developed in recent years to prioritise or
weigh SNPs in association studies and many of these tools use conservation score as a key vari-
able in their predictions. In this study we have used annotations from CADD, although predic-
tion tools such as FATHMM-MKL[37] and DANN[38] may also be useful for variant filtering.

Despite a lack of statistically robust findings in our analyses, there may still be value in
examining association signals from rare variants collapsed across highly conserved regions.
Moreover, the parameters and resources we have used in this study for the analysis pipeline
can be adjusted and this may lead to stronger evidence of association than observed here. For
instance, the resources used to define our protein domain regions, the tool used to quantify the
predicted deleterious impact of variants (as well as the threshold applied to filter) and the col-
lapsing method used to analyse genotype-phenotype associations are all variables which can be
adjusted for in future studies.

In this study, we have focused on lipid traits due to the success reported by other studies in
recent years [39–41]. Although these traits are typically observed to be polygenic in nature
[42], there are also monogenic diseases which can caused by extreme lipid levels, such as famil-
ial hypercholesterolemia[43]. Mutations in genes such as LDLR, APOB, PCSK9 and LDLRAP1
are known to lead to this condition [44], although endeavours in rare variant analysis hope to
underpin novel loci which harbour causal variants in lipid related diseases. However, it is also
expected that rare variants may be causal to rarer diseases and thus the approach used in this
study may be useful for future studies which wish to investigate this. Moreover, the studies
which have had success in detecting novel loci in disease using rare variant approaches have
used large sample sizes (i.e. Surakka et al had a sample size of over 60,000 individuals), in
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comparison to the 3,200 individuals analysed in this study. Applying the approach outlined in
this study to similarly large sample sizes may therefore yield improved results. The use of the
software RAREMETAL[45] could be incorporated into the framework presented in this study
to facilitate analyses using samples which include multiple cohorts.

Previous studies have suggested that larger sample sizes and alternative statistical methodol-
ogy should help improve findings for collapsing methods. Using a more discrete definition of a
functional unit across the genome, such as protein domains and families, provides a feasible
alternative to collapsing by gene coordinates, which may yield biologically meaningful infer-
ences and previously unidentified association signals when undertaking rare variant analyses.

Supporting Information
S1 File. Supporting Information. Supplementary Material.
(DOCX)
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