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Cardiomyopathies represent a group of diseases of the myocardium of the heart and include diseases both primarily of the
cardiac muscle and systemic diseases leading to adverse effects on the heart muscle size, shape, and function. Traditionally
cardiomyopathies were defined according to phenotypical appearance. Now, as our understanding of the pathophysiology of the
different entities classified under each of the different phenotypes improves and our knowledge of the molecular and genetic
basis for these entities progresses, the traditional classifications seem oversimplistic and do not reflect current understanding of
this myriad of diseases and disease processes. Although our knowledge of the exact basis of many of the disease processes of
cardiomyopathies is still in its infancy, it is important to have a classification system that has the ability to incorporate the coming
tide of molecular and genetic information. This paper discusses how the traditional classification of cardiomyopathies based on
morphology has evolved due to rapid advances in our understanding of the genetic and molecular basis for many of these clinical
entities.

1. Introduction

Cardiomyopathies are a broad spectrum of diseases that
affect the muscle or myocardium of the heart. This results
in a failure of the heart to provide adequate oxygenated
blood to the body and remove carbon dioxide and other
waste products. The heart is an extremely specialised,
richly innervated muscular pump that is designed to beat
continuously, without stopping for the entire lifespan of its
owner. To put this in perspective, a human heart beating at
70 bpm will beat approximately 2.5 billion times during a 70-
year lifespan.

The official definition of cardiomyopathy by the Ameri-
can Heart Association in 2006 is as follows.

“Cardiomyopathies are a heterogeneous group
of diseases of the myocardium associated with
mechanical and/or electrical dysfunction that
usually (but not invariably) exhibit inappropriate
ventricular hypertrophy or dilatation and are due
to a variety of causes that frequently are genetic.

Cardiomyopathies either are confined to the heart
or are part of generalized systemic disorders, which
may lead to cardiovascular death or progressive
heart failure-related disability [1].”

2. Classification

There are many ways to classify cardiomyopathies. Previ-
ously, a cardiomyopathy was defined as “a heart muscle
disease of unknown cause” [3] and was broken down
according to their pathophysiological phenotype into dilated
cardiomyopathy, hypertrophic cardiomyopathy, or restric-
tive cardiomyopathy. Since this first classification, major
advances have meant that this overly simplistic system
needed a more indepth approach to incorporate new clinical
entities such as arrhythmogenic right ventricular dysplasia
(ARVD) [3, 4].

Therefore in 1995, a task force established by the
WHO/ISFC compiled a new system which included ARVD
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Table 1: Summary of AHA 2006 classification [1].

Primary cardiomyopathies Secondary cardiomyopathies

Genetic (hypertrophic cardiomyopathy; conduction
abnormalities: prolonged QT syndrome; Brugada syndrome) Infiltrative (amyloidosis and Gaucher disease)

Mixed (dilated cardiomyopathy; restrictive cardiomyopathy) Storage (haemochromatosis and Fabry’s disease)

Acquired (inflammatory myocarditis, peripartum, stress
cardiomyopathy—“broken heart syndrome” or tako-tsubo)

Toxicity (drugs, alcohol, heavy metals, and chemicals/chemotherapy)

Inflammatory (sarcoidosis) endocrine (diabetes mellitus; thyroid
disorders; hyperparathyroidism), cardiofacial (Noonan syndrome,
lentiginosis) neuromuscular/neurological, nutritional deficiencies,
and autoimmune and collagen disorders

Unidentified gene defect

DCMHCM

Nonfamilial/non
geneticFamilial/genetic

RCMARVC Unclassified 

Cardiomyopathies

IdiopathicDisease subtype Disease subtype

Figure 1: Summary of ESC 2008 Classification [2]. DCM: dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy; ARVC: ar-
rhythmogenic right ventricular cardiomyopathy; RCM: restrictive cardiomyopathy.

and unclassified cardiomyopathies (e.g., fibroelastosis, non-
compacted myocardium, systolic dysfunction with minimal
dilatation, and mitochondrial involvement). The term “spe-
cific cardiomyopathy” was used to describe heart muscle
disorders which are as a result of cardiac or systemic diseases
such as coronary artery disease, valvular heart disease, or
hypertension [61].

A more complete classification based on the AHA def-
inition above divides cardiomyopathies into (1) primary
cardiomyopathies, which affect the heart alone, and (2)
secondary cardiomyopathies, which are the result of a
systemic illness affecting many other parts of the body.
These are then further broken down into subgroups within
these two broad categories incorporating new genetic and
molecular insights (Table 1).

Distinguishing between primary and secondary car-
diomyopathies can be challenging as many diseases classified
as primary can have extra cardiac components, and many
secondary cardiomyopathies can mainly or exclusively affect
the heart. Whether or not this is the best method of
classification has generated some debate within the literature
[62, 63]. With our growing understanding of the genomic
and molecular markers made available by modern laboratory
research, a new approach had been proposed to address
this overlap based on the causative mutation implicated
in causing the disease [64, 65]. The working group from
the European Society of Cardiology (ESC) in 2008 defined
cardiomyopathy as follows.

“A myocardial disorder in which the heart muscle
is structurally and functionally abnormal, in the
absence of coronary artery disease, hypertension,
valvular disease and congenital heart disease
sufficient to cause the observed myocardial abnor-
mality [2].”

While diagnosis of cardiomyopathy rarely begins with
the identification of a genetic mutation, it is rational to
incorporate genetic mutation testing within a framework of
classification as it is important while formulating a plan of
treatment and also in informing families of their prognosis
(Figure 1).

2.1. Hypertrophic Cardiomyopathy (HCM). Hypertrophic
cardiomyopathy (HCM) has been defined by the presence
of myocardial hypertrophy incongruent with the haemo-
dynamic stress required for the degree of hypertrophy and
the exclusion of infiltrative diseases such as amyloidosis and
storage diseases [2, 66, 67].

In the absence of hypertension and valve disease, left ven-
tricular hypertrophy (LVH) occurs in approximately 1 : 500
of the general population [68]. In day-to-day clinical practice
it is very difficult to differentiate between pathologies using
minimally invasive techniques such as cardiac echo or cardiac
magnetic resonance imaging (MRI). Histological demon-
stration (on myocardial biopsy) of myocyte hypertrophy
in the definition of HCM is unreliable due to the patchy
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Table 2: Genes associated with hypertrophic cardiomyopathy.

Gene Protein Function Reference

β-MHC β-Myosin heavy chain Sarcomere protein [5]

α-MHC α-Myosin heavy chain Sarcomere protein [6, 7]

cMYBPC Cardiac myosin-binding protein C Sarcomere protein [8, 9]

cTnI Cardiac troponin I Sarcomere protein [10]

cTnT Cardiac troponin T Sarcomere protein [11]

cTnC Cardiac troponin C Sarcomere protein [12]

α-TM α-Tropomyosin Sarcomere protein [11]

MLC-1 Myosin essential light chain Sarcomere protein [13]

MLC-2 Myosin regulatory light chain Sarcomere protein [7]

ACTC Actin Sarcomere protein [14]

TTN Titin Sarcomere protein [15, 16]

Metabolic phenocopies

PRKAG2 AMP kinase [17]

LAMP2 Lysosome membrane protein [18]

nature of the abnormality within the myocardium. The
position statement from the ESC [2] contained the following
“the presence of intramyocardial storage material is not
an exclusion criterion for HCM. . .. Instead, hypertrophic
cardiomyopathies are simply defined by the presence of
increased ventricular wall thickness or mass in the absence of
loading conditions (hypertension, valve disease) sufficient to
cause the observed abnormality.” The “potential inaccuracy”
in not fully excluding infiltrative disease or demonstrating
myocyte hypertrophy on biopsy is justified by leading to
increased emphasis in the clinical picture and a promise of
better minimally invasive diagnostic strategies.

If the HCM is familial, then it is usually transmitted
in an autosomal dominant pattern of inheritance caused
by mutations within genes that encode for various proteins
of the cardiac sarcomere. Currently, there are over 500
mutations in 13 genes that have been identified that cause
HCM and 50% of these are familial [66, 69–72] (Table 2).

Pathologically, left ventricular (LV) cavity size is normally
reduced and this can progress to LV dilatation and heart
failure, albeit in a minority of patients. There are many pat-
terns of hypertrophy and all are consistent with a diagnosis
of HCM but concentric hypertrophy is more suggestive of a
systemic cause such as glycogen storage disease. Moreover,
mutations in the genes encoding for cardiac troponins can
be associated with mild phenotypes but, conversely, a high
incidence of cardiac death [73]. The normal physiological
hypertrophy that occurs in highly competitive athletes is
uncommon (less than 2% of male athletes) [74], but it is
important not to miss HCM in these individuals as the risk
of sudden death is unacceptably high [75] and causes great
distress to both families and communities who have been
affected.

2.2. Restrictive Cardiomyopathy. Restrictive cardiomyopa-
thies have a diverse range of aetiology; however, all are
recognised as having distinct haemodynamic features sepa-
rating them from other forms of cardiomyopathy. Restrictive
cardiomyopathies in general are defined as showing normal

ventricular size (nondilated and nonhypertrophied) with
impaired haemodynamic function, elevated filling pressures,
and diastolic dysfunction, and in most cases normal systolic
function [76, 77].

Presentation can include symptoms of both right and
left sided failure; decreased exercise tolerance, dyspnoea,
peripheral oedema, and palpitations are the most common
symptoms [77]. Due to the contrast in both aetiology and
treatment options and the similarities in haemodynamics, it
is important to recognise the difference between restrictive
cardiomyopathy and constrictive pericarditis. Usually, this is
defined with a variety of investigatory modalities with both
haemodynamic and morphological assessment and includes
echocardiography and pericardial imaging [78].

Various aetiologies have been identified as causing
restrictive cardiomyopathy and range from idiopathic (pri-
mary) restrictive cardiomyopathy, to systemic conditions
including infiltrative, noninfiltrative, and storage disorders,
as well as endomyocardial disorders, various medications,
and iatrogenic causes [79]. Familial restrictive cardiomy-
opathies are usually inherited in an autosomal dominant
fashion, the genetic basis of which remains to be identified,
and are noted to be relatively rare [80]. Hereditary condi-
tions known to cause a restrictive cardiomyopathy include
haemochromatosis, glycogen storage diseases, Fabry’s dis-
ease, Gaucher’s disease, and Hurler syndrome.

Prognosis in symptomatic patients is quite poor, depend-
ing on aetiology. Idiopathic restrictive cardiomyopathy has
been associated with a significant difference in 10-yr survival
when compared to expected survival in groups matched
for age and sex [81]. In comparison with other forms
of cardiomyopathy, restrictive cardiomyopathy is relatively
uncommon, though it still demonstrates an appreciable
incidence in some population groups, namely, Asia, South
and Central America [79].

2.3. Dilated Cardiomyopathy (DCM). DCM is a common
cause of congestive cardiac failure (CCF) and is defined by
the presence left ventricular systolic dysfunction with left



4 Biochemistry Research International

Table 3: Genes associated with dilated cardiomyopathy.

Gene Protein Function Reference

Autosomal dominant

ACTC Cardiac actin Sarcomere protein [19]

DES Desmin Dystrophin-associated glycoprotein complex [20]

SGCD δ-Sarcoglycan Dystrophin-associated glycoprotein complex [21]

MYH7 β-Myosin heavy chain Sarcomere protein [22, 23]

TNNT2 Cardiac troponin T Sarcomere protein [22, 24, 25]

TPM1 α-Tropomyosin Sarcomere protein [26]

TTN Titin Sarcomere structure [27]

VCL Metavinculin Intercalated discs [28]

MYBPC Myosin-binding protein C Sarcomere protein [23]

MLP/CSRP3 Muscle LIM protein Z discs [29]

ACTN2 α-Actinin-2 Sarcomere structure [30]

MYH6 α-Myosin heavy chain Sarcomere protein [31]

ABCC SUR2A Cardiac K channel [32]

LMNA Lamin A/C Nuclear membrane protein [33]

PLN Phospholamban Sarcoplasmic reticulum Ca regulator [34, 35]

ZASP/LBD3 Cypher Cytoskeletal assembly [36]

X linked

DMD Dystrophin
Dystrophin-associated glycoprotein complex

[37, 38]

TAZ/G4.5 Tafazzin [39, 40]

Recessive

TNNI3 Troponin I Sarcomere protein [41]

ventricular dilatation the absence of coronary artery disease
or other causes such as hypertension or valvular pathology
[2]. The right ventricle may be involved but is not necessary
for the diagnosis. The exact prevalence of DCM in the general
population is unknown, but it clearly varies with age and
geography and is the most common diagnosis in patients
referred for cardiac transplantation [82, 83]. Around 30–
50% of cases have a familial component [71, 84], and more
than 30 genes have been identified, to date, that cause DCM
(Table 3). Most are inherited in an autosomal dominant
fashion although some can be autosomal recessive, X-linked
or mitochondrial. The actual frequency of familial DCM is
probably underestimated.

The 2009 HFSA [71] has released guidelines on the diag-
nosis and treatment of patients with DCM. A careful family
history of three or more generations of family members
should be elicited including unexplained heart failure and
sudden death in family members before the age of 60 without
any symptoms of coronary artery disease. The diagnosis of
familial DCM can be made when there are three or more
close family members with unexplained DCM. Screening of
family members can then take place; this should happen with
or without genetic testing and is supported by the fact that
many patients can be asymptomatic despite being affected.
The 2009 HFSA made the following recommendations for
screening: full history, focusing on symptoms of heart failure
(dyspnoea, syncope, presyncope, and palpitations); physical
examination; ECG; Echo; CK MM. First-degree relatives
who have negative findings on initial screening should be
rescreened in three- to five-year intervals, but if there are

any abnormal findings during the initial screen, the patient
should be rescreened in one year.

Peripartum cardiomyopathy is a specific subgroup of
dilated cardiomyopathy defined as the development of
heart failure with evidence of left ventricular dysfunction,
within the last month of pregnancy to within 5 months
of delivery, without other identifiable cause or underlying
cardiac condition [85, 86]. Groups of women presenting
during the earlier stages of pregnancy have been identified
and with similar epidemiological characteristics and with
similar disease progression and outcomes. The earlier time
frame of presentation has been postulated to represent
part of a spectrum of peripartum cardiomyopathy [87].
In the group of women presenting in the early stages
of pregnancy, search for underlying cardiac conditions
(valvular, ischaemic, and myocardial) should be approached.
Peripartum cardiomyopathy affects approximately 1 : 4000
women across the US and Europe each year, with higher
rates noted across the African continent [88]. The condition
usually presents with dyspnoea, cough, peripheral oedema,
orthopnoea, paroxysmal nocturnal dyspnoea, generalised
fatigue, and chest discomfort. Investigations including new
ECG finding of arrhythmia, chest X-ray with foetal shielding
(if required for diagnosis of pulmonary oedema) showing
cardiomegaly, pulmonary venous congestion and interstitial
oedema, and an elevated BNP or NT-proBNP level further
suggest the presence of peripartum cardiomyopathy [89].
Echocardiographic evidence demonstrating LV enlargement,
a LV end-systolic dimension greater than 2.7 cm/m2 of
body surface area, LVEF less than 45% and/or fractional
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Table 4: Genes associated with ARVD.

Locus Gene Protein Function References

ARVD1 TGFB3 Transforming growth factor β3 Cell signalling [42, 43]

ARVD2 RYR2 Ryanodine receptor 2 Sarcoplasmic reticulum calcium channel [44, 45]

ARVD3 Not known [46]

ARVD4 Not known [47]

ARVD5 LAMR1 Extracellular matrix glycoprotein Cell signalling, adhesion, and migration [48, 49]

ARVD6 PTPLA Protein-tyrosine phosphatase-like member A Fatty acid synthesis [50, 51]

ARVD7 DES; ZASP Desmosomal protein; PDZ domain protein
Dystrophin-associated glycoprotein complex, and
Cytoskeletal assembly

[52, 53]

ARVD8 DSP Desmoplakin Anchoring of intermediate filaments [53, 54]

ARVD9 PKP2 Plakophilin 2 Cell adhesion [55, 56]

ARVD10 DSG2 Desmoglein 2 Calcium-binding transmembrane glycoprotein [57, 58]

ARVD11 DSC2 Desmocollin 2 Calcium-dependent glycoprotein [59, 60]

shortening less than 30 percent, conclude the presence of
heart failure. The use of cardiac MRI in the diagnosis
and evaluation of peripartum cardiomyopathy is currently
being explored and the presence or lack thereof of late
gadolinium enhancement as a prognostic feature in peripar-
tum cardiomyopathy [90, 91]. The aetiology of peripartum
cardiomyopathy has been unclear for many years; however,
new research into an inflammatory or immunological basis,
and the role of prolactin in the development of the disease
has shed new light on the causative mechanisms that may
be behind this condition. Familial clustering of peripartum
cardiomyopathy has been identified; however, on screening
other family members and with further genetic testing, this
clustering may represent a subset of undiagnosed familial
dilated cardiomyopathy. TNF alpha, and other proinflam-
matory cytokines have been shown to be elevated in a large
number of peripartum cardiomyopathy cases and similarly
some studies have suggested a role for autoantibodies against
normal human cardiac tissues proteins and further research
is required in this area [92]. Higher levels of CRP, Fas/Apo-
1, TNF alpha and IL-6 have been demonstrated in some
population groups with peripartum cardiomyopathy and
have implicated a role for inflammatory mediator in the
disease process [93, 94]. The use of immunoglobulin and
antitumour necrosis factor agents as therapy for peripartum
cardiomyopathy has been trialled based on these obser-
vations in several smaller pilot studies [95, 96]. Evidence
implicating myocarditis as a causative factor is varied
however may suggest the presence of myocarditis in 7.8–8.8%
of cases [97]. The role of an altered form of prolactin in
the pathophysiology of peripartum cardiomyopathy has been
explored of late in animal models. Mice with cardiac tissue-
specific STAT3 knockout have shown an increased cleavage of
prolactin (a pituitary hormone released cyclically in varying
degrees in the pregnant state) mediated by cathespsin D to
its proapoptotic and antiangiogenic form, 16 kDa prolactin
and have subsequently demonstrated the development of
peripartum cardiomyopathy [98]. In light of this research,
further preliminary studies have taken place on the use of
bromocriptine as a therapy for women developing peripar-
tum cardiomyopathy this small trials conducted thus far have

shown a mortality benefit [99]. Peripartum cardiomyopathy,
although rare, is an important entity affecting the pregnant
woman, with significant morbidity and mortality conse-
quences. Recent research into the pathophysiology behind
the disease may allow for further subclassification of this
disease, and hence earlier diagnosis, and new novel therapies
in its treatment.

2.4. Arrhythmogenic Right Ventricular Dysplasia (ARVD).
ARVD is a heart muscle disease which, pathologically,
consists of progressive fibrofatty replacement of the right
ventricular musculature which may or may not involve the
left ventricle. It predisposes towards malignant arrhythmias
originating from the right ventricle and is a major cause
of sudden death in young athletes [100]. Major and minor
criteria of ARVD diagnosis have been compiled, and the
diagnosis can be made if there are two major, one major and
one minor or four minor criteria present [101]. Diagnosis
and risk stratification are extremely important as there are
proven life saving interventions which are available to the
clinician [102].

It is a familial disease in around 50% of cases and is
usually transmitted in an autosomal dominant fashion [103].
The first gene, ARVD1, coding for a desmosome protein, was
discovered in 1994 [42], and since then multiple causative
genes relating to the desmosome have been discovered,
indicating that ARVD is a disease of the desmosome [55, 57,
104–107] (Table 4).

Genetics is obviously important as it adds certainty to the
diagnosis, but given the incomplete penetrance of the disease
the established diagnostic criteria are essential.

3. Discussion

The 2009 Heart Failure Society of America (HFSA) genetic
evaluation of cardiomyopathy practice guideline and 2005
American College of Cardiology/American Heart Associa-
tion (ACC/AHA) HF guidelines include recommendations
with regard to genetic counselling and genetic testing in
patients and families with certain cardiomyopathies. As far
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as treatments are concerned, gene therapy is still quite young
and transferring concepts from animal models to human
therapies is yet to be seen. Therapeutic interventions of
the future are likely to focus on the signaling events from
abnormal gene to protein and finally clinical phenotype, and
the modification of the genetic and environmental factors
mediating this process [108].

As sudden cardiac death is a possible first presenting
complaints for patients with dilated cardiomyopathy espe-
cially those with LMNA gene defects (where penetrance rates
are noted to be very high over 30 years and associated
with high rates of sudden death) and in particular SCN5A
defects, early implantation of ICD may be considered in
these populations, especially in the setting of family history
of sudden cardiac death or implantable cardiac defibrillator
usage [109].

Gene therapy in animal models of heart failure aimed at
improving sarcoplasmic calcium transport has been inves-
tigated with therapeutic promise and may lead to further
application in human model of restrictive cardiomyopathy
[110].

In patients with ARVC, genotyping and early ICD
implantation as primary prevention may be indicated in
patients with Naxos disease and recessive forms of ARVC
[111].

3.1. The Impact of Genetic and Genomic Approaches on
Current and Future Clinical Application. Screening of family
members of patients with dilated cardiomyopathy, hyper-
trophic cardiomyopathy, and arrhythmogenic right ventric-
ular is recommended as family members are frequently
asymptomatic and disease progression is often quite short
and although asymptomatic early noninvasive investigations
may prove abnormal [112, 113].

Due to the commonality of autosomal dominant inher-
itance of hypertrophic cardiomyopathy and the high degree
of penetrance associated with many of the gene mutations,
it is recommended that first-degree relatives are regularly
screened for inheritance of the disease [114]. With the
likely increase in amount of genetic testing the impact on
family members of patients with an inheritable disease is
likely to be affected significantly, particularly with many
defects identified showing varying degrees of expression and
penetrance. The role of genetic counselling will become more
and more important as further genetic variants are identified
with unknown pathological and prognostic significance.

For example, patients with gene mutations of desmo-
somal components (those most commonly seen in ARVC),
penetrance is low and there is commonly age related
variability in expression and therefore, early identification
holds an unknown prognostic significance for patients in
question [115, 116].

4. Conclusion

Classification systems in all branches of science are designed
to allow categorisation within a consistent framework
thereby imparting a degree of homogeneity to satisfy

researchers and clinicians alike. Over the years, many clas-
sification systems have been put forward for cardiomyopathy
based on origin, structural abnormality, functional status,
and etiology. Not surprisingly, this has failed to some degree.
From a purely functional viewpoint, cardiomyopathy is
not a static condition but can move from one functional
group to another due to cardiac remodelling. Similarly,
using etiology has limitations given that similar genotypes
can express different phenotypes depending on where the
disease is in its natural history. Despite these shortcomings,
a genetic diagnosis does offer some definite advantages.
Karibe et al. reported a novel tropomyosin mutation that
was associated with a mild phenotype but had a poor
prognosis when contrasted to other mutations in the gene
(13 deaths in 26 affected family members) [117]. Genetic
testing in such cases allows identification of patients which
would benefit from primary ICD implantation as well as a
definitive diagnosis in conjunction with traditional methods.
Similarly, patients with mutations in the gene for cardiac
myosin-binding protein C can have a favourable clinical
course due to the fact that the cardiomyopathy may not be
expressed until later in life. Therefore, prolonged lifetime
screening for family members who do not have the mutation
can be avoided by genetic testing within these individuals
[118]. There has been some debate on the value of genetic
testing, with the debate focusing on the ability of genetic
testing to accurately predict clinical course [119]; however,
genetic testing allows clinicians to move beyond unexplained
ventricular abnormalities and definitively identify not only
who has the disease but what the cause is and what are the
likely outcomes. Changing the natural history of a disease
starts with accurate diagnosis.
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